Cosmic rays in galaxy clusters and their non-thermal emission

Anders Pinzke

Collaborators: C. Pfrommer, P. Oh, F. Zandanel (Magic), M. Pohl (Veritas), S. Zimmer (Fermi), O. Reimer (Fermi), J. Conrad (Fermi)

Copenhagen, NBI Aug 14, 2014

Signs of non-thermal activity in galaxy clusters

A 3667 Radio: Johnston-Hollitt.; X-ray:ROSAT/PSPC. A 2163 Radio: Feretti at al, 2004

radio halo - Hadronic models

Relativistic populations and radiative processes in clusters:

Observational diagnostics:

e.g. Ensslin+ 2011, Wiener+ 2013, Zandanel+ 2013, Zandanel and Ando 2014, Pfrommer+ 2004,2008, Pinzke and Pfrommer 2010, Pinzke+ 2012

radio halo - Hadronic models

Relativistic populations and radiative processes in clusters:

e.g. Ensslin+ 2011, Wiener+ 2013, Zandanel+ 2013, Zandanel and Ando 2014, Pfrommer+ 2004,2008, Pinzke and Pfrommer 2010, Pinzke+ 2012

radio halo - Hadronic models

Relativistic populations and radiative processes in clusters:

e.g. Ensslin+ 2011, Wiener+ 2013, Zandanel+ 2013, Zandanel and Ando 2014, Pfrommer+ 2004,2008, Pinzke and Pfrommer 2010, Pinzke+ 2012

Hadronic models – CRs and gamma

Acceleration mechanism: diffusive shock acceleration Simulation based CR proton model with adiabatic transport Ensslin et al. 2006, Pfrommer et al. 2008, Pinzke et al. 2010, 2012

Gamma-ray emission dominated by decaying π° :s

Hadronic models – gamma rays

Magic Observation time: 85 h deepest observation of a cluster ever

Combined Perseus sim.-based analytics w/ gal. sim.-based analytics w/o gal. sim.-based analytics w/o gal. (x0.8) $V_{CR}(R < R_{200})$ 10-12 y, min $_{\gamma}(>E) [ph s^{-1} cm^{-2}]$ A02 62 A0576 2×10^{-2} $C_{CR}(R < R_{200})$ 10-14 1000 6×10 Aleksic+ 2010,2012 E[GeV]

Fermi-LAT 4 year data *Combined likelihood analysis*

→ P_{CR}/P_{th} and E_{CR}/E_{th} < few percent

→ Fermi-LAT upper limit constrain hadronic models (acc. Eff. < 25%)

Hadronic models – missing pieces

However, simple CR model in tension with some observations of giant radio halos

Hadronic model can <u>not</u> explain radio observations of COMA cluster

Brunetti et al. 2009

Long cooling time of CR protons \rightarrow Hadronic model predicts only **one population** of radio halos

Hadronic models – Streaming CRs

 au_{st}

 $\tau_{\rm fm}$

 $\equiv \gamma_{tu}$

Acceleration mechanism: diffusive shock acceleration Simulation based CR proton model with adiabatic transport + streaming and diffusion

Ensslin et al. 2011, Zandanel et al. 2013, 2014, Wiener et al. 2013

Gamma-ray emission suppressed by ~ 10 in low turbulent clusters Can reproduce the radio profile in most clusters (COMA a problem) **Need additional component in cluster outskirts: primary CRes?**

Giant radio halo - reacceleration model

Relativistic populations and radiative processes in clusters:

e.g. Brunetti+ 2001,2004,2012, Brunetti and Lazarian 2007, 2011, Petrosian 2001, Cassano and Brunetti 2005

Reacceleration models - CRs

Acceleration mechanism: Compressible MHD turbulence

Brunetti and Lazarian 2007, 2011, Brunetti et al. 2012

Reacceleration models - radio

Brunetti and Lazarian 07,11, Brunetti et al. 2012

Feretti at al, 2004

Reacceleration models - uncertainties

- strong tension with simulations

10-12 10° p^2 10-13 $< f_v(p)/f_v(1) >_{cluster}$ Energy density 10^{-2} **Preliminary** $10^{-10^{-1}}$ 10° 10-15 2.6 >cluster 2.4 2.3 10-16 10⁻¹ 10⁰ 10^{-2} 10^{0} 10^{2} 10¹⁰ 10^{4} 10^{6} 10^{8} Radius Pinzke & Pfrommer р Pinzke et al. in prep. 2010

***** efficiency acceleration mechanism

injection rate of turbulence constant over halo region
Realistic cluster simulations with relevant physics
need to fully establish reacceleration models!

Radio Relics

Radio Relics in a nut-shell

- Trace shocks in cluster
 outskirts
- Spectral index: shock Mach number
- Spectral ageing: B-field strength

A radio relic poster child: A2256

 $\alpha_v = 0.85 \rightarrow \text{Mach} = 2.6$ How is this possible???

Diffusive shock acceleration – reacceleration through Fermi I

р

Cooling time of CR electrons

CR electrons accumulate in energy range $\gamma_e \sim 10 - 1000$

Fossil CR electron population

Drum Roll, Please!

Re-acceleration in radio relics

Fossil contribution comparable to direct injection at high M Dominates at low M !

Giant radio halos

- Classical hadronic models ruled out by observations, however streaming and diffusion might help solve the problem
- Reacceleration scenario preferred, however strong assumptions on initial CR distribution that do not agree with simulations

Radio relics

DSA reaccelerated fossil CR electron in cluster outskirts can explain radio emission from low Mach number shocks