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X-ray+SZ measurements of cluster outskirts
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Recent X-ray and microwave observations have detected the hot
gas in the outskirts of galaxy clusters
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Suzaku+Planck measurements of cluster outskirts

Entropy profiles of 11 nearby

relaxed clusters

Gas fraction profile in Perseus cluster
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PUZZLES: Observed entropy and gas fraction profiles are strongly
inconsistent with theoretical expectations



Theoretical Prediction of
the ICM Entropy Profile

Santa Barbara Cluster Comparison Project (Frenk et al. 1999)
Non-radiative simulations with Mzooc=10>Msun and Tx=5keV
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ROBUST PREDICTION: Gas entropy profile increases monotonically at large radii.
also Voit et al. 2003; Mark Voit’s talk



“Universal” Entropy Profile?

Omega500 Cluster Simulation Project (Nelson et al. 2014)
Mean Entropy Profiles of 65 simulated clusters at z=0 and their progenitors
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Gas entropy profile is more universal when halos are defined with
respect to the mean density than the critical density.
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Mass Accretion breaks Universality
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* Accretion shock penetrates

deeper for faster accreting

clusters because of their
higher momentum flux
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Gas-to-DM density ratio

How well does gas trace DM?
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« Gas density does NOT trace DM density perfectly

+ Gas lags behind DM near the location of accretion shocks



Cosmological Simulations of Galaxy Cluster Formation

N-body+Gasdynamics with Adaptive Refinement Tree (ART) code
Box size ~ 80/h Mpc; Region shown ~ 2/h Mpc; Spatial resolution ~ a few kpc
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Modern cosmological hydro simulations include the effects of baryons (i.e., gas cooling, star formation, heating by
SNe/AGN, metal enrichment and transport). But, also remember limitations - e.g., a single fluid approximation!



Cluster outskirts are very “clumpy”
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Hydrodynamical simulations predict that most of the X-ray emissions from cluster outskirts
(r>r500=0.7r200) arise from infalling groups from filaments



Cluster outskirts are very “clumpy”

Mock Chandra X-ray simulation

of a ACDM cluster
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Hydrodynamical simulations predict that most of the X-ray emissions from cluster outskirts
(r>rs00=0.7r200) arise from infalling groups from the filaments



SZ+X-ray Observations of Pressure Profiles
in Cluster OutsKirts
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SZ and X-ray observations provide complementary views of cluster outskirts;
i.e., SZ signal is less sensitive to gas clumping, but affected by non-thermal pressure, while
both SZ and X-ray signals are susceptible to non-thermal pressure or non-equilibrium electrons.

also Eckert et al. 201 3a,b; Khedekhar+ 13



Gas “Clumpiness” vs. “Inhomogeneities”
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Gas “inhomogeneities” consist of (1) bulk component + (2) high density tail.
Power spectrum analysis is a method of choice for the bulk component!

Zhuravleva et al. 201 3; see also Roncarelli+ | 3,Vazza+ 13



T
0.5

T ‘ 1 T T ‘ 1 T T T T 17 ‘
| NR UNREL /

| Dashed: bulk+high |
L density tail /

— Solid: only bulk F—

| CSF UNREL |

Iy ;]
2 /

|
o ﬂ /

Zhuravleva et al. 2013

Gas Clumping Factors

Gas clumping factors
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Gas clumping factors depend on

(1) input gas physics (CSF<NR)
(2) details of clump excision
(3) dynamical state (but only weakly)



Impact of ICM inhomogeneities on
Non-thermal Pressure Support
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Fast moving, high-density clumps occupy small mass and volume fraction in clusters,
but contribute significantly to the non-thermal pressure support in cluster outskirts.

Zhuravleva et al. 201 3; also Kaylea Nelson’s talk yesterday



Temperature “Inhomogeneities”
SPH vs. AMR simulations

Dispersions in logarithmic gas density and temperature
after excluding high-density gas inhomogeneities
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AMR have similar dispersion in gas density but significantly lower temperature than SPH runs.
This is the origin of the differences in the predicted HSE mass bias:
30% (SPH: Rasia+12) & 10-15% (AMR: Nagai+07)



Electron-Proton Equilibration in Cluster OutskKirts

In the outskirts of galaxy clusters, the collision rate
of electrons and protons becomes longer than the
age of the universe.
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Avestruz, Nagai, Lau, Nelson, in prep

Spitzer 1962, Takizawa 1999, Chuzhoy & Loeb 2004,
Rudd & Nagai 2009, Akahori & Yoshikawa 2010




PREDICTIONS: Hydrodynamical
Simulations of Galaxy Cluster Outskirts

Hydrodynamical Simulations of Galaxy Clusters

(1) ICM inhomogeneities in both gas
density and temperature

 the former important at r>rsooc
% the latter important even in r<rasooc

(2) Gas motions - become increasingly
important at large radii (r>>rzs00c)

(3) Non-equilibrium electron - could be
important at r>rapoc 0f high-Tx,
unrelaxed clusters, but the exact

Mock Siindra $ray simflation  ESEEEEEEE SRS prediction depends on uncertain

plasma physics

: : (4) Observational bias (metallicity &
flaments™, W/ n multiphase temperature structure)
' - is a concern at r>rsooc (Avestruz+14)

Avestruz, Lau, Nagai, Vikhlinin,
arXiv:1404.4634




Galaxy Clusters Outskirts: New Frontier and
Crossroads of Cosmology & Astrophysics

4 Cluster Core (r<0.1Rs00c)
Heating, Cooling, & Plasma physics

1. AGN feedback (Mechanical/CR heating)
2. Dynamical Heating, Gas sloshing

3. Thermal Conduction, Magnetic Field, He
sedimentation

4+ Cluster outskirts (r>Rsooc)
Gas Accretion & Non-equilibrium phenomena

1. Gas inhomogeneities
2. Gas motions
3. Non-equilibrium electrons

4+ Intermediate Region (r~Rsooc)

Sweat Spot for Cluster Cosmology, but the
physics of cluster outskirts affects this region.



