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High Performance Computing (HPC)

» To solve large problems in science, engineering, or
business

» Modern HPC architectures have

B increasing number of cores

m declining memory/core

» This trend will continue for the foreseeable future



» This tension between computation & memory brings a
paradigm shift in numerical algorithms for HPC

» To enable scientific computing on HPC architectures:

m efficient parallel computing, (e.g., data parallelism, task
parallelism, MPIl, multi-threading, GPU accelerator, etc.)

m better numerical algorithms for HPC



Numerical Algorithms for HPC

» Numerical algorithms should conform to the
abundance of computing power and the scarcity of
memory

»But...

m without losing solution accuracy

m with maintaining maximum solution stability

m with faster convergence to “correct” solution



High-Order Numerical Algorithms

» A good solution to this is to use high-order algorithms
» They provide more accurate numerical solutions using
m less grid points (=memory save)
m higher-order mathematical approximations (promoting
floating point operations, or computation)

m faster convergence to solution



degree polynomial for interpolation/reconstruction
m only for normal direction (e.g., PLM, PPM, ENO,WENO, etc)
m with monotonicity controls (e.g., slope limiters, artificial viscosity)

» High-order in FV is tricky (when compared to FD)
m volume-averaged quantities (quadrature rules)
m preserving conservation w/o losing accuracy
m higher the order, larger the stencil
m high-order temporal update (ODE solvers, e.g., RK3, RK4, etc.)

2D stencil for
3rd order PPM

2D stencil for
2nd order PLM
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Ref. Soln

|st order: 3200 cells (50 MB), 160 sec, 3828 steps
VS.
High-order: 200 cells (10 MB), 9 sec, 266 steps
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m A CPAW problem propagates
smoothly varying oscillations of
the transverse components of
velocity and magnetic field

m The initial condition is the exact
nonlinear solutions of the MHD
equations

m The decay of the max of Vz and
Bz is solely due to numerical

dissipation: direct measurement

of numerical diffusion (Ryu, Jones
& Frank,ApJ, 1995;Toth 2000, Del
Zanna et al. 2001; Gardiner &
Stone 2005, 2008)

" Source: Mignone & Tzeferacos, 2010, JCP




L1 norm error

Performance of High-Order on CPAW
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m PPM (overall 2nd
order): 2h42m50s

m MP5 (5th order):
| 5s(x5/3)=25s

m More computational
work & less memory

m Better suited for HPC

m Easier in FD; harder in FV

m High-orders schemes are
better in preserving
solution accuracy on AMR



. Truncation Errors at Fine-Coarse Boundary @3@

I 1 rL £.L
phL DF = Az [Fz'+1/2,j o §(Fz‘—1/2,j+1/4 + Fz’—l/2,j—1/4)]

—> i—1/2,j+1/4
_ lx [ ((z + 1/2)A:1;,jAy) — F((i — 1/2)Az, jAy) + O(Ay2)]

’O(Ah) assuming Az ~ Ay(= Ah)

O(Ah) at F/C boundary

O(Ah?) otherwise
v Any 2nd order Scheme becomes Ist order at fine-coarse boundaries

v The deeper AMR level, the worse truncation errors accumulated and solutions
will become Ist order almost everywhere if grid pattern changes frequently

v High-order scheme is NOT just an option! (see papers by Colella et al.)



m Gaussian Processes (GP) are a class of a stochastic processes that yield
sampling data from a function that is probabilistically constrained,
but not exactly known. GP modeling is a technique from probability and
statistics that is popular for nonparametric fitting of spatial data

m A GP can be thought of as a way of expressing multivariate Gaussians on
spaces of functions. It is, in effect, a theory of random functions

m GP function interpolation is, effectively, Bayesian updating of a prior
distribution by training the data given a new observation. The interpolation

at such a new point is a “prediction” made by the updated probability

distribution

m It’s a great way to do function interpolation, with many advantages over
polynomial/multinomial interpolation



m One very nice thing about GP function interpolation is that the training
data and new “predictions’” are NOT based directly on the function. Instead,
they are linear combinations of the functions. Therefore GP interpolation is
easily adjusted because linear transformations of Gaussian random variables

are again Gaussian!

m A new high-order GP interpolation scheme is based on:
m samples (i.e., volume-averaged data points) of the function
m train the GP model on the samples by means of Bayes’ theorem
m the posterior mean function is our high-order interpolant of the
unknown function

m The result is to pass from an “agnostic” prior model
(2 mean function and a covariance kernel) to a data-informed
posterior model (an updated mean function and covariance kernel)

m C. Graziani, P. Tzeferacos (U of C) & D. Lee (UCSC)



Agnostic Prior Model

GP is completely defined by
(1) a mean function, and
(2) a symmetric positive-definite integral kernel K(x,y):

» Mean function

f(x)
» Kernel (covariance function)

(fx) - f(x) (f&) — f())) = K(x,y)
» Write

f ~GP(f,K)

» The likelyhood function (the probability of f given the GP model)
L = P(f)

—  (21) N2 det [K|V2 exp _% (f - f)T K (f-f)



Data-Informed Posterior Model

The result is to pass from an agnostic prior model (a mean
function and a covariance kernel) to a data-informed posterior
model (an updated mean function and covariance kernel)

» Want to predict an unknown function f probabilistically at a new
point x*

fr=fx)

» Then the augmented likelyhood function is
L = P(f,f)
= (2m)”(NHV/2 det [M|71/2 exp [—% (g-8)' M (g—8g)
where o7 — [ 1] ; g7 = [f(x"),1]
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Updated Mean Function

The result is to pass from an agnostic prior model (a mean
function and a covariance kernel) to a data-informed posterior
model (an updated mean function and covariance kernel)

» Bayes’ Theorem gives

* rx ) 2
P(FI£) = (270%) ™2 exp [_ 1(f* - f°)

2 U?

Our high-order
. interpolated value
Y at each interface:
« a Gaussian probability
o distribution on the

unknown function
value f*

U2 _ k** _k*T . K—l . k*

(x—wT

fx)=fo ¥*=1 oZR

K (x,y) = Z%exp [— 2



Truly Multidimensional Use of Stencil

The current GP interpolation method in FLASH for smooth
flow tests. For this, we use square exponential (SE) covariance
kernel function & interpolation on “blocky sphere” of radius R

2
K(x,y)zz"’exp[—("_” Fx)=fo $2=1 oz

o2

» SE has the property of having a native C'°° functions, thus can provide with
spectral convergence rates when the underlying approximated function is itself C°

2D stencil for
2nd order PLM

2D stencil for
3rd order PPM

2D stencil for GP



Revisited: | D Mach 3 Shock

PLM on 1600

GP (spectral)

WENO-Z (5)
PPM (3)

Time=1.80256




Results on Smooth Flows |

e 2D advection of an isentropic vortex along the domain
diagonal on a periodic box (R = 2A,0 = 6A)

DB: isentropic_vortex _hdf5 chk 0000

Scheme p U v P

PLM 2.37E-2 8.63E-2 8.62E-2 3.08E-2
PPM 5.44E-4 1.88E-3 1.99E-3 6.93E-4
GP 1.33E-4 4.56E-4 3.75E-4 1.63E-4

Table 1: L1 error norm for the vortex problem.
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Figure 2: Left panel: One dimensional profile of density after one transition superposed on the initial condition
(solid line). The symbols represent different interpolation schemes, namely cross for GP, diamond for PPM and
triangle for PLM. Right panel: Close-up in the central region. The solution recovered with GP matches perfectly the
reference solution, while the errors are smaller with respect to the other schemes.




Exponential Convergence Rate

e |D advection of Gaussian profile (R = 2A, o0 = 12A)

Log (L1 Error)

temporal erro
dominance

spatial error
dominance
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Summary

e High-order method is a good approach to embody the desired
tradeoff between memory and computation in future HPC

* A new high-order method based on GP that utilizes “nonparametric”
fitting of spatial data exhibits an evidence of spectral convergence

e GP function interpolation is Bayesian updating of a prior distribution
by training the data which is to be interpolated

* The GP interpolation at a new point - in our case, at each interface -
is a “prediction” made by the updated probability distribution
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* Godunov’s order-barrier theorem (1959)

* Monotonicity-preserving advection schemes are at most first-order! (Oh no...)
* Only true for linear PDE theory (YES!)

* High-order “polynomial” schemes became available using non-linear slope limiters
(70’s and 80’s: Boris, van Leer, Zalesak, Colella, Harten, Shu, Engquist, etc)
* Can’t avoid oscillations completely (non-TVD)
* Instability grows (numerical INSTABILITY?)



A Discrete World of FV

T;_1 X; Li4+1



A Discrete World of FV

4 piecewise polynomial reconstruction
on each cell

u(z;, t") = Pi(x),x € (x;-1/2,%i—1/2)

ur = Pi(x;41/2) ur, = Piy1(2iq1/2)




A Discrete World of FV

At each interface we solve a RP and obtain F;;:l/g




A Discrete World of FV

We are ready to advance our solution in time and
get new volume-averaged states

Uttt = U -

A
el

7;11/2 - Fi*—1/2)



