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The core idea

 Can we devise model independent tests of cosmic acceleration (based on SN
1a)?

A (partial) list of recent proposals for model-independent studies of cosmic

acceleration, mainly based on SN la

Shafieloo et al. (2006), Shafieloo (2007), Nesseris, Shafieloo (2010), ...
Schwartz and Seikel (2007, 2009)

Benitez-Herrera et al. (2011, 2013)

Garcia-Bellido and Nesseris (2011)

* A crucial ingredient of a good model-independent method to parametrise
data is that it provides a reliable estimation of the experimental uncertainties
so that we can tell if a given dataset can effectively discriminate between
competing models
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NNPDF methodology: the origins

* Originally developed to provide a model independent parametrisation of

Deep Inelastic Scattering structure functions and Parton Distribution
Functions (PDFs)

S. Forte et al., 2002;

L. Del Debbio et al., 2005;
A. Guffanti et al., 2006;

R. D. Ball et al., 2008;

R. D. Ball et al., 2013;

e Parton Distribution Functions cannot be determined from first principles in
(perturbative) QCD but need to be extracted from (global) fits to data

* The NNPDF methodology is designed to address two main shortcomings of
standard PDF determinations: reliance on linear error propagation

(Hessian method) and parametrisation bias (use of fixed functional form for
parametrisation)




NNPDF methodology in a Nutshell

- Generate N, Monte Carlo replicas of the experimental data, taking into
account all experimental correlations

- Fit a noncommittal functional form to each replica of the data providing a

model-independent parametrisation of the data with a reliable uncertainty
estimation

- Expectation values for a given observable are then given by

N
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.... and corresponding formulae for the estimators of Monte Carlo samples are
used to compute uncertainties, correlations, etc.




NNPDF methodology: the ingredients

 Monte Carlo determination of uncertainties

* No need to rely on linear propagation of errors
- Possibility to test the impact of non-gaussianly distributed uncertainties

- Parametrisation using Neural Networks

* Provide an unbiased parametrisation

- Determine the best fit functions using Cross-Validation

* Ensures proper fitting, avoiding overlearning




NNPDF methodology: data replicas generation

- Monte Carlo replicas are generated according to the distribution

Nsys
(art) (k) _ y(exp) (k) 1 (k) i
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where r; are (gaussianly distributed) random numbers

- Validate Monte Carlo replicas against experimental data

Central walues Errors Correlations

« O(1000) replicas needed to reproduce correlations in experimental data to percent

accuracy



NNPDF methodology: Neural Networks
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 Artificial Neural Networks provide us with a parametrisation which is extremely
redundant and robust against variations

 Very efficient algorithms are available which allow us to train NN (efficient fit to
large datasets in a very high dimensional parameter space)

* ... but in the end they are just another set of functions

o~ T
A
= ALET



NNPDF methodology: Cross-validation stopping

e Separate data in each randomly in two P SHE w00
subsets (training set, validation set) I [

5.5

* Train each neural network minimising an of
appropriate figure of merit on the a5
training set and monitor the behaviour of of
the figure of merit on the validation set a5

* In our case we train Neural Networks 30" S S S AP P
using standard back-propagation 7E, andE, - ep 0003
(gradient based method), training using N
Genetic Algorithms also possibile o
(minimise probability of being trapped in 22l
local minima) 331:

» Best fit defined as the point where the i
validation set figure of merit stops a2

3'1158 159 160 161 162 163 164 165 166 167

i m p rOVi n g # iterations




The Data - Union 2.1

e Latest update from the Supernova Cosmology Project

e 580 SN la, combined from a number of surveys
* Redshift range: 0.015 < z < 1.414

« Common light curve fitting for all datasets,

performed with SALT?2

e Covariance matrix available including
correlated systematics (not used in the
preliminary results | will show)

46

[Suzuki et al., arXiv:1105.3470]
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Fitting Union2.1 using Neural Networks

ACDM (21=0.3) is in agreement with
our Neural Network parametrisation
of the data over the whole z-range

Neural Network parametrisation

provides a good fit to the data
(also if we do not include correlated systematics)
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The Data - Pan-STARRST

e First data release in October 2013: Pan-STARRS1
[arXiv:1310.3828, arXiv:1310.3824]

* 146 spectroscopically confirmed SN la
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* Redshift range: 0.03 <z < 0.65
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 Light curve fitting performed using
(a modified version of) SALT2
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Pan-STARRS vs. Union 2.1

* Nice compatibility of determination from both experiments in regions where
data overlap

 Uncertainties from Pan-STARRS1 determination grow larger where data
are sparse




Model-independent fits to model-dependent data’?

up=my™+a-x1—B-c+8- P(m™ <m

where M g 1s the absolute 5-band magnitude ot a SN la with

z1 = 0,c = 0and P(mtme < mthreshold)y — (o The param-

eters «, 5, 0 and Mg are nuisance parameters that are fitted
simultaneously with the cosmological parameters. The SN Ia

4.5. Systematic errors

In this paper, we follow the systematics analysis we pre-
sented in Amanullah et al. (2010). Systematic errors that di-
rectly affect supernova distance measurements (calibration,
and galactic extinction, for example) are treated as nuisance
parameters to be fit simultaneously with the cosmology. Min-
imizing over these nuisance parameters gives additional terms
to add to the distance modulus covariance matrix

e Qi B) dpg(a, B)
Uij = Z de de Te (%)

€

where the sum is over each of these distance systematic errors
in the analysis. (Although the distance modulus depends on
0 as well as o and 3, the derivatives with respect to the zero-
points do not.) In this analysis, & and 3 have little interaction
with cosmological parameters. When computing cosmologi-

threshold
* ) T M B

4.4. Fitting the Cosmology

Following Amanullah et al. (2010), the best-fit cosmology
is determined by minimizing

8, M) — 11(2; Qs Qup, w)]°
XStat:Z [MB<04767 ) B) M(Z, ’lU)] @)

2 2 2
O1c + Oext + Osample

SNe

A detailed discussion of the terms in this equation can be
found in Amanullah et al. (2010). We only comment on the
final term in the denominator, ai%, which is computed by

setting the reduced y2 of each sample to unity. This term

was referred to as “07 i oaiic in Kowalski et al. (2008);

Amanullah et al. (2010). We note that o2 includes intrin-

sample
sic dispersion as well as sample-dependent effects. This term

effectively further deweights samples with poorer-quality data

that has sources of error which have not been accounted for.

As noted in Amanullah et al. (2010), this may occasionally

deweight an otherwise well-measured supernova.

Union2.1 - arXiv:1105.3470




Model-independent fits to model-dependent data’?

pp=mu*+o-x; —p-c+8- P(m™ < mhresholdy _ prp

C. EMPIRICAL ADJUSTMENT OF UNCERTAINTIES

The propagated uncertainties are underestimates, as they do not account for the pixel-pixel covariance introduced
by warping, sub-sampling, stacking, and convolution of the images. In order to empirically determine by how much
the uncertainties are underestimated, we measure the flux f, and its uncertainty o, at random positions in a given
difference image in exactly the same way we measure the SN flux. We calculate the weighted mean f, of these flux
measurements. In order to guard against reduction and image artifacts, we apply a 30 cut to the normalized flux
distribution (f, — f,)/o., rather than cutting on the underestimated errors, o,, for the following reason: let’s assume
that all uncertainties are underestimated by the same factor s,. If we nominally apply a N-sigma cut using these
underestimated uncertainties, we effectively apply an N/s,-cut, e.g. for a nominal 3-sigma cut and s, = 1.5, the real
cut-off is at 2-sigma. In order to avoid this, we determine the normalized flux distribution (f. — f,.)/o,, which has a
standard deviation of s,. The true 3-sigma outliers can then be identified and removed by doing an 3-sigma cut on
the normalized flux distribution. Note that the standard deviation s, is equivalent to the square-root of the chi-square

distribution
1 £\
2 _ 1

XT’ N _ 2 ( frar> (C )

We multiply all uncertainties by the factor s, in order to empirically correct the uncertainties. We find that it is
imperative to employ this robust way of determining s, for the method to work correctly. The fact that the reduced

chi- Square of the basehne ﬂux of the SN hght curves peaks at 1.0 vahdates our method (see §5 3.3).

. The values of f,
are in general very small much smaller than the typlcal uncertamtles Nevertheless we adJust all fluxes by this value.

Pan-STARRS1 - arXiv:1310.3828




Model-independent fits to model-dependent data’?

i Pl sl iR i = = .

Table 6 = g “ e o= o
Constraints on standardization and cosmological parameters for subsets. M g is the B-band corrected absolute magnitude; «, /3, and ¢ are \
the lightcurve shape, color, and host mass correction coefficients, respectively. The outlier rejection is redone each time, so the totals may not h at | S -t h e d e p e n d e n c e O n -t h e

add up to the whole sample. The constraints are computed including BAO, CMB, and H( constraints and supernova systematic errors.

Subset Number Mp(h =0.7) «@ B 1) Qum w

Whole Sample

“nuisance parameters” (a,[)?

» & = S -~

+0.030 +0.007 +0.06 +0.031 +0.015 +0.068
z>0.015 580 —19.32179:0%0  0.12179907 2477096 —0.03275931  0.271 10915 —1.01379 558
Correction Coefficients, Split by Redshift

0.015 < 2 < 0.10 175 —19.32875:937 011870011 2577858 —0.027709%%  0.270 (fixed)  —1.000 (fixed) -Table 3 ..
0.100 < 2 < 0.25 75 —19.37170921 014670019 2567015 —0.087T00%0  0.270 (fixed) —1.000 (fixed) Effects of Choices for Intrinsic Scatter
0.250 < z < 0.50 152 —19.31775978 011670013 2467515 —0.04270°95¢  0.270 (fixed)  —1.000 (fixed)
0.500 < z < 1.00 137 —19.307}%@%; o.124t§68(})§2 1.465% 0.023286823884 0.270 (fixed) ~ —1.000 (fixed) Intrinsic Scatter o 3

z > 1.000 25 —19.289F021"  —0.01970 672 3487118 —0.1517030%  0.270 (fixed)  —1.000 (fixed)

Effect of § on w Cint,mp = 0.122  0.147 £ 0.010 3.10 £0.12
z>0.015 580 —19.34010028  0.12370097  2.477050  —0.080 (fixed) 0.27270 01}  —1.004F5-957 Oint,e = 0.025 0.141+0.010 3.86+0.15
z>0.015 580 —19.30370:031  0.12079807 2477096 0.000 (fixed)  0.271F051  —1.01375587 Note. — Intrinsic scatter oy and o

. mt,mp nt,c
Cosmological Results, Split by Lightcurve Color and Shape in the PS1 —|-1Z Sample, and how o ,and 5 vary ; (3 ¢
c>0.05 256 —19.38710°0%T 011810011 2777000 —0.05710:0%0  0.2697001  —1.028T0 077 each method. The magnitudes of each scatter
0.030 0.011 0.32 0.038 0.015 0.069 . .
¢<0.05 321 _19-323J—r0.030 0-125J—r0.010 1-29J—r0.33 _0-057J—r0.038 0-275J—r0.014 _0'982J—r0.075 given above is such that the total reduced X2 of
_ - +0.041 +0.026 +0.10 +0.047 +0.015 +0.077 .
z1 > —0.25 311 19.3667003)  0.02010028 258010 —0.00475 050 0.26910015  —1.03710 017 th 1 1.0
+0.044 +0.021 +0.08 +0:050 +0.015 +0.077 € sample 1s ~1.U.
z1 < —0.25 260 —19.3867005s  0.15270 050 2437008 —0.08770 050 0.267T0 01 —1.04510 577

Correction Coefficients and M p for the Large Datasets

Hicken et al. (2009) 94 —19.314709%% 01157901 274701 —0.053T5095  0.270 (fixed) —1.000 (fixed) Pan_STARRS1 - arXiV:131 0_3828

Holtzman etal. 2009) 129 —19.33670021  0.14975812 2407015 —0.06170055  0.270 (fixed) —1.000 (fixed)
Miknaitis et al. (2007) 74 —19.32570078  0.11370°05T  2.4970-1T 0.000 (fixed)  0.270 (fixed) —1.000 (fixed)
Astier et al. (2006) 71 —19.29270097 014510519 1707018 —0.02375515  0.270 (fixed)  —1.000 (fixed) RO PP TIINNSAPSY S SISO

z > 0.9, Split by Galaxy Host

Early Type z > 0.9 13 —-19.388701%8% 011249130 3.167]5:  0.000 (fixed)  0.270 (fixed) —1.000 (fixed) We ad d reSS the q U eStlon by
Late Type z > 0.9 15 —19.141759%7  0.00470-0%  0.49758>  0.000 (fixed)  0.270 (fixed) —1.000 (fixed)

taking a step back and
parametrising the data on

distance moduli as a function of

(z, X4,

Union2.1 - arXiv:1105.3470




Instead of conclusions ...

* |s there space for model-independent tests of cosmic acceleration?

* If so, there is a wide range of methods that could be employed and that
could provide parametrisations of the data which could be used for reliable
and fast testing of different models

* We propose such a “new” technique based on Monte Carlo methods for
uncertainty estimation and Neural Networks to parametrise the data and
applied it to SN la measurements

... but in the end

it is of no use to use a model-independent method to
___look at model-dependentdata




