New constraints on large-scale thermal conductivity in galaxy clusters

B. Russell (PhD thesis, UMD), M. Markevitch (GSFC), J. ZuHone (GSFC)

August 11, 2014

Cluster radial temperature profiles

• XMM, Suzaku results similar (Molendi & Leccardi 08; George et al. 09; ...)

A2029, a prototypical hot relaxed cluster

Chandra data, Vikhlinin et al. 06

If the cluster were a solid body ...

no cooling, 0.3 Spitzer isotropic conduction

• conduction erases *T* gradient

Russell et al. 14

If the cluster were a solid body ...

cooling, 0.3 Spitzer isotropic conduction

• conduction erases *T* gradient outside the cool core

Russell et al. 14

Allow the cluster to maintain hydrostatic equilibrium:

- Assume constant grav. potential
- Let the gas redistribute quasistatically
- Outer boundary (at $r \sim 3$ Mpc) open for gas and heat flow

- simulation using Lagrangian shells (whose boundaries move with the gas)
- special treatment in central 10 kpc (smoothly suppressed cooling)

If the cluster is hydrostatic ...

Russell et al. 14

If the cluster is hydrostatic ...

no cooling, 0.3 Spitzer isotropic conduction, gas redistribution

• T gradient maintained because of cluster compression

(result very similar to McCourt, Quataert & Parrish 13)

Russell et al. 14

If the cluster is hydrostatic ...

cooling, 0.3 Spitzer isotropic conduction, gas redistribution

Russell et al. 14

• *T* gradient (mostly) maintained because of cluster compression

Evolution of gas density profile

cooling, 0.3 Spitzer isotropic conduction

Russell et al. 14

Evolution of gas density profile

no cooling, 0.3 Spitzer isotropic conduction

Russell et al. 14

• for $r > 0.5 r_{2500}$, result doesn't depend on details of heating and feedback in cool core

Observed differential f_{gas} profiles in hot relaxed clusters

T > 5 keV, z < 0.25 relaxed clusters

Mantz et al. 14

5% Spitzer

Russell et al. 14

10% Spitzer

Russell et al. 14

20% Spitzer

Russell et al. 14

30% Spitzer

Russell et al. 14

Other hot relaxed clusters

Chandra data, Vikhlinin et al. 06

Other hot relaxed clusters

10% Spitzer

Russell et al. 14

Conclusions

- Large-scale heat conduction does not erase the cluster radial temperature gradients (as shown before)
- What it does change is *f*_{gas} profile
- Under simple assumptions, $\kappa > 5 10\%$ Spitzer (in the cluster radial direction) contradicts the observed small scatter in f_{gas} at $r \sim r_{2500}$ in hot, relaxed clusters

(e.g., *B* stretched in radial direction by MTI and full conduction along the field lines is excluded)

• Cosmological simulations including heat conduction and cooling, and the relaxed cluster selection as in Mantz 14, may place stronger constraints

Another shock for the Bullet Cluster and a smoking-gun model for radio relics

Tim Shimwell (Leiden), Maxim Markevitch (GSFC)

August 11, 2014

Chandra X-ray image

٠

1E0657

ATCA 1.1–3.1 GHz image (Shimwell 14a)

1E 0657 — reverse shock?

Chandra X-ray image

1E0657 — reverse shock?

X-ray brightness across relic

Fit corresponds to shock with M = 1.7 - 5.5 (uncertain 3D geometry) (Shimwell 14b)

1E0657 — reverse shock?

Gas temperature across relic

90% error bars (Shimwell 14b). Shock front "suggested" but not unambiguously confirmed

A "reverse shock" to the famous western shock

- Although T jump inconclusive, unlikely to be anything else
- X-ray $M = 2.5^{+1.3}_{-0.8}$
- Radio slope of tail region of relic + Fermi type I acceleration $\rightarrow M = 1.9 2.2$
- Tail is connected to a bright "bulb", which looks like a just-died radio galaxy
 source of aged electrons (a smoking gun) for re-acceleration?
- Conjecture: ICM polluted by a radio galaxy stays in the periphery, forming a pancake (or sausage) along the equipotential surface, waiting for a shock passage