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High Performance Computing (HPC)

‣To solve large problems in science, engineering, or 

business	


‣Modern HPC architectures have	


▪ increasing number of cores	


▪ declining memory/core	


‣This trend will continue for the foreseeable future



High Performance Computing (HPC)

‣This tension between computation & memory brings a 

paradigm shift in numerical algorithms for HPC	


‣To enable scientific computing on HPC architectures:	


▪ efficient parallel computing, (e.g., data parallelism, task 

parallelism, MPI, multi-threading, GPU accelerator, etc.)	


▪ better numerical algorithms for HPC



Numerical Algorithms for HPC

‣Numerical algorithms should conform to the 

abundance of computing power and the scarcity of 

memory	


‣But…	


▪ without losing solution accuracy	


▪ with maintaining maximum solution stability	


▪ with faster convergence to “correct” solution



High-Order Numerical Algorithms

‣ A good solution to this is to use high-order algorithms	


‣ They provide more accurate numerical solutions using 	


▪ less grid points (=memory save)	


▪ higher-order mathematical approximations (promoting 

floating point operations, or computation)	


▪ faster convergence to solution



Traditional High-Order Schemes

‣ Traditional approaches to get Nth high-order schemes take (N-1)th 
degree polynomial for interpolation/reconstruction	


▪ only for normal direction (e.g., PLM, PPM, ENO, WENO, etc) 	


▪with monotonicity controls (e.g., slope limiters, artificial viscosity)	


‣ High-order in FV is tricky (when compared to FD)	


▪ volume-averaged quantities (quadrature rules)	


▪ preserving conservation w/o losing accuracy 	


▪ higher the order, larger the stencil	


▪ high-order temporal update (ODE solvers, e.g., RK3, RK4, etc.)

2D stencil for 	

2nd order PLM

2D stencil for 	

3rd order PPM



Shu-Osher Problem:1D Mach 3 Shock



Low-Order vs. High-Order

1st Order	

High-Order	


Ref. Soln

1st order: 3200 cells (50 MB), 160 sec, 3828 steps	

vs.	


High-order: 200 cells (10 MB), 9 sec, 266 steps



Circularly Polarized Alfven Wave (CPAW)

▪A CPAW problem propagates 
smoothly varying oscillations of 
the transverse components of 
velocity and magnetic field	


▪The initial condition is the exact 
nonlinear solutions of the MHD 
equations	


▪The decay of the max of  Vz and 
Bz is solely due to numerical 
dissipation: direct measurement 
of numerical diffusion (Ryu, Jones 
& Frank, ApJ, 1995; Toth 2000, Del 
Zanna et al. 2001; Gardiner & 
Stone 2005, 2008)

These results are in agreement with previous investigations [5,6] and strongly supports the idea that problems involving
complex wave interactions may benefit from using higher-order schemes such as the ones presented here.

4.2. Shock tube problems

Shock tube problems are commonly used to test the ability of the scheme in describing both continuous and discontin-
uous flow features. In the following we consider two- and three-dimensional rotated configurations of standard one-dimen-
sional tubes. The default value for the parameter ap controlling monopole damping (see Eq. (9)) is 0.8.

4.2.1. Two-dimensional shock tube
Following [30,33], we consider a rotated version of the Brio-Wu test problem [8] with left and right states are given by

VL ¼ ð1; 0;0; 0:75;1;1ÞT for x1 < 0;

VR ¼ ð0:125;0;0;0:75;$1;0:1ÞT for x1 > 0;

(
ð49Þ

where V ¼ ðq; v1;v2;B1;B2; pÞ is the vector of primitive variables. The subscript ‘‘1” gives the direction perpendicular to the
initial surface of discontinuity whereas ‘‘2” corresponds to the transverse direction. Here C = 2 is used and the evolution is
interrupted at time t = 0.2, before the fast waves reach the borders.

In order to address the ability to preserve the initial planar symmetry we rotate the initial condition by the angle a ¼ p=4
in a two-dimensional plane with x 2 ½$1;1& and y 2 ½$0:01;0:01& using Nx ' Nx=100 grid points, with Nx = 600. Vectors follow
the same transformation given by Eq. (45) with b = c = 0. This is known to minimize errors of the longitudinal component of
the magnetic field (see for example the discussions in [52,27]). Boundary conditions respect the translational invariance
specified by the rotation: for each flow quantity we prescribe qði; jÞ ¼ qði( di; j( djÞ where ðdi; djÞ ¼ ð1;$1Þ, with the plus
(minus) sign for the leftmost and upper (rightmost and lower) boundary. Computations are stopped before the fast rarefac-
tion waves reach the boundaries, at t ¼ 0:2 cos a.

Fig. A.4 shows the primitive variable profiles for all schemes against a one-dimensional reference solution obtained on a
base grid of 1024 zones with five levels of refinement. Errors in L1 norm, computed with respect to the same reference solu-
tion, are sorted in Table 2 for density and the normal component of magnetic field. The out-coming wave pattern is com-
prised, from left to right, of a fast rarefaction, a compound wave (an intermediate shock followed by a slow rarefaction),
a contact discontinuity, a slow shock and a fast rarefaction wave. We see that all discontinuities are captured correctly
and the overall behavior matches the reference solution very well. The normal component of magnetic field is best described
with MP5 and does not show erroneous jumps. Indeed, the profiles are essentially constant with small amplitude oscillations
showing a relative peak )0.7%. Divergence errors, typically K 10$2, remain bounded with resolution and tend to saturate

Fig. A.3. Long term decay of circularly polarized Alfvén waves after 16.5 time units, corresponding to ) 100 wave periods. In the left panel, we plot the
maximum value of the vertical component of velocity as a function of time for the WENO $ Z (solid line) and WENO + 3 (dashed line) schemes. For
comparison, the dotted line gives the result obtained by a second-order TVD scheme. The panel on the right shows the analogous behavior of the vertical
component of magnetic field Bz for LimO3 and MP5. For all cases, the resolution was set to 120 ' 20 and the Courant number is 0.4.

A. Mignone et al. / Journal of Computational Physics 229 (2010) 5896–5920 5907

Source: Mignone & Tzeferacos, 2010, JCP



Performance of High-Order on CPAW

L1 norm error 

avg. comp.  
time / step 

32 256 

    0.221 (x5/3)sec         38.4 sec  

Source: Mignone & Tzeferacos, 2010, JCP

▪PPM (overall 2nd 
order): 2h42m50s	


▪MP5 (5th order): 
15s(x5/3)=25s	


!
▪More computational 

work & less memory	


▪ Better suited for HPC	


▪ Easier in FD; harder in FV	


▪High-orders schemes are 
better in preserving 
solution accuracy on AMR



Truncation Errors at Fine-Coarse Boundary

✓Any 2nd order Scheme becomes 1st order at fine-coarse boundaries	

!

✓The deeper AMR level, the worse truncation errors accumulated and solutions 
will become 1st order almost everywhere if grid pattern changes frequently	

!

✓High-order scheme is NOT just an option! (see papers by Colella et al.)
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High-Order using Gaussian Processes (GP)

▪  Gaussian Processes (GP) are a class of a stochastic processes that yield 	

sampling data from a function that is probabilistically constrained, 	

but not exactly known. GP modeling is a technique from probability and	

statistics that is popular for nonparametric fitting of spatial data

▪ It’s a great way to do function interpolation, with many advantages over 
polynomial/multinomial interpolation

▪ A GP can be thought of as a way of expressing multivariate Gaussians on 
spaces of functions. It is, in effect, a theory of random functions 

▪  GP function interpolation is, effectively, Bayesian updating of a prior 
distribution by training the data given a new observation. The interpolation 
at such a new point is a “prediction” made by the updated probability 
distribution 



High-Order using Gaussian Processes (GP)

▪One very nice thing about GP function interpolation is that the training 
data and new “predictions” are NOT based directly on the function. Instead, 
they are linear combinations of the functions. Therefore GP interpolation is 
easily adjusted because linear transformations of Gaussian random variables 
are again Gaussian!

▪C. Graziani,  P.  Tzeferacos (U of C) & D. Lee (UCSC)

▪ A new high-order GP interpolation scheme is based on: 	


▪ samples (i.e., volume-averaged data points) of the function	


▪ train the GP model on the samples by means of Bayes’ theorem	


▪ the posterior mean function is our high-order interpolant of the 	

unknown function

▪ The result is to pass from an “agnostic” prior model 	

(a mean function and a covariance kernel) to a data-informed 	

posterior model (an updated mean function and covariance kernel)



Agnostic Prior Model

GP is completely defined by	

 (1) a mean function, and 	

 (2) a symmetric positive-definite integral kernel K(x,y):

‣ Mean function	

!
!
‣ Kernel (covariance function)	

!
!
‣ Write	

!
!
‣ The likelyhood function (the probability of f given the GP model)



‣ Want to predict an unknown function f probabilistically at a new 
point x*	

!
!
‣  Then the augmented likelyhood function is	

!
!
!
    	

    where

Data-Informed Posterior Model

The result is to pass from an agnostic prior model (a mean 
function and a covariance kernel) to a data-informed posterior 
model (an updated mean function and covariance kernel)



‣ Bayes’ Theorem gives

Updated Mean Function

The result is to pass from an agnostic prior model (a mean 
function and a covariance kernel) to a data-informed posterior 
model (an updated mean function and covariance kernel)

Our high-order 
interpolated value 
at each interface:  
a Gaussian probability 
distribution on the 
unknown function 
value f*



Truly Multidimensional Use of Stencil

The current GP interpolation method in FLASH for smooth 
flow tests. For this, we use square exponential (SE) covariance 
kernel function & interpolation on “blocky sphere” of radius R

C1
‣ SE has the property of having a native         functions, thus can provide with 
spectral convergence rates when the underlying approximated function is itself

C1

2D stencil for GP

2D stencil for 	

2nd order PLM 2D stencil for 	


3rd order PPM



Revisited:1D Mach 3 Shock

!
PLM on 1600	

GP (spectral)	

WENO-Z (5)	


PPM (3)	

PLM (2)	

FOG (1)



Results on Smooth Flows 1

• 2D advection of an isentropic vortex along the domain 
diagonal on a periodic box  (             ,             )R = 2� � = 6�



Results on Smooth Flows II

• 1D advection of Gaussian profile (            ,               )� = 12�R = 2�



Exponential Convergence Rate

• 1D advection of Gaussian profile (            ,               )� = 12�R = 2�

spatial error  
dominance

temporal error  
dominance



Summary

!
• High-order method is a good approach to embody the desired 
tradeoff between memory and computation in future HPC	

!
• A new high-order method based on GP that utilizes “nonparametric” 
fitting of spatial data exhibits an evidence of spectral convergence	

!
• GP function interpolation is Bayesian updating of a prior distribution 
by training the data which is to be interpolated	

!
• The GP interpolation at a new point - in our case, at each interface - 
is a “prediction” made by the updated probability distribution



Tak! Spørgsmål?

FLASH: 	

www.flash.uchicago.edu

Me: 	

dlee79@ucsc.edu 	


ams.soe.ucsc.edu/people/dongwook



Supplementary Slides



PLM PPM

High-Order Polynomial Reconstruction

• Godunov’s order-barrier theorem (1959) 
• Monotonicity-preserving advection schemes are at most first-order! (Oh no…)	

• Only true for linear PDE theory (YES!)	


!
• High-order “polynomial” schemes became available using non-linear slope limiters 	

  (70’s and 80’s: Boris, van Leer, Zalesak, Colella, Harten, Shu, Engquist, etc)	


• Can’t avoid oscillations completely (non-TVD)	

• Instability grows (numerical INSTABILITY!)

FOG



A Discrete World of FV

U(x, tn)

xixi�1 xi+1



A Discrete World of FV

u(xi, t
n) = Pi(x), x 2 (xi�1/2, xi�1/2)

xixi�1 xi+1

piecewise polynomial reconstruction 	

on each cell

uL = Pi+1(xi+1/2)uR = Pi(xi+1/2)



A Discrete World of FV

xixi�1 xi+1

At each interface we solve a RP and obtain F ⇤
i±1/2



A Discrete World of FV

We are ready to advance our solution in time and 	

get new volume-averaged states
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