Analytical model for turbulence pressure in galaxy clusters & comparison to hydro simulations

Xun Shi, Eiichiro Komatsu (MPA) Kaylea Nelson, Daisuke Nagai (Yale)

Why is an analytical model of turbulence pressure^{*} needed?

* non-thermal pressure associated to random gas motions

~ 20% at r_{500c}

cf. Kaylea, Elena and Daisuke's talks

SZ power spectrum, HSE mass bias, evolution of P&T&K profiles, scaling relations... Why is **an analytical** model of turbulence pressure needed?

Why an analytical model is needed?

Why an analytical model is needed?

Why is an analytical model of turbulence pressure possible?

Why is an analytical model of turbulence pressure possible?

turbulence

mechanism of transport over k and x, origin of intermittency, ...

Why an analytical model is possible?

may be

intracluster turbulence pressure

Pressure ~ energy density

- injection & dissipation of random kinetic energy
 - microphysics may not be critical

Analytical model for turbulence pressure

as a function of :

Radius
Mass
Time

The model

at one Eularian radius r

$$\frac{\mathrm{d}\sigma_{\mathrm{nth}}^2}{\mathrm{d}t} = -\frac{\sigma_{\mathrm{nth}}^2}{t_{\mathrm{d}}} + \eta \, \frac{\mathrm{d}\sigma_{\mathrm{tot}}^2}{\mathrm{d}t}$$

 $\sigma_{nth}^2 = P_{nth} / \rho_{gas}$ \propto turbulence energy per unit mass

input:
$$\sigma_{tot}^2 = \sigma_{th}^2 + \sigma_{nth}^2 \sim T$$

depth of gravitational potential

Generation of intracluster turbulence

during structure formation

turbulence from MTI (Parrish+12, McCourt+13) & feedback neglected here

Generation of intracluster turbulence

Generation of intracluster turbulence

Vazza et al 2010

see also Ryu+03, Pfrommer+06, Skillman+08, Vazza+09, II, Schaal & Springel 14

Dissipation of intracluster turbulence

$$\frac{\mathrm{d}\sigma_{\mathrm{nth}}^2}{\mathrm{d}t} = -\frac{\sigma_{\mathrm{nth}}^2}{t_{\mathrm{d}}} + \eta \, \frac{\mathrm{d}\sigma_{\mathrm{tot}}^2}{\mathrm{d}t}$$

dissipation time scale t_d ∞ eddy turn-over time of the largest eddies ∞ dynamical time t_{dyn} , $t_d = \beta t_{dyn} / 2$

Dissipation of intracluster turbulence

dissipation time scale $t_d \propto eddy$ turn-over time of the largest eddies $\propto dynamical$ time t_{dyn} , $t_d = \beta t_{dyn} / 2$

Turbulence injection, too,

can be treated at each Eularian radius r independently (effectively)

• radial distribution of injected energy: keep self-similarity

$$\Delta\sigma_{
m tot}^2 \propto \sigma_{
m tot}^2$$

Tracing σ_{nth}^2 along mass growth history of galaxy clusters

prediction: $f_{nth} = P_{nth}/P_{tot}$ increases with r (slower dissipation), M & z (faster growth), or equivalently, r & accretion rate (hence HSE mass bias, too)

z & M dependencies strongly reduced when scale with r200m. cf. Kaylea's talk

Non-thermal fraction vs simulations

a mass-limited sample of 65 simulated clusters at z=0 Omega500 simulation (Nelson et al 2014)

use $\sigma_{tot}(r,t)$ from simulation to model the non-thermal fraction

reproduce the variation among clusters

both mean & scatter match

note: not all relaxed

Shi, Komatsu, Nelson, Nagai, in prep

Non-thermal fraction vs simulations

a mass-limited sample of 65 simulated clusters at z=0 Omega500 simulation (Nelson et al 2014)

use $\sigma_{tot}(r,t)$ from simulation to model the non-thermal fraction

Shi, Komatsu, Nelson, Nagai, in prep

Effect of recent accretion history / dynamical state

difference in f_{nth} successfully reproduced; confirms the relation bet. f_{nth} & accretion history

Evolution of intracluster turbulence: towards a better picture

1d model

$$\frac{\mathrm{d}\sigma_{\mathrm{nth}}^2}{\mathrm{d}t} = -\frac{\sigma_{\mathrm{nth}}^2}{t_{\mathrm{d}}} + \eta \, \frac{\mathrm{d}\sigma_{\mathrm{tot}}^2}{\mathrm{d}t}$$

 $t_d = \beta t_{dyn} / 2$: 1-1 relationship between $l_0/v_0 \& r$ \rightarrow exponential decay

(affect where t_d << t_{growth} i.e. at small radii)

1+1d model

 $\frac{d\sigma_{nth}^{2}}{dt} (\mathbf{r}, \mathbf{k})$ link to magnetic field, cosmic rays
... towards a unified picture of non-thermal
phenomena? need more detailed knowledge abt
intracluster turbulence injection & cascade

Conclusions

physical motivated 1d model for non-thermal pressure without free parameters

* higher t_{growth} rate at higher z and M \square larger f_{nth} at high z and M

current form can already be used to interpret data @ cluster
 * outskirts, and effectively correct for turbulence-induced HSE mass bias

- * $\sigma^{2}_{nth}(r) \longrightarrow \sigma^{2}_{nth}(r, k)$
- * values of η and β from dedicated simulations?

∔-

Neglected in this model

acceleration/rotation/streaming motion

can contribute at the outskirts of some clusters

magnetic field pressure

 μG field detected in few cases. origin & universality & P_B uncertain

cosmic ray pressure

 γ -ray signature of cosmic ray ions not yet detected

• possible radius & redshift dependencies of η and β

should not be significant compared to dependencies of the modeled fnth

Radius dependence of the Mach number

Low Mach number internal shocks process more kinetic energy

Thermal pressure vs observations

- Planck team 2013:
 SZ (joint fit with X-ray)
- Ptot model: Komatsu & Seljack 2001
- Pth model:
 Ptot Pnth model

consistent with Planck results

Total pressure profile

additional assumption: gas density profile traces the dark matter density profile in outer parts of the haloes

Komatsu & Seljak 01

P_{nth} in observations

Bias between X-ray mass/ SZ mass & lensing mass (e.g. Allen98, Mahdavi+08, Zhang+10, von der Linden+14, Israel+14)

