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Set of 27 Cluster Formation Simulations
Designed to Study Origins & Evolution of ICM Turbulence

Generation of turbulence: how, where, when:
In this talk will focus on vorticity as a metric for solenoidal turbulence

 Zoomed in on merging, post merger & relaxed systems 
Mv ~ several x1014Msun
Rvir ~ 2 – 2.5 Mpc

 Fixed, nested grids (ENZO 2.1) (3 levels):

 64 Mpc3 = (45 Mpc/h)3 box; 4003 root grid
Inner 32 Mpc3 box; 4003 grid
Cluster-centered 6.4 Mpc3 uniform at ∆x = 20 kpc (to beyond ~Rvir)
Full outputs saved ∆t ≈ 100 Myr near z = 0

(--Work in Progress– RESULTS PRELIMINARY--)

 WMAP-7  cosmology from z = 30, adiabatic +’reionization’
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Evolution of Vorticity
Recall: Vorticity measures an ‘inverse eddy time’ 

In K41 turbulence:

From Navier-Stokes:

or

Baroclinic Source Term

Dissipation
(numerical here)

Conservative

Stretch Amplification
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Two Ways to Seed Vorticity

a) Baroclinic flows (e.g., downstream of curved shocks, merging, etc)
create vorticity. From Euler’s equation:

ICM-3 Copenhagen

Alternatively, refraction of a flow through a curved shock:
From Euler’s eqn. “Crocco’s theorem”

SP
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Then downstream:

Vanishes if P=P(ρ) (e.g., isothermal)

Depends on compression, not EoS directly
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Easier to Work with Scalar, Enstrophy (ω2=ε)

Conservative

Sources

Amplification
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3D  periodic box (so net Fadv = 0)
(Lx = Ly = Lz = 1) Eulerian, compressible, ideal (TVD-MHD)

Isothermal, cs = 1 (so ∇ρ×∇P = 0; Fbaroc = 0)
tsound = L/ cs = 10, <ρ>=1,  so <P> = 1

Random Compressive Driving; ∇×δu = 0 (so no explicit vorticity added)
peak ~ Ld = 2/3 Lx , k = 3/2
=> uRMS~1/2 cs ,largest eddy time teddy ~ Ld/uRMS ~ 13-17

MHD with very weak (uniform) seed field, β=106 , negligible early feedback 

1) Methods Test Using Compressively Driven Isothermal Turbulence

-These quantities can all be computed numerically from simulation data-
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First Colliding shocks
t~5~ ½ tsound

Turbulent Energy Evolution 

Compressional Kinetic Energy

Solenoidal Kinetic Energy

Magnetic Energy

10243

EB/Ek,s ~ 1/8, β≈ 500

urms~0.4 cs
Pturb ~ 0.05 P

teddy
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Compressional Forcing Leads to Shocks: 
Curved & Intersecting Shocks Create Vorticity via “Crocco’s Theorm”:

(Vorticity Amplifies Magnetic Field)

Zoomed in slice at t = 5

Intersecting shocks Vorticity Magnetic field amplification

5123 simulation

=> =>
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Enstrophy Evolution Rates (Compressive Driving; ∇×δu = 0)

∂ω2/ ∂t = ∂ε/ ∂t

Fcomp=- ω2∇⋅u

Fstretch=-2ω⋅(ω⋅∇)u

First Colliding shocks

∂Emag/ ∂t
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2) Cluster Formation Simulations

Two example clusters:
A) Cluster ‘actively merging’ until z~ 0 (it922)
B) Cluster ‘relaxing’ since z ~ 0.5 (it100)

Both have Mv ~ several x1014 Msun

Goal is to establish when, where and how cluster turbulence is generated,
amplified and transported

 First look focuses on vorticity
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Cluster A (it922) – Volume View of Dynamic State –z ~ 0

z = 0.074

Log plasma density

Log Entropy

Flow velocity

Shock Mach number

red = weak > 1.3
white = strong < 20

(6.4 Mpc)3 box
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Cluster A (it922) –Density Evolution

(6.4 Mpc)3 box
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Cluster A (it922) –Enstrophy Evolution

(6.4 Mpc)3 box
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Log(ω2)

P
(ω

2 )

Cluster A (it922) –Enstrophy Distribution Function – z ~ 0

Note:
ω In Code units;
~ 1/(130 Myr)

So ω2 ~ 1 corresponds
to teddy ~ 130 Myr

While ω2 ~0.1 corresponds
to teddy ~ 400 Myr

Or ul ~ ω l ~ 100 km/sec
With l ~ 40 kpc

cf Miniati 2014
very similar result

(6.4 Mpc)3 box
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Cluster A (it922) –Turbulence Distribution Evolution:
Using Vazza + 2012 Multi-scale Turbulence Filter

Consistency check
With enstrophy anal.

Turbulent cascade energy flux
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Cluster A (it922) –Enstrophy Volume View -z ~ 0

z = 0.074

Log Enstrophy
Enstro. “Stretching rate”

Enstr. “Compression rate” Enstro. Baroclinic Source

(6.4 Mpc)3 box
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Cluster A (it922) – Volume View of Dynamic State –z ~ 0

z = 0.074

Log plasma density

Log Entropy

Flow velocity

Shock Mach number

red = weak > 1.3
white = strong < 20

(6.4 Mpc)3 box
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Cluster A (it922) History of Integrated Enstrophy Development since z = 1

Enstrophy evolution

Baroclinic & Compressive Sources
& Net flux rate into volume

Amplification rate

Same range

Amplification timescale:
ω2 / (∂ω2/∂t) ~ 1 Gyr
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Cluster B (it100) Relaxing Since z ~ 0.5–Two Snapshots

z= 0.9

z= 0

Log plasma density Log enstrophy

(6.4 Mpc)3 box

Actively Merging

Relaxing
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Cluster B (it100) Density Evolution

(6.4 Mpc)3 box
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Cluster B (it100) Enstrophy Evolution

(6.4 Mpc)3 box
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Cluster B (it100) History of Integrated Enstrophy Development since z = 1.9

Enstrophy evolution

Baroclinic & Compressive Sources
& Net flux rate into volume

Amplification rate

Note: Enstrophy decays for z < 0.8

Dissipation dominates decreased
seed and amplification rates
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Summary & Conclusions

 Solenoidal turbulence (vorticity) is seeded during cluster formation broadly by (at least) 3 comparable sources:
- Directly by refraction at curved and (especially) intersecting cluster shocks
- Baroclinicity in flows downstream of shocks (other baroclinicity generators likely; e.g., AGNs, cooling, etc)
- Influx from accretion

 Spatial and temporal distributions of seeding are complex (& under investigation)

 Amplification by stretching is effective on Gyr timescales; further evolution comes from advection & dissipation



8/13/2014 ICM-3 Copenhagen 24

Tak!
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