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Cosmic ray physics
Cosmic ray feedback Observations of M87
Alfvén-wave heating
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Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR streaming instability: uisrud & Pearce 1969

o if Vor > Wwaves With respect to the gas,
CR excite Alfvén waves

e scattering off this wave field limits the
CRs’ bulk speed <« ¢

e wave damping: transfer of CR energy
and momentum to the thermal gas
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Interactions of CRs and magnetic fields

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR streaming instability: uisrud & Pearce 1969

o if Vor > Wwaves With respect to the gas,
CR excite Alfvén waves

e scattering off this wave field limits the
CRs’ bulk speed <« ¢

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert a pressure on the thermal gas by means of
scattering off Alfvén waves and heat the surrounding gas
— cool-core heating (Loewenstein+ 1991, Guo & Oh 2008, C.P. 2013) A
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CR transport

@ total CR velocity vor = v + Vgt + Vi (Where v = vgys)

@ CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

VP | B? V Per
Vst VA V Pyl Wwin va 4rp’ di Kdi P,

/\<I
HITS

Christoph Pfrommer Cosmic ray heating in cool core clusters



Cosmic ray physics
Cosmic ray feedback Observations of M87
Alfvén-wave heating

CR transport

@ total CR velocity vor = v + Vgt + Vi (Where v = vgys)

@ CRs stream down their own pressure gradient relative to the gas,
CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves (both transports are along the local direction of B):

VP | B? V Per
st VA VP Wwin va 4rp’ di Kdi P,

@ energy equations with £ = e, + pv?/2 (neglecting CR diffusion):

Oe
E+V'[(€+Pth—|—Pcr)V] =  PyV:-V+|Vg: VP

+ V- (earV)+ V-« [(ecr + Per)Vsi]
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Messier 87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000)

@ expectation: low frequencies sensitive to fossil electrons
(E ~ 100 MeV) — time-integrated activity of AGN feedback!
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Messier 87 at radio wavelengths

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)

@ expectation: low frequencies sensitive to fossil electrons
(E ~ 100 MeV) — time-integrated activity of AGN feedback!

° halo confined to same region at all frequenciesandno
low-v spectral steepening — puzzle of “missing fossil electrons” )@
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Solutions to the “missing fossil electrons” problem

solutions:

@ special time: M87 turned on
~ 40 Myr ago after long
silence
< conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (irzan+ 2012)
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Solutions to the “missing fossil electrons” problem

solutions:
@ special time: M87 turned on S R S
~ 40 Myr ago after long IIID smenric
silence WE N

B=20.G v s

< conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (irzan+ 2012)

10 Coulomb:

@ Coulomb cooling removes I
fossil electrons
— efficient mixing of CR
electrons and protons with It 10 1‘?; w0 I

dense cluster gas

electron loss timescales = E/E [Myr]
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The gamma-ray picture of M87

@ high state is time variable
— jet emission

! ' ! Radio
1000 4
HST W]
Chandra &
@ low state: 4|
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(3) spatial extension is under "
investigation (,?) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!
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Estimating the CR pressure in M87

hypothesis: low state of y-ray emission traces 7° decay in ICM:

@ X-ray data — nand T profiles T E
Chandra & |
@ assume et S
Xor = Por/ Py = const. = LA
. . H ¥ "u. Bag
(self-consistency requirement) < LR

: d e

i *

@ F, x [dV Pynenables to
estimate X;, = 0.31
(allowing for Coulomb cooling TN
With 760 = 40 Myr) e o e e

Rieger & Aharonian (2012)

— in agreement with non-thermal pressure constraints from
dynamical potential estimates (churazov+ 2010) /@
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Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

oP,
Her = —Va-VPy=—vq (Xcrvr<Pth>Q + (Slcr)

@ Alfvén velocity v4 = B/+/4mp with
B ~ Bgq from LOFAR and p from X-ray data

@ X calibrated to « rays
@ Py, from X-ray data
@ pressure fluctuations § P, /d/ (e.g., due to weak shocks of M =~ 1.1)
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Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:

oP,
Her = —Va-VPy=—vq (Xcrvr<Pth>Q + (Slcr)

@ Alfvén velocity v4 = B/+/4mp with
B ~ Bgq from LOFAR and p from X-ray data
@ X calibrated to « rays
@ Py, from X-ray data
@ pressure fluctuations § P, /d/ (e.g., due to weak shocks of M =~ 1.1)

radiative cooling:
Crad = NeNilcool(T, Z)

@ cooling function Agge With Z ~ Z, /@
all quantities determined from X-ray data HITS
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Cosmic-ray heating vs. radiative cooling (

Global thermal equilibrium on all scales in M87

10

radial extent of radio halo:
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Cosmic-ray heating vs. radiative cooling (3)

is this global thermal equilibrium a coincidence in Virgo?
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Cosmic-ray heating vs. radiative cooling (3)

is this global thermal equilibrium a coincidence in Virgo?
@ CCs typically show a steep central density profile: n oc r—?
@ central temperature profile rises slowly: T o« r*, with a < 0.3

@ assume v = const. and P, « Py, (required for self-consistency):

a—2
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Cosmic-ray heating vs. radiative cooling (3)

is this global thermal equilibrium a coincidence in Virgo?
@ CCs typically show a steep central density profile: n oc r—?
@ central temperature profile rises slowly: T o« r*, with a < 0.3

@ assume v = const. and P, « Py, (required for self-consistency):

0 0
Hcr o aI:)th o a,.04—1 a—2
2

Crad X n2 x r-
(1) identical radial profiles expected for T ~ const. (o =~ 0)
(2) for a smoothly rising temperature profile, heating is slightly favored
over cooling at larger radii — onset of cooling is smoothly modulated
from the outside in ¥
/<IHITS
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Cosmic-ray heating vs. radiative cooling

Global thermal equilibrium on all scales in M87
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Local stability analysis (1)

TZHCR
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Local stability analysis (1)

TZHCR
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Local stability analysis (1)

TZHCR
Tzcrad

heating

stable FP cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Local stability analysis (1)

T?Her
Tzcrad

separatrix

heating

&

"stable FP cooling

region of stability

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /\@st
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Local stability analysis (2)

Theory predicts observed temperature floor at kT ~ 1 keV

L Xcr =031 A
sL I3 ____ Xcr=0031-
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Virgo cluster cooling flow: temperature profile

X-ray observations confirm temperature floor at kT ~ 1 keV

KT (keV)

1 10

R (arcmin) (Matsushita+ 2002) /<I .
HIT:
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Critical length scale of the instability (~ Fields length)

@ CR streaming transfers energy to a given gas parcel
@ line and bremsstrahlung emission radiate energy from the parcel

@ limiting size of unstable gas parcel since CR Alfvén-wave heating
smoothes out temperature inhomogeneities on small scales:

@ however: unstable wavelength needs to be supported by the
system — constraint on magnetic suppression factor fg
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Critical length scale of the instability (~ Fields length)

C fep=10,2=072, L7

b ___ fep=10,2=13Z /,’,c
e
100 —— fap=032=07Z,
F— fyp=032Z2=137 .
L Agit =1 R - .
10 unstable wavelength

larger than system

thermally unstable

_______ stabilized by CR streaming

critical instability length Agit [kpc]

=

1 10 100 »
radius[kpc] /\4
CP (2013) s
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CR heating dominates over thermal conduction
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Prediction: flattening of high-»~ radio spectrum
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Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
— CR Alfvén-wave heating

CR streaming

(2) if bubbles are disrupted, CRs are ™1
injected into the ICM and caught in a ’ .
turbulent downdraft that is excited by : S turbulent advection:

the rising bubbles e
— CR advection with flux-frozen field
— adiabatic CR compression and
energizing: Pe/Pero = 0*/3 ~ 20 for
compression factor § = 10

CR injection

(3) CR escape and outward stream- by bubble disruption
ing — CR Alfvén-wave heating ,
)<IHITS
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Conclusions on AGN feedback by cosmic-ray heating

@ LOFAR puzzle of “missing fossil electrons” solved by mixing with
dense cluster gas and Coulomb cooling

@ predicted ~ rays identified with low state of M87
— estimate CR-to-thermal pressure of X;; = 0.31

@ CR Alfvén wave heating balances radiative cooling on all scales
within the radio halo (r < 35 kpc)

@ local thermal stability analysis predicts observed temperature
floor at kT ~ 1 keV

outlook: simulate steaming CRs coupled to MHD, cosmological
cluster simulations, improve ~-ray and radio observations ...

X
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Literature for the talk

AGN feedback by cosmic rays:

@ Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
779, 10.
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Self-consistent CR pressure in steady state

@ CR streaming transfers energy per unit volume to the gas as
Aeyh = —7aVa - V Py = Por = Xor P,

where 74 = 6//vj4 is the Alfvén crossing time and ¢/ the CR
pressure gradient length

@ comparing the first and last term suggests that a constant
CR-to-thermal pressure ratio X, is a necessary condition if CR
streaming is the dominant heating process

— thermal pressure profile adjusts to that of the streaming CRs!
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Impact of varying Alfvén speed on CR heating

global thermal equilibrium:

10%

1051

=
5]

Crad, Her [ergem2 s

107L

0%

radial extent of radio halo:

Heryp, va o p2

Her,  va = const.

Her o, va e pt2

Crat(0.725 $Z $1.32Z)
h
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10
radius [kpc]

local stability criterion:

——— Herivaxp'?
—— Her, va=const o
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instability criterion, arsinh)

&
C—

” ’\/\ “islands of stability”
] INY
\~

“ocean of instability” i

10

temperaturd [K]

parametrize B o p®&, which implies v4 = B/\/4mp o p&=1/2:

@ ap = 0.5 is the geometric mean, implying v4 = const.

@ ap = 1 for collapse perpendicular to B, implying va ;  p'/2 /\qms
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