
Model-independent fitting of cosmological data

Alberto Guffanti 
NBIA & Discovery Center, Niels Bohr Institute - University of Copenhagen

2nd NBIA-APCTP Workshop on Cosmology and Astroparticle Physics 
Niels Bohr Institute, 18-22 August 2014

In collaboration with: 
A. Durakovic, J. Trøst Nielsen and S. Sarkar



The core idea

• Can we devise model independent tests of cosmic acceleration (based on SN 
Ia)?


• A (partial) list of recent proposals for model-independent studies of cosmic 
acceleration, mainly based on SN Ia 
                               Shafieloo et al. (2006), Shafieloo (2007), Nesseris, Shafieloo (2010), … 
                                                                                              Schwartz and Seikel (2007, 2009) 
                                                                                            Benitez-Herrera et al. (2011, 2013) 
                                                                                           Garcia-Bellido and Nesseris (2011) 
                                                                                                                                               ….


• A crucial ingredient of a good model-independent method to parametrise 
data is that it provides a reliable estimation of the experimental uncertainties 
so that we can tell if a given dataset can effectively discriminate between 
competing models



NNPDF methodology: the origins

• Originally developed to provide a model independent parametrisation of 
Deep Inelastic Scattering structure functions and Parton Distribution 
Functions (PDFs) 
                                                                                                 S. Forte et al., 2002;  
                                                                                                        L .  Del Debbio et al., 2005; 
                                                                                                               A. Guffanti et al., 2006; 
                                                                                                                 R. D. Ball et al., 2008; 
                                                                                                                 R. D. Ball et al., 2013; 
                                                                                                                                        + ……


• Parton Distribution Functions cannot be determined from first principles in 
(perturbative) QCD but need to be extracted from (global) fits to data 


• The NNPDF methodology is designed to address two main shortcomings of 
standard PDF determinations: reliance on linear error propagation 
(Hessian method) and parametrisation bias (use of fixed functional form for 
parametrisation) 



NNPDF methodology in a Nutshell

• Generate Nrep Monte Carlo replicas of the experimental data, taking into 
account all experimental correlations


• Fit a noncommittal functional form to each replica of the data providing a 
model-independent parametrisation of the data with a reliable uncertainty 
estimation 


• Expectation values for a given observable are then given by 
 
 
 
 
 
.... and corresponding formulae for the estimators of Monte Carlo samples are 
used to compute uncertainties, correlations, etc.
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NNPDF methodology: the ingredients

• Monte Carlo determination of uncertainties

• No need to rely on linear propagation of errors

• Possibility to test the impact of non-gaussianly distributed uncertainties


• Parametrisation using Neural Networks 
• Provide an unbiased parametrisation


• Determine the best fit functions using Cross-Validation

• Ensures proper fitting, avoiding overlearning



NNPDF methodology: data replicas generation

• Monte Carlo replicas are generated according to the distribution 
 
 
 
 
where ri are (gaussianly distributed) random numbers


• Validate Monte Carlo replicas against experimental data 
 
 
 
 
 

• O(1000) replicas needed to reproduce correlations in experimental data to percent 
accuracy

NNPDF Methodology
Monte Carlo replicas generation

Generate artificial data according to distribution
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where ri are univariate (gaussianly distributed) random numbers

Validate Monte Carlo replicas against experimental data
(statistical estimators, faithful representation of errors, convergence rate
increasing Nrep)

O(1000) replicas needed to reproduce correlations to percent accuracy
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NNPDF methodology: Neural Networks

Ingredient 2: Neural Networks

A convenient functional form
providing redundant and flexible parametrization

used as a generator of random functions in the PDF space
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1

1 + e�x

made of neurons grouped into layers (define the architecture)

each neuron receives input from neurons in preceding layer (feed-forward NN)

activation determined by parameters (weights and thresholds)

activation determined according to a non-linear function (except the last layer)
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• Artificial Neural Networks provide us with a parametrisation which is extremely 
redundant and robust against variations 

• Very efficient algorithms are available which allow us to train NN (efficient fit   to 
large datasets in a very high dimensional parameter space)


• ... but in the end they are just another set of functions



NNPDF methodology: Cross-validation stopping

• Separate data in each randomly in two 
subsets (training set, validation set) 

• Train each neural network minimising an 
appropriate figure of merit on the 
training set and monitor the behaviour of 
the figure of merit on the validation set


• In our case we train Neural Networks 
using standard back-propagation 
(gradient based method), training using 
Genetic Algorithms also possibile 
(minimise probability of being trapped in 
local minima)


• Best fit defined as the point where the 
validation set figure of merit stops 
improving

Neural Networks
Stopping criterion

Stopping criterion based on Training-Validation separation

Divide the data in two sets: Training and Validation
Minimize the �

2 of the data in the Training set
Compute the �

2 for the data in the Validation set
When validation �

2 stops decreasing, STOP the fit
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The Data - Union 2.1

• Latest update from the Supernova Cosmology Project 
                                                                               [Suzuki et al., arXiv:1105.3470]


• 580 SN Ia, combined from a number of surveys


• Redshift range: 0.015 < z < 1.414


• Common light curve fitting for all datasets, 
performed with SALT2


• Covariance matrix available including  
correlated systematics (not used in the 
preliminary results I will show)



Fitting Union2.1 using Neural Networks

𝚲CDM (Ωm=0.3) is in agreement with 
our Neural Network parametrisation 

of the data over the whole z-range

Neural Network parametrisation 
provides a good fit to the data 

(also if we do not include correlated systematics)



The Data - Pan-STARRS1

• First data release in October 2013: Pan-STARRS1  
                                                                         [arXiv:1310.3828, arXiv:1310.3824]


• 146 spectroscopically confirmed SN Ia


• Redshift range: 0.03 < z < 0.65


• Light curve fitting performed using 
(a modified version of) SALT2
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Figure 13. Hubble diagram for the combined PS1 and low-redshift sample. The bottom panel shows the di↵erence modulus residuals
versus the logarithmic redshift in order to visualize the the low-z SN Ia residuals.



Pan-STARRS vs. Union 2.1

• Nice compatibility of determination from both experiments in regions where  
data overlap 

• Uncertainties from Pan-STARRS1 determination grow larger where data 
are sparse



Model-independent fits to model-dependent data?

The Astronomical Journal, 144:110 (7pp), 2012 October Melia

here we have a situation in which ΛCDM cannot explain the
near uniformity of the CMB across the sky without inflation,
yet with inflation it cannot account for the anisotropy of the
CMB on large scales.

This distinction alone already demonstrates the superiority of
the Rh = ct universe over ΛCDM, insofar as the interpretation
of the CMB observations is concerned. But this is only one of
several crucial tests affirming the conclusion that ΛCDM is only
an approximation to the more precise Rh = ct universe. Here
are several other reasons.

1. The Rh = ct universe explains why it makes sense to
infer a Planck mass scale in the early universe by equating
the Schwarzschild radius to the Compton wavelength. In
ΛCDM there is no justifiable reason why a delimiting
gravitational horizon should be invoked in an otherwise
infinite universe (see Melia 2012a for a more pedagogical
explanation).

2. The Rh = ct universe explains why Rh(t0) = ct0 today
(because they are always equal). In ΛCDM, this equality
is just one of many coincidences. As we shall see in
subsequent sections of this paper, this awkwardness will
become apparent in how the free parameters in ΛCDM
must be manipulated in order to fit the Type Ia SN data
(see, e.g., Figure 4).

3. The Rh = ct universe explains how opposite sides of
the CMB could have been in equilibrium at the time
(te ∼ 104–105 years) of recombination, without the need
to introduce an ad hoc period of inflation. Inflation may
be useful for other reasons, but it does not appear to
be necessary in order to solve a non-existent “horizon
problem” (Melia 2012b).

4. The Rh = ct universe explains why there is no apparent
length scale below the BAO wavelength (∼100 Mpc) in the
observed matter correlation function. In their exhaustive
study, Watson et al. (2011) concluded that the observed
power-law galaxy correlation function below the BAO is
simply not consistent with the predictions of ΛCDM, which
requires different clustering profiles of matter on different
spatial scales. These authors suggested, therefore, that the
galaxy correlation function must be a “cosmic coincidence.”
But this is not the case in the Rh = ct universe because
this cosmology does not possess a Jeans length (Melia &
Shevchuk 2012). Since p = −ρ/3, the active gravitational
mass (ρ + 3p) in the Rh = ct universe is zero, so
fluctuations grow as a result of (negative) pressure only,
without any delimiting spatial scale.

5. The fact that ρ is partitioned into ≈27% matter and ≈73%
dark energy is a mystery in ΛCDM. But in the Rh = ct
universe, it is clear why Ωm must be ≈27%, because when
one forces ρ to have the specific constituents ρr , ρm, and ρΛ,
only the value Ωm ≈ 0.27 will permit the universe to evolve
in just the right way to satisfy the condition Rh(t0) = ct0
today. This condition is always satisfied in the Rh = ct
universe, but not in ΛCDM. Yet the observations today
must be consistent with this constraint imposed by the
cosmological principle and the Weyl postulate, so all the
other evolutionary aspects of the ΛCDM cosmology must
comply with this requirement.

6. The observed near alignment of the CMB quadrupole and
octopole moments is a statistically significant anomaly
for ΛCDM, but merely lies within statistically reasonable
expectations in the Rh = ct universe (Melia 2012b). This

again has to do with the finite fluctuation size, limited by
the gravitational horizon Rh(te) at the time of last scattering.

3. THE UNION2.1 SUPERNOVA SAMPLE

Let us now briefly review the contents of the Union2.1 sample,
and summarize the key steps taken during its assembly. As the
samples have grown and become better calibrated, evidence
has emerged for a correlation between host galaxy properties
and SN luminosities, after corrections are made for lightcurve
width and SN color (Hicken et al. 2009). For example, Type
Ia SNe in early-type galaxies appear to be brighter (by about
0.14 mag) than their counterparts in galaxies of later type. A
similar relationship appears to exist between Hubble residuals
and host galaxy mass (Kelly et al. 2010; Sullivan et al. 2010;
Lampeitl et al. 2010). Uncorrected, such relationships can
lead to significant systematic error in determining the best-fit
cosmology.

Additional sources of uncertainty arise for astrophysical rea-
sons, including the color correction that must be applied to SN
luminosities. The so-called redder–fainter relation apparently
arises from at least two mechanisms: extinction from interstel-
lar dust, and probably some intrinsic relation between color
and luminosity produced by the explosion itself or by the sur-
rounding medium. It is difficult to justify the argument that this
redder–fainter relationship should behave in the same way at
all redshifts, but there is little else one can do because the two
effects are very difficult to disentangle (see, e.g., Suzuki et al.
2012).

Combining the many available data sets into a single compila-
tion (the Union2.1 sample) has obvious advantages, treating all
SNe on an equal footing and using the same lightcurve fitting,
but this process brings its own set of possible errors, including
the fact that the systematics may be different among the various
data sets. As we shall see shortly, this multitude of uncertainties
makes it impossible to determine the SN luminosities with-
out some prior assumption about the underlying cosmological
model.

The procedure for determining each individual Type Ia SN
luminosity requires a fit to the lightcurve using three parameters
(aside from those arising in the cosmological model itself).
These are (1) an overall normalization, x0, to the time-dependent
spectral energy distribution of the SN; (2) the deviation, x1, from
the average lightcurve shape; and (3) the deviation, c, from the
mean Type Ia SN B − V color. These three parameters, along
with the assumed host mass, are then combined to form the
distance modulus

µB = mmax
B + α · x1 − β · c + δ · P (mtrue

∗ < mthreshold
∗ ) − MB,

(1)

where mmax
B is the integrated B-band flux at maximum light, MB

is the absolute B-band magnitude of a Type Ia SN with x1 = 0,
c = 0, and P (mtrue

∗ < mthreshold
∗ ) = 0. Also, mthreshold

∗ = 1010 M⊙
is the threshold host galaxy mass used for the mass-dependent
correction, and P is a probability function assigning a probability
that the true mass, mtrue

∗ , is less than the threshold value, when
an actual mass measurement mobs

∗ is made.
It is quite evident that the task of accurately determining µB

for each individual SN is arduous indeed. The Supernova Cos-
mology Project calls the parameters α, β, δ, and MB “nuisance”
parameters because they cannot be evaluated independently of
the assumed cosmology. They must be fitted simultaneously

3

whereMB is the absolute B-band magnitude of a SN Ia with
x1 = 0, c = 0 and P (mtrue

⋆ < mthreshold
⋆ ) = 0. The param-

eters α, β, δ and MB are nuisance parameters that are fitted
simultaneously with the cosmological parameters. The SN Ia
photometry data and SALT2 light curve fits are shown in Fig-

4.4. Fitting the Cosmology
Following Amanullah et al. (2010), the best-fit cosmology

is determined by minimizing

χ2
stat =

∑

SNe

[µB(α,β, δ,MB)− µ(z;Ωm,Ωw, w)]
2

σ2
lc + σ2

ext + σ2
sample

. (4)

A detailed discussion of the terms in this equation can be
found in Amanullah et al. (2010). We only comment on the
final term in the denominator, σ2

sample, which is computed by
setting the reduced χ2 of each sample to unity. This term
was referred to as “σ2

systematic” in Kowalski et al. (2008);
Amanullah et al. (2010). We note that σ2

sample includes intrin-
sic dispersion as well as sample-dependent effects. This term
effectively further deweights samples with poorer-quality data
that has sources of error which have not been accounted for.
As noted in Amanullah et al. (2010), this may occasionally
deweight an otherwise well-measured supernova.
Following Conley et al. (2006), Kowalski et al. (2008) and

4.5. Systematic errors
In this paper, we follow the systematics analysis we pre-

sented in Amanullah et al. (2010). Systematic errors that di-
rectly affect supernova distance measurements (calibration,
and galactic extinction, for example) are treated as nuisance
parameters to be fit simultaneously with the cosmology. Min-
imizing over these nuisance parameters gives additional terms
to add to the distance modulus covariance matrix

Uij =
∑

ϵ

dµi(α,β)

dϵ

dµj(α,β)

dϵ
σ2
ϵ , (5)

where the sum is over each of these distance systematic errors
in the analysis. (Although the distance modulus depends on
δ as well as α and β, the derivatives with respect to the zero-
points do not.) In this analysis, α and β have little interaction
with cosmological parameters. When computing cosmologi-
cal constraints, we therefore freeze the covariance matrix in

Union2.1 - arXiv:1105.3470
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and SN luminosities, after corrections are made for lightcurve
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C. EMPIRICAL ADJUSTMENT OF UNCERTAINTIES

The propagated uncertainties are underestimates, as they do not account for the pixel-pixel covariance introduced
by warping, sub-sampling, stacking, and convolution of the images. In order to empirically determine by how much
the uncertainties are underestimated, we measure the flux fr and its uncertainty �r at random positions in a given
di↵erence image in exactly the same way we measure the SN flux. We calculate the weighted mean f̄r of these flux
measurements. In order to guard against reduction and image artifacts, we apply a 3� cut to the normalized flux
distribution (fr � f̄r)/�r, rather than cutting on the underestimated errors, �r, for the following reason: let’s assume
that all uncertainties are underestimated by the same factor sr. If we nominally apply a N-sigma cut using these
underestimated uncertainties, we e↵ectively apply an N/sr-cut, e.g. for a nominal 3-sigma cut and sr = 1.5, the real
cut-o↵ is at 2-sigma. In order to avoid this, we determine the normalized flux distribution (fr � f̄r)/�r, which has a
standard deviation of sr. The true 3-sigma outliers can then be identified and removed by doing an 3-sigma cut on
the normalized flux distribution. Note that the standard deviation sr is equivalent to the square-root of the chi-square
distribution

sr =
p

�2
r =

1

N � 2

NX✓
fr
�

f̄r�r

◆2

(C1)

We multiply all uncertainties by the factor sr in order to empirically correct the uncertainties. We find that it is
imperative to employ this robust way of determining sr for the method to work correctly. The fact that the reduced
chi-square of the baseline flux of the SN light curves peaks at 1.0 validates our method (see §5.3.3).
In addition, for a given di↵erence image, f̄r is an estimate of the bias in the flux measurements. The values of f̄r

are in general very small, much smaller than the typical uncertainties. Nevertheless, we adjust all fluxes by this value.

Pan-STARRS1 - arXiv:1310.3828
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Table 6
Constraints on standardization and cosmological parameters for subsets. MB is the B-band corrected absolute magnitude; α, β, and δ are
the lightcurve shape, color, and host mass correction coefficients, respectively. The outlier rejection is redone each time, so the totals may not
add up to the whole sample. The constraints are computed including BAO, CMB, and H0 constraints and supernova systematic errors.

Subset Number MB(h = 0.7) α β δ Ωm w

Whole Sample

z ≥ 0.015 580 −19.321+0.030
−0.030 0.121+0.007

−0.007 2.47+0.06
−0.06 −0.032+0.031

−0.031 0.271+0.015
−0.014 −1.013+0.068

−0.074

Correction Coefficients, Split by Redshift

0.015 ≤ z ≤ 0.10 175 −19.328+0.037
−0.038 0.118+0.011

−0.011 2.57+0.08
−0.08 −0.027+0.054

−0.054 0.270 (fixed) −1.000 (fixed)
0.100 ≤ z ≤ 0.25 75 −19.371+0.054

−0.054 0.146+0.019
−0.019 2.56+0.18

−0.17 −0.087+0.060
−0.060 0.270 (fixed) −1.000 (fixed)

0.250 ≤ z ≤ 0.50 152 −19.317+0.046
−0.046 0.116+0.014

−0.013 2.46+0.12
−0.12 −0.042+0.066

−0.066 0.270 (fixed) −1.000 (fixed)
0.500 ≤ z ≤ 1.00 137 −19.307+0.048

−0.049 0.124+0.019
−0.019 1.46+0.19

−0.19 0.023+0.060
−0.060 0.270 (fixed) −1.000 (fixed)

z ≥ 1.000 25 −19.289+0.217
−0.254 −0.019+0.072

−0.076 3.48+1.13
−0.89 −0.151+0.384

−0.446 0.270 (fixed) −1.000 (fixed)

Effect of δ on w

z ≥ 0.015 580 −19.340+0.026
−0.026 0.123+0.007

−0.007 2.47+0.06
−0.06 −0.080 (fixed) 0.272+0.015

−0.014 −1.004+0.067
−0.072

z ≥ 0.015 580 −19.303+0.031
−0.031 0.120+0.007

−0.007 2.47+0.06
−0.06 0.000 (fixed) 0.271+0.015

−0.014 −1.013+0.069
−0.075

Cosmological Results, Split by Lightcurve Color and Shape

c ≥ 0.05 256 −19.387+0.037
−0.038 0.118+0.011

−0.011 2.77+0.09
−0.09 −0.057+0.052

−0.052 0.269+0.015
−0.014 −1.028+0.077

−0.084

c ≤ 0.05 321 −19.323+0.030
−0.030 0.125+0.011

−0.010 1.29+0.32
−0.33 −0.057+0.038

−0.038 0.275+0.015
−0.014 −0.982+0.069

−0.075

x1 ≥ −0.25 311 −19.366+0.041
−0.041 0.020+0.026

−0.025 2.58+0.10
−0.10 −0.004+0.047

−0.047 0.269+0.015
−0.014 −1.037+0.077

−0.085

x1 ≤ −0.25 269 −19.386+0.044
−0.045 0.152+0.021

−0.020 2.43+0.08
−0.08 −0.087+0.050

−0.050 0.267+0.015
−0.014 −1.045+0.077

−0.084

Correction Coefficients andMB for the Large Datasets

Hicken et al. (2009) 94 −19.314+0.055
−0.055 0.115+0.015

−0.015 2.74+0.11
−0.11 −0.053+0.098

−0.099 0.270 (fixed) −1.000 (fixed)
Holtzman et al. (2009) 129 −19.336+0.051

−0.051 0.149+0.014
−0.013 2.40+0.15

−0.14 −0.061+0.050
−0.050 0.270 (fixed) −1.000 (fixed)

Miknaitis et al. (2007) 74 −19.325+0.078
−0.080 0.113+0.037

−0.035 2.49+0.17
−0.16 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)

Astier et al. (2006) 71 −19.292+0.047
−0.048 0.145+0.019

−0.018 1.70+0.18
−0.18 −0.023+0.040

−0.040 0.270 (fixed) −1.000 (fixed)

z > 0.9, Split by Galaxy Host

Early Type z > 0.9 13 −19.388+0.139
−0.186 0.112+0.139

−0.151 3.16+1.84
−1.26 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)

Late Type z > 0.9 15 −19.141+0.067
−0.067 0.094+0.049

−0.041 0.49+0.85
−0.69 0.000 (fixed) 0.270 (fixed) −1.000 (fixed)

the dynamical dark energy models considered in the next sec-
tion, and a value different from−1 would rule out the cosmo-
logical constant.
In a flat universe (Ωk= 0), SNe Ia alone give w =

−1.001+0.348
−0.398 (including systematics). Adding the constraints

from the other three probes tightens the constraint on w con-
siderably, as the constraints from SNe Ia in theΩm–w param-
eter plane are almost orthogonal to those provided by BAO
and the CMB (Figure 6).
In principle, a constraint on H0 helps to break the degen-

eracy between Ωm and h for CMB, which measures Ωmh2

(Spergel et al. 2003). However, in this case adding supernova
data helps more, as narrowing the degeneracy between Ωm

and w allows the CMB itself to constrain H0. By combin-
ing all four probes, we find w = −1.013+0.068

−0.073. As seen in
Table 7, neither BAO nor H0 currently make much of a dif-
ference in the error bars for this model.

5.3. owCDM : Constant Equation of State in a Curved
Universe

Inflation models generally predict that the curvature of the
Universe, Ωk, is ∼ 10−5 (Guth 1981; Liddle & Lyth 2000).
In curved universes, SNe Ia play the critical role in con-
straining w, while CMB+BAO constrain Ωk and Ωm. By

combining all four probes, we find Ωk = 0.002+0.007
−0.007 and

w = −1.003+0.091
−0.095. Even with the additional freedom for

non-zero curvature, a flat universe is supported from observa-
tions. Among many cosmological parameters, the curvature
of the universe is the most well-determined parameter.
We note CMB alone does not place a tight constraint on

curvature1, Ωk = −0.102+0.085
−0.097 (Komatsu et al. 2011), and

it is the combination of SN Ia and BAO which improves the
constraint by a factor of ten. IncludingH0 improves the cur-
vature constraints but the current measurements from SNe Ia
and BAO have more impact.
For the equation-of-state parameter w, as seen in Table 7,

BAO constraints are now needed to constrain Ωm, while H0

again has a small impact on the w measurement.

5.4. Time Dependent Equation of State
We next examine models in which dark energy changes

with time. For a wide range of dark energy models, it can
be shown (Linder 2003) that, to good approximation, the dark
energy equation-of-state can be parametrized by

w(a) = w0 + wa(1 − a) (7)
1 http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm
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7.2.2. First-pass cuts

We require high-quality light curves which when fit
result in accurate distance measurements. One require-
ment is that the SNR is su�ciently large in a minimum
number of observations. A large subset of requirements
can be considered “coverage” cuts, where each light curve
must have observations in certain phase ranges with cer-
tain filters. Finally, we require that the resulting light-
curve fit parameters fall within ranges known to have low
distance biases from simulations. We outline the cuts be-
low.
For our sample, we require that there be measurements

in at least two bands with SNR > 5. This requirement
does not a↵ect the low-redshift or Pan-STARRS1 spec-
troscopic sample; however, it does reflect our detection
limits, and is a necessary requirement for simulating the
survey.
The light-curve cuts applied to the PS1 sample are

taken from Guy et al. (2010). Most requirements are
expressed in terms of the rest-frame phase t = (tobs �
tmax)/(1 + z). While Kessler et al. (2009a) required
at least one measurement with t < 0 days, Guy et al.
(2010) found that a more flexible requirement of need-
ing one measurement in the range of �8 < t < 5 days
provided a similar constraint. Using simulations of the
Pan-STARRS1 and low-z samples from S13a, we find
that SNe Ia that pass the Guy et al. (2010) cut, but
not the Kessler et al. (2009a) cut only introduce a very
small bias of 0.2% into the distance modulus. This bias
increases to 0.4% for redshifts larger than 0.5. However,
there are no high-redshift SNe Ia in our Pan-STARRS1
sample that pass the Guy et al. (2010) but not the Kessler
et al. (2009a) cut.

7.2.3. Final Cuts

We require that the light curve fit converges and has a
SALT2 light-curve fit probability Pfit > 0.001 based on
the �2 per degree of freedom. We remove all SNe Ia in
our sample with |c| > 0.25 or |x1| > 3 . Colors or stretch
values that deviate far from zero are not well represented
in the training sample and such objects could bias the
measurement of �. If there are light curves of the same
SN from di↵erent surveys, we use the one that has the
most epochs, and any duplicate light curves are removed
from the fit.
Finally, when fitting cosmological parameters, we ap-

ply Chauvenet’s criterion (Taylor 1997) to reject out-
liers, removing SNe for which we could expect less than
half of an event in our full sample (assuming a Gaussian
distribution of intrinsic luminosities). For the PS1+lz
sample, this is 4�. This criterion does not depend
significantly on our choice of cosmological parameters,
and thus the same SNe are excluded for all cosmolog-
ical choices. Chauvenet’s criterion removes no SN Ia
from the Pan-STARRS1 sample and two (SN 2004gc and
SN 2008cm) from the low-z sample.
We make all data used in this analysis publicly avail-

able, including light curve fit parameters25.

8. COSMOLOGICAL RESULTS

8.1. Luminosity Distance Measurements

25 http:wachowski.pha.jhu.edu/⇠dscolnic/PS1 Public

Table 3

E↵ects of Choices for Intrinsic Scatter

Intrinsic Scatter ↵ �

�
int,m

B

= 0.122 0.147± 0.010 3.10± 0.12
�
int,c

= 0.025 0.141± 0.010 3.86± 0.15

Note. — Intrinsic scatter �
int,m

B

and �
int,c

in the PS1+lz sample, and how ↵ and � vary for
each method. The magnitudes of each scatter
given above is such that the total reduced �2 of
the sample is ⇠1.0.

The ultimate goal of this analysis is to put constraints
on the cosmological parameters ⌦M, ⌦⇤, and w. We first
transform the SALT2 fit parameters into distances us-
ing the SALT2mu program (Marriner et al. 2011), which
finds the ↵ and � parameters that minimize the distance
modulus residuals for a given cosmology. While there is
uncertainty in whether these parameters evolve with red-
shift (Kessler et al. 2009a), here we assume that ↵, � and
M are all constant with redshift. In order for the �2

⌫ of
the distance residuals to be unity, an intrinsic dispersion
�int is added in quadrature to the error of each SN dis-
tance (which includes the distance error from redshift un-
certainty)26. Both the intrinsic dispersion of the sample
and the photometric errors of each SN distance include a
dependence on the nuisance parameters and covariances
between the fit parameters. The SALT2mu procedure
propagates these errors and determines the values for ↵
and �.
There is ongoing debate about the source of the in-

trinsic scatter seen in SNe Ia distances. As shown in
Kessler et al. (2013) and Scolnic et al. (2013b), the de-
termined values of ↵ and � depend on assumptions about
the source of the intrinsic scatter. For the PS1+lz sam-
ple, ↵ and � are given in Table 3 after attributing the
intrinsic distance scatter to either luminosity variation
or color variation. We find that the intrinsic dispersion
of the sample is 0.122 mag if we attribute intrinsic scat-
ter to luminosity variation and 0.025 mag if we attribute
intrinsic scatter to color variation. There is a large dif-
ference in the values of � found for these two di↵erent
assumptions: � = 3.1± 0.12 and � = 3.86± 0.15 for the
luminosity and color variation respectively. The value
of � found for the color variation case is within 2� of a
MW-like reddening law. Interestingly, the low-z sample
by itself pulls � to a higher value (� ⇠ 4.1) than the PS1
sample (� ⇠ 3.2) when we attribute scatter to color vari-
ation. This may be due to the di↵erent selection e↵ects
in the low-z and PS1 samples, or the incompleteness of
the SALT2 training sample for blue colors (S13a). Most
likely related, the total intrinsic scatter of the PS1 dis-
tances is half as large (�int = 0.06) as that for the low-z
sample (�int = 0.14). The scatter seen for the low-z sam-
ple is larger than that found in past studies (e.g., Kessler
et al. 2009a) as the assumed peculiar velocity errors in
this analysis are smaller. Following Conley et al. (2011),
we fix di↵erent values of �int for our high and low-z sub-
samples.

26 �2 = �2

N

+ �2

int

+ �2

µ�z

, where �2

N

is the photometric error

of the SN distance, �2

int

is the intrinsic scatter, and �2

µ�z

is the
distance error due to redshift uncertainty

Pan-STARRS1 - arXiv:1310.3828

Union2.1 - arXiv:1105.3470

What is the dependence on the 
“nuisance parameters” (𝛼,𝛽)? 

Can we address the question by 
taking a step back and 

parametrising the data on 
distance moduli as a function of 

(z, x1, c)



Instead of conclusions … 

• Is there space for model-independent tests of cosmic acceleration?


• If so, there is a wide range of methods that could be employed and that 
could provide parametrisations of the data which could be used for reliable 
and fast testing of different models


• We propose such a “new” technique based on Monte Carlo methods for 
uncertainty estimation and Neural Networks to parametrise the data and 
applied it to SN Ia measurements

… but in the end 
 

 it is of no use to use a model-independent method to 
look at model-dependent data


