The Generation and Evolution of Turbulence During Cluster Formation

Tom Jones (U Minnesota) Franco Vazza (U Hamburg) David Porter (U Minnesota) Marcus Bruggen (U Hamburg) Claudio Gheller (CSCS, Switzerland) Gianfranco Brunetti (INAF, Italy) Dongsu Ryu (UNIST, Korea)

Set of 27 Cluster Formation Simulations Designed to Study Origins & Evolution of ICM Turbulence

(--Work in Progress- RESULTS PRELIMINARY--)

✓ Generation of turbulence: how, where, when:
✓ In this talk will focus on vorticity as a metric for solenoidal turbulence

Fixed, nested grids (ENZO 2.1) (3 levels):

- 64 Mpc³ = (45 Mpc/h)³ box; 400³ root grid Inner 32 Mpc³ box; 400³ grid <u>Cluster-centered 6.4 Mpc³ uniform at ∆x = 20 kpc (to beyond ~R_{vir})</u> <u>Full outputs saved ∆t ≈ 100 Myr near z = 0</u>
- ➢ WMAP-7 cosmology from z = 30, adiabatic +'reionization'
- Zoomed in on merging, post merger & relaxed systems
 M_v ~ several x10¹⁴M_{sun}
 R_{vir} ~ 2 2.5 Mpc

Evolution of Vorticity

Recall: Vorticity measures an 'inverse eddy time'

Two Ways to Seed Vorticity

a) Baroclinic flows (e.g., <u>downstream of curved shocks</u>, merging, etc) create vorticity. From Euler's equation:

$$\frac{d\omega}{dt} = \cdots - \begin{bmatrix} 1 & 1 \\ \text{Vanishes if P=P(\rho) (e.g., isothermal)} \\ \rho & p \end{bmatrix} S = \frac{P}{\rho^{5/3}}$$

b)

Easier to Work with Scalar, Enstrophy (
$$\omega^2 = \epsilon$$
)
Sources
Sources
Conservative
 $\boxed{\frac{\partial \omega^2}{\partial t} = F_{adv} + F_{stretch} + F_{comp} + F_{baroc} + F_{diss},}$
 $F_{adv} = -\nabla \cdot \vec{u} \omega^2 = -(\omega^2 \nabla \cdot \vec{u} + \vec{u} \cdot \nabla \omega^2),$
 $\boxed{F_{stretch} = -2\vec{\omega} \cdot (\vec{\omega} \cdot \nabla)\vec{u}}$
Amplification
 $\boxed{F_{comp} = -\omega^2 \nabla \cdot \vec{u} = \omega^2 \frac{d\rho}{dt},}$
 $\boxed{F_{baroc} = 2\frac{\vec{\omega}}{\rho} \cdot \nabla \ln(\rho) \times \nabla P}_{= 2\mathcal{R} \cdot \vec{\omega} \cdot \nabla \ln(\rho) \times \nabla S,}$
where $\mathcal{R} = k_B/(\mu m_H)$
 $\boxed{F_{comp} = -\omega^2 \nabla \cdot \vec{u} = \omega^2 \frac{d\rho}{dt},}$

$$F_{diss} = -2\nu\vec{\omega}\cdot\nabla^2\vec{\omega}$$

-These quantities can all be computed numerically from simulation data-

1) Methods Test Using Compressively Driven Isothermal Turbulence

```
>3D periodic box (so net F_{adv} = 0)
     (L_x = L_y = L_z = 1) Eulerian, compressible, ideal (TVD-MHD)
>Isothermal, \underline{c_s} = 1 (so \nabla \rho \times \nabla P = 0; F_{\text{baroc}} = 0)
     t_{sound} = L/c_s = 10, <\rho>=1, so <P>=1
\triangleright Random Compressive Driving; \nabla \times \delta u = 0 (so no explicit vorticity added)
       peak ~ L_d = 2/3 L_x k = 3/2
       = u_{RMS} \sim 1/2 c_s, largest eddy time t_{eddv} \sim L_d / u_{RMS} \sim 13-17
\rightarrow MHD with very weak (uniform) seed field, \beta=10<sup>6</sup>, negligible early feedback
```

Turbulent Energy Evolution

Compressional Forcing Leads to Shocks: Curved & Intersecting Shocks Create Vorticity via "Crocco's Theorm": (Vorticity Amplifies Magnetic Field)

Zoomed in slice at t = 5

512³ simulation

Enstrophy Evolution Rates (Compressive Driving; $\nabla \times \delta u = 0$)

 $\partial \epsilon / \partial t$ and E_{div}

ICM-3 Copenhagen

2) Cluster Formation Simulations

Two example clusters: A) Cluster 'actively merging' until z~ 0 (it922) B) Cluster 'relaxing' since z ~ 0.5 (it100)

Both have $M_v \sim \text{several } x10^{14} M_{\text{sun}}$

Goal is to establish when, where and how cluster turbulence is generated, amplified and transported

First look focuses on vorticity

Cluster A (it922) – Volume View of Dynamic State – z ~ 0

ρ |u| lMach lentropy

ICM-3 Copenhagen

Flow velocity

Shock Mach number red = weak > 1.3 white = strong < 20

Log plasma density

 $(6.4 \text{ Mpc})^3 \text{ box}$

Log Entropy

Cluster A (it922) – Density Evolution

(6.4 Mpc)³ box

8/13/2014

Cluster A (it922) – Enstrophy Evolution

(6.4 Mpc)³ box

8/13/2014

Cluster A (it922) – Enstrophy Distribution Function – z ~ 0

Cluster A (it922) – Turbulence Distribution Evolution: Using Vazza + 2012 Multi-scale Turbulence Filter

Consistency check

Cluster A (it922) – Enstrophy Volume View -z ~ 0

Log Enstrophy

Enstr. "Compression rate"

(6.4 Mpc)³ box

z = 0.074

8/13/2014

ICM-3 Copenhagen

Cluster A (it922) – Volume View of Dynamic State – z ~ 0

ρ |u| lMach lentropy

ICM-3 Copenhagen

Flow velocity

Log Entropy

Shock Mach number red = weak > 1.3 white = strong < 20

Log plasma density

 $(6.4 \text{ Mpc})^3 \text{ box}$

8/13/2014

z = 0.074

Cluster A (it922) History of Integrated Enstrophy Development since z = 1

Cluster B (it100) Relaxing Since z ~ 0.5–Two Snapshots

Log plasma density

(6.4 Mpc)³ box

8/13/2014

ICM-3 Copenhagen

Cluster B (it100) Density Evolution

(6.4 Mpc)³ box

8/13/2014

Cluster B (it100) Enstrophy Evolution

(6.4 Mpc)³ box

8/13/2014

Cluster B (it100) History of Integrated Enstrophy Development since z = 1.9

Note: Enstrophy decays for z < 0.8

Dissipation dominates decreased seed and amplification rates

Enstrophy evolution

Baroclinic & Compressive Sources & Net flux rate into volume

Amplification rate

Summary & Conclusions

- Solenoidal turbulence (vorticity) is seeded during cluster formation broadly by (at least) 3 comparable sources:
 Directly by refraction at curved and (especially) intersecting cluster shocks
 - Baroclinicity in flows downstream of shocks (other baroclinicity generators likely; e.g., AGNs, cooling, etc)
 - Influx from accretion
- > Spatial and temporal distributions of seeding are complex (& under investigation)
- > Amplification by stretching is effective on Gyr timescales; further evolution comes from advection & dissipation

Tak!