

The Niels Bohr International Academy

Model-independent fitting of cosmological data

Alberto Guffanti NBIA & Discovery Center, Niels Bohr Institute - University of Copenhagen

> In collaboration with: A. Durakovic, J. Trøst Nielsen and S. Sarkar

2nd NBIA-APCTP Workshop on Cosmology and Astroparticle Physics Niels Bohr Institute, 18-22 August 2014

The core idea

- Can we devise model independent tests of cosmic acceleration (based on SN la)?
- A (partial) list of **recent proposals** for **model-independent studies** of cosmic acceleration, mainly based on SN Ia

Shafieloo et al. (2006), Shafieloo (2007), Nesseris, Shafieloo (2010), ... Schwartz and Seikel (2007, 2009) Benitez-Herrera et al. (2011, 2013) Garcia-Bellido and Nesseris (2011)

 A crucial ingredient of a good model-independent method to parametrise data is that it provides a reliable estimation of the experimental uncertainties so that we can tell if a given dataset can effectively discriminate between competing models

NNPDF methodology: the origins

 Originally developed to provide a model independent parametrisation of Deep Inelastic Scattering structure functions and Parton Distribution Functions (PDFs)

> S. Forte et al., 2002; L. Del Debbio et al., 2005; A. Guffanti et al., 2006; R. D. Ball et al., 2008; R. D. Ball et al., 2013; +

- Parton Distribution Functions cannot be determined from first principles in (perturbative) QCD but need to be extracted from (global) fits to data
- The NNPDF methodology is designed to address two main shortcomings of standard PDF determinations: reliance on linear error propagation (Hessian method) and parametrisation bias (use of fixed functional form for parametrisation)

NNPDF methodology in a Nutshell

- Generate N_{rep} Monte Carlo replicas of the experimental data, taking into account all experimental correlations
- Fit a noncommittal functional form to each replica of the data providing a model-independent parametrisation of the data with a reliable uncertainty estimation
- Expectation values for a given observable are then given by

$$\langle O(x) \rangle = \frac{1}{N_{\text{rep}}} \sum_{i=1}^{N_{\text{rep}}} O_i(x)$$

.... and corresponding formulae for the estimators of Monte Carlo samples are used to compute **uncertainties**, **correlations**, etc.

NNPDF methodology: the ingredients

- Monte Carlo determination of uncertainties
 - No need to rely on linear propagation of errors
 - Possibility to test the impact of **non-gaussianly** distributed uncertainties
- Parametrisation using Neural Networks
 - Provide an unbiased parametrisation
- Determine the best fit functions using Cross-Validation
 - Ensures proper fitting, avoiding overlearning

NNPDF methodology: data replicas generation

Monte Carlo replicas are generated according to the distribution

$$O_i^{(art),(k)} = O_i^{(exp)} + \sum_{p=1}^{N_{sys}} r_p^{(k)} \sigma_p^i + r_{i,s}^{(k)} \sigma_s^i$$

where r_i are (gaussianly distributed) random numbers

Validate Monte Carlo replicas against experimental data

 O(1000) replicas needed to reproduce correlations in experimental data to percent accuracy

NNPDF methodology: Neural Networks

- Artificial Neural Networks provide us with a parametrisation which is extremely redundant and robust against variations
- Very efficient algorithms are available which allow us to train NN (efficient fit to large datasets in a very high dimensional parameter space)
- ... but in the end they are just another set of functions

NNPDF methodology: Cross-validation stopping

- Separate data in each randomly in two subsets (**training** set, **validation** set)
- Train each neural network minimising an appropriate figure of merit on the training set and monitor the behaviour of the figure of merit on the validation set
- In our case we train Neural Networks
 using stan <u>#Etrand Eval</u> rep 0003 propagation
 (gradient base d method), training using
 Genetic Algorithms also poss <u>Etr</u> (minimise probability of being trapped in local minima)^{4.5}
- Best fit defined as the point where the validation set figure of merit stops
 ⁰ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰ ¹⁰⁰ ¹²⁰ ¹⁴⁰ ¹⁶⁰

The Data - Union 2.1

- Latest update from the Supernova Cosmology Project
- 580 SN Ia, combined from a number of surveys
- Redshift range: **0.015 < z < 1.414**
- **Common light curve fitting** for all datasets, performed with SALT2
- Covariance matrix available including correlated systematics (not used in the preliminary results I will show)

[Suzuki et al., arXiv:1105.3470]

Fitting Union2.1 using Neural Networks

Neural Network parametrisation provides a **good fit** to the data (also if we do not include correlated systematics)

The Data - Pan-STARRS1

- First data release in October 2013: Pan-STARRS1
 - RRS1 [arXiv:1310.3828, arXiv:1310.3824]
- 146 spectroscopically confirmed SN Ia
- Redshift range: 0.03 < z < 0.65
- Light curve fitting performed using (a modified version of) SALT2

Pan-STARRS vs. Union 2.1

- Nice compatibility of determination from both experiments in regions where data overlap
- Uncertainties from Pan-STARRS1 determination grow larger where data are sparse

Model-independent fits to model-dependent data?

$$\mu_B = m_B^{\max} + \alpha \cdot x_1 - \beta \cdot c + \delta \cdot P(m_*^{\text{true}} < m_*^{\text{threshold}}) - M_B,$$

where M_B is the absolute *B*-band magnitude of a SN Ia with $x_1 = 0, c = 0$ and $P(m_{\star}^{\text{true}} < m_{\star}^{\text{threshold}}) = 0$. The parameters α, β, δ and M_B are nuisance parameters that are fitted simultaneously with the cosmological parameters. The SN Ia

4.5. Systematic errors

In this paper, we follow the systematics analysis we presented in Amanullah et al. (2010). Systematic errors that directly affect supernova distance measurements (calibration, and galactic extinction, for example) are treated as nuisance parameters to be fit simultaneously with the cosmology. Minimizing over these nuisance parameters gives additional terms to add to the distance modulus covariance matrix

$$U_{ij} = \sum_{\epsilon} \frac{d\mu_i(\alpha,\beta)}{d\epsilon} \frac{d\mu_j(\alpha,\beta)}{d\epsilon} \sigma_{\epsilon}^2 , \qquad (5)$$

where the sum is over each of these distance systematic errors in the analysis. (Although the distance modulus depends on δ as well as α and β , the derivatives with respect to the zeropoints do not.) In this analysis, α and β have little interaction with cosmological parameters. When computing cosmologi-

4.4. *Fitting the Cosmology*

Following Amanullah et al. (2010), the best-fit cosmology is determined by minimizing

$$\chi_{\text{stat}}^2 = \sum_{\text{SNe}} \frac{\left[\mu_B(\alpha, \beta, \delta, M_{\text{B}}) - \mu(z; \Omega_m, \Omega_w, w)\right]^2}{\sigma_{\text{lc}}^2 + \sigma_{\text{ext}}^2 + \sigma_{\text{sample}}^2}.$$
 (4)

A detailed discussion of the terms in this equation can be found in Amanullah et al. (2010). We only comment on the final term in the denominator, σ_{sample}^2 , which is computed by setting the reduced χ^2 of each sample to unity. This term was referred to as " $\sigma_{\text{systematic}}^2$ " in Kowalski et al. (2008); Amanullah et al. (2010). We note that σ_{sample}^2 includes intrinsic dispersion as well as sample-dependent effects. This term effectively further deweights samples with poorer-quality data that has sources of error which have not been accounted for. As noted in Amanullah et al. (2010), this may occasionally deweight an otherwise well-measured supernova.

Union2.1 - arXiv:1105.3470

Model-independent fits to model-dependent data?

$$\mu_B = m_B^{\max} + \alpha \cdot x_1 - \beta \cdot c + \delta \cdot P(m_*^{\text{true}} < m_*^{\text{threshold}}) - M_B,$$

C. EMPIRICAL ADJUSTMENT OF UNCERTAINTIES

The propagated uncertainties are underestimates, as they do not account for the pixel-pixel covariance introduced by warping, sub-sampling, stacking, and convolution of the images. In order to empirically determine by how much the uncertainties are underestimated, we measure the flux f_r and its uncertainty σ_r at random positions in a given difference image in exactly the same way we measure the SN flux. We calculate the weighted mean \bar{f}_r of these flux measurements. In order to guard against reduction and image artifacts, we apply a 3σ cut to the normalized flux distribution $(f_r - \bar{f}_r)/\sigma_r$, rather than cutting on the underestimated errors, σ_r , for the following reason: let's assume that all uncertainties are underestimated by the same factor s_r . If we nominally apply a N-sigma cut using these underestimated uncertainties, we effectively apply an N/ s_r -cut, e.g. for a nominal 3-sigma cut and $s_r = 1.5$, the real cut-off is at 2-sigma. In order to avoid this, we determine the normalized flux distribution $(f_r - \bar{f}_r)/\sigma_r$, which has a standard deviation of s_r . The true 3-sigma outliers can then be identified and removed by doing an 3-sigma cut on the normalized flux distribution. Note that the standard deviation s_r is equivalent to the square-root of the chi-square distribution

$$s_r = \sqrt{\chi_r^2} = \frac{1}{N-2} \sum_{r=1}^{N} \left(\frac{f_r}{-} \bar{f}_r \sigma_r\right)^2 \tag{C1}$$

We multiply all uncertainties by the factor s_r in order to empirically correct the uncertainties. We find that it is imperative to employ this robust way of determining s_r for the method to work correctly. The fact that the reduced chi-square of the baseline flux of the SN light curves peaks at 1.0 validates our method (see §5.3.3). In addition, for a given difference image, \bar{f}_r is an estimate of the bias in the flux measurements. The values of \bar{f}_r are in general very small, much smaller than the typical uncertainties. Nevertheless, we adjust all fluxes by this value.

Model-independent fits to model-dependent data?

Table 6

Constraints on standardization and cosmological parameters for subsets. M_B is the *B*-band corrected absolute magnitude; α , β , and δ are the lightcurve shape, color, and host mass correction coefficients, respectively. The outlier rejection is redone each time, so the totals may not add up to the whole sample. The constraints are computed including BAO, CMB, and H_0 constraints and supernova systematic errors.

Subset	Number	$M_B(h=0.7)$	α	β	δ	Ω_m	w	
Whole Sample								
$z \ge 0.015$	580	$-19.321^{+0.030}_{-0.030}$	$0.121^{+0.007}_{-0.007}$	$2.47^{+0.06}_{-0.06}$	$-0.032^{+0.031}_{-0.031}$	$0.271_{-0.014}^{+0.015}$	$-1.013^{+0.068}_{-0.074}$	
Correction Coefficients, Split by Redshift								
$0.015 \le z \le 0.10$	175	$-19.328^{+0.037}_{-0.038}$	$0.118^{+0.011}_{-0.011}$	$2.57^{+0.08}_{-0.08}$	$-0.027^{+0.054}_{-0.054}$	0.270 (fixed)	-1.000 (fixed)	
$0.100 \le z \le 0.25$	75	$-19.371_{-0.054}^{+0.054}$	$0.146_{-0.019}^{+0.019}$	$2.56_{-0.17}^{+0.18}$	$-0.087^{+0.060}_{-0.060}$	0.270 (fixed)	-1.000 (fixed)	
$0.250 \le z \le 0.50$	152	$-19.317^{+0.046}_{-0.046}$	$0.116^{+0.014}_{-0.013}$	$2.46^{+0.12}_{-0.12}$	$-0.042^{+0.066}_{-0.066}$	0.270 (fixed)	-1.000 (fixed)	
$0.500 \le z \le 1.00$	137	$-19.307_{-0.049}^{+0.048}$	$0.124_{-0.019}^{+0.019}$	$1.46^{+0.19}_{-0.19}$	$0.023^{+0.060}_{-0.060}$	0.270 (fixed)	-1.000 (fixed)	
$z \ge 1.000$	25	$-19.289_{-0.254}^{+0.217}$	$-0.019^{+0.072}_{-0.076}$	$3.48^{+1.13}_{-0.89}$	$-0.151_{-0.446}^{+0.384}$	0.270 (fixed)	-1.000 (fixed)	
Effect of δ on w								
$z \ge 0.015$	580	$-19.340^{+0.026}_{-0.026}$	$0.123^{+0.007}_{-0.007}$	$2.47^{+0.06}_{-0.06}$	-0.080 (fixed)	$0.272^{+0.015}_{-0.014}$	$-1.004^{+0.067}_{-0.072}$	
$z \ge 0.015$	580	$-19.303_{-0.031}^{+0.031}$	$0.120_{-0.007}^{+0.007}$	$2.47^{+0.06}_{-0.06}$	0.000 (fixed)	$0.271_{-0.014}^{+0.015}$	$-1.013_{-0.075}^{+0.069}$	
Cosmological Results, Split by Lightcurve Color and Shape								
$c \ge 0.05$	256	$-19.387^{+0.037}_{-0.038}$	$0.118^{+0.011}_{-0.011}$	$2.77^{+0.09}_{-0.09}$	$-0.057^{+0.052}_{-0.052}$	$0.269^{+0.015}_{-0.014}$	$-1.028^{+0.077}_{-0.084}$	
$c \le 0.05$	321	$-19.323_{-0.030}^{+0.030}$	$0.125_{-0.010}^{+0.011}$	$1.29_{-0.33}^{+0.32}$	$-0.057^{+0.03\overline{8}}_{-0.038}$	$0.275_{-0.014}^{+0.015}$	$-0.982^{+0.069}_{-0.075}$	
$x_1 \ge -0.25$	311	$-19.366_{-0.041}^{+0.041}$	$0.020^{+0.026}_{-0.025}$	$2.58^{+0.10}_{-0.10}$	$-0.004_{-0.047}^{+0.047}$	$0.269_{-0.014}^{+0.015}$	$-1.037^{+0.077}_{-0.085}$	
$x_1 \le -0.25$	269	$-19.386_{-0.045}^{+0.044}$	$0.152^{+0.021}_{-0.020}$	$2.43_{-0.08}^{+0.08}$	$-0.087^{+0.050}_{-0.050}$	$0.267_{-0.014}^{+0.015}$	$-1.045_{-0.084}^{+0.077}$	
Correction Coefficients and M_B for the Large Datasets								
Hicken et al. (2009)	94	$-19.314_{-0.055}^{+0.055}$	$0.115^{+0.015}_{-0.015}$	$2.74^{+0.11}_{-0.11}$	$-0.053^{+0.098}_{-0.099}$	0.270 (fixed)	-1.000 (fixed)	
Holtzman et al. (2009)	129	$-19.336^{+0.051}_{-0.051}$	$0.149_{-0.013}^{+0.014}$	$2.40^{+0.15}_{-0.14}$	$-0.061^{+0.050}_{-0.050}$	0.270 (fixed)	-1.000 (fixed)	
Miknaitis et al. (2007)	74	$-19.325_{-0.080}^{+0.078}$	$0.113_{-0.035}^{+0.037}$	$2.49^{+0.17}_{-0.16}$	0.000 (fixed)	0.270 (fixed)	-1.000 (fixed)	
Astier et al. (2006)	71	$-19.292_{-0.048}^{+0.047}$	$0.145_{-0.018}^{+0.019}$	$1.70_{-0.18}^{+0.18}$	$-0.023\substack{+0.040\\-0.040}$	0.270 (fixed)	-1.000 (fixed)	
z>0.9, Split by Galaxy Host								
Early Type $z > 0.9$	13	$-19.388^{+0.139}_{-0.186}$	$0.112^{+0.139}_{-0.151}$	$3.16^{+1.84}_{-1.26}$	0.000 (fixed)	0.270 (fixed)	-1.000 (fixed)	
Late Type $z > 0.9$	15	$-19.141_{-0.067}^{+0.067}$	$0.094_{-0.041}^{+0.049}$	$0.49_{-0.69}^{+0.85}$	0.000 (fixed)	0.270 (fixed)	-1.000 (fixed)	

Union2.1 - arXiv:1105.3470

What is the **dependence** on the "**nuisance parameters**" (α, β) ?

Table 3Effects of Choices for Intrinsic Scatter

Intrinsic Scatter	α	β	
$\begin{array}{l}\sigma_{\mathrm{int},m_B} = 0.122\\\sigma_{\mathrm{int},c} = 0.025\end{array}$	$\begin{array}{c} 0.147 \pm 0.010 \\ 0.141 \pm 0.010 \end{array}$	3.10 ± 0.12 3.86 ± 0.15	

Note. — Intrinsic scatter σ_{int,m_B} and $\sigma_{\text{int},c}$ in the PS1+lz sample, and how α and β vary for each method. The magnitudes of each scatter given above is such that the total reduced χ^2 of the sample is ~1.0.

Pan-STARRS1 - arXiv:1310.3828

Can we address the question by taking a step back and parametrising the data on distance moduli as a function of (z, x₁, c)

Instead of conclusions ...

- Is there space for **model-independent** tests of **cosmic acceleration**?
- If so, there is a wide range of methods that could be employed and that could provide parametrisations of the data which could be used for reliable and fast testing of different models
- We propose such a "new" technique based on Monte Carlo methods for uncertainty estimation and Neural Networks to parametrise the data and applied it to SN Ia measurements

... but in the end

it is of no use to use a **model-independent method** to look at **model-dependent data**

