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ABSTRACT

We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to determine the Hubble constant
from optical and infrared observations of over 600 Cepheid variables in the host galaxies of eight recent Type Ia
supernovae (SNe Ia), providing the calibration for a magnitude–redshift relation based on 253 SNe Ia. Increased
precision over past measurements of the Hubble constant comes from five improvements: (1) more than doubling
the number of infrared observations of Cepheids in the nearby SN hosts; (2) increasing the sample size of ideal
SN Ia calibrators from six to eight; (3) increasing by 20% the number of Cepheids with infrared observations in the
megamaser host NGC 4258; (4) reducing the difference in the mean metallicity of the Cepheid comparison samples
between NGC 4258 and the SN hosts from ∆log [O/H] = 0.08 to 0.05; and (5) calibrating all optical Cepheid
colors with a single camera, WFC3, to remove cross-instrument zero-point errors. The result is a reduction in the
uncertainty in H0 due to steps beyond the first rung of the distance ladder from 3.5% to 2.3%. The measurement
of H0 via the geometric distance to NGC 4258 is 74.8 ± 3.1 km s−1 Mpc−1, a 4.1% measurement including
systematic uncertainties. Better precision independent of the distance to NGC 4258 comes from the use of two
alternative Cepheid absolute calibrations: (1) 13 Milky Way Cepheids with trigonometric parallaxes measured with
HST/fine guidance sensor and Hipparcos and (2) 92 Cepheids in the Large Magellanic Cloud for which multiple
accurate and precise eclipsing binary distances are available, yielding 74.4±2.5 km s−1 Mpc−1, a 3.4% uncertainty
including systematics. Our best estimate uses all three calibrations but a larger uncertainty afforded from any two:
H0 = 73.8 ± 2.4 km s−1 Mpc−1 including systematic errors, corresponding to a 3.3% uncertainty. The improved
measurement of H0, when combined with the Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data, results
in a tighter constraint on the equation-of-state parameter of dark energy of w = −1.08 ± 0.10. It also rules out
the best-fitting gigaparsec-scale void models, posited as an alternative to dark energy. The combined H0 + WMAP
results yield Neff = 4.2 ± 0.7 for the number of relativistic particle species in the early universe, a low-significance
excess for the value expected from the three known neutrino flavors.

Key words: cosmological parameters – dark energy – distance scale – galaxies: distances and redshifts – stars:
variables: Cepheids – supernovae: general
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1. INTRODUCTION

Measurements of the expansion history, H (z), from Type Ia
supernovae (SNe Ia) provide crucial, empirical constraints to
help guide the emerging cosmological model. While high-
redshift SNe Ia reveal that the universe is now accelerating
(Riess et al. 1998; Perlmutter et al. 1999), nearby ones pro-
vide the most precise measurements of the present expansion
rate, H0.

Recently, high-redshift measurements from the cosmic
microwave background radiation (CMB), baryon acoustic os-
cillations (BAOs), and SNe Ia have been used to derive a cos-
mological model-dependent prediction of the value of H0 (e.g.,
Komatsu et al. 2011). They are not, however, a substitute for its
measurement in the local universe. Such forecasts of H0 from
∗ Based on observations with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by
AURA, Inc., under NASA contract NAS 5-26555.

the high-redshift universe also make specific assumptions about
unsettled questions: the nature of dark energy, the global ge-
ometry of space, and the basic properties of neutrinos (number
and mass). Instead, we can gain insights into these unknowns
from a precise, local measurement of H0. The most precise mea-
surements of H0 have come from distance ladders which cali-
brate the luminosities of nearby SNe Ia through Hubble Space
Telescope (HST) observations of Cepheids in their host galaxies
(see Freedman & Madore 2010 for a review).

In the early Cycles of HST, the SN Ia HST Calibration
Program (Sandage et al. 2006, hereafter SST) and the HST Key
Project (Freedman et al. 2001, hereafter KP) each calibrated
H0 via Cepheids and SNe Ia using the Wide Field Planetary
Camera 2 (WFPC2) and the Large Magellanic Cloud (LMC)
as the first rung on their distance ladder. Unfortunately, the
LMC was not an ideal anchor for the cosmic ladder because
its distance was constrained to only 5% to 10% (Gibson 2000);
its Cepheids (observed from the ground) are of shorter mean
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-  140 SNe Ia at 0.023<z<0.10 
-  distance calibration: LMC, MW parallaxes and NGC4258 maser 
-  ~600 Cepheids in 8 SN Ia hosts 
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Table 5
H0 Error Budget for Cepheid and SN Ia Distance Laddersa

Term Description Previous R09 Here Here
LMC N4258 N4258 All Threeb

σanchor Anchor distance 5% 3% 3% 1.3%
σanchor−PL Mean of P–L in anchor 2.5% 1.5% 1.4% 0.7%c

σhost−PL/
√

n Mean of P–L values in SN hosts 1.5% 1.5% 0.6 % 0.6%
σSN/

√
n Mean of SN Ia calibrators 2.5% 2.5% 1.9% 1.9%

σm−z SN Ia m–z relation 1% 0.5% 0.5% 0.5%
Rσλ,1,2 Cepheid reddening, zero points, anchor-to-hosts 4.5% 0.3% 0.0% 1.4%
σZ Cepheid metallicity, anchor-to-hosts 3% 1.1% 0.6 % 1.0%
σPL P–L slope, ∆log P, anchor-to-hosts 4% 0.5% 0.4% 0.6%
σWFPC2 WFPC2 CTE, long-short 3% 0% 0% 0%

Subtotal, σH0 10% 4.7 % 4.0% 2.9%

Analysis systematics NA 1.3% 1.0% 1.0%

Total, σH0 10% 4.8 % 4.1% 3.1%

Notes.
a Derived from diagonal elements of the covariance matrix propagated via the error matrices associated with
Equations (1), (3), (7), and (8).
b Using the combination of all three calibrations of the Cepheid distance scale, LMC, MW parallaxes, and
NGC 4258.
c For MW parallax, this term is already included with the term above.

Figure 9. Uncertainties in the determination of the Hubble constant. Uncertain-
ties are squared to show their contribution to the quadrature sum. These terms
are given in Table 5.

of the NGC 4258 Cepheid sample on the ZKH abundance scale
was 12 + log [O/H] = 8.91, nearly the same as the present mean
of 8.90. However, the mean metallicity of the Cepheid sample
in the SN hosts has risen from 8.81 to 8.85. Some of this change
can be attributed to the inclusion of Cepheids closer to the nu-
clei of the hosts and some to the inclusion of two new hosts,
NGC 5584 and NGC 4038/9, with higher-than-average metallic-
ities. The reduction in the mean abundance difference between
NGC 4258 and the SN Ia hosts from 0.077 to 0.045 dex results

in a decrease of the error propagated into H0 from 1.1% to 0.6%.
A similar reduction is seen with the use of MW Cepheids whose
mean metallicity of 8.9 is closer to the mean of the new Cepheid
sample in the SN hosts. We consider an alternative calibration
of abundances from Bresolin (2011) in Section 4.1.

3.1. Buttressing the First Rung

In our present determination of H0, the 3% uncertainty in
the distance to NGC 4258 claimed by Greenhill (2009) is now
greater than all other sources combined (in quadrature). The
next largest term, the uncertainty in mean magnitude of the
eight nearby SNe Ia, is 1.9%. To significantly improve upon our
determination of H0, we would need an independent calibration
of the first rung of the distance ladder as good as or better
than the megamaser-based measurement to NGC 4258 in terms
of precision and reliability. Independent calibration of the first
rung is also valuable as an alternative to NGC 4258, should
future analyses reveal previously unidentified systematic errors
affecting its distance measurement.

A powerful alternative has recently become available through
high signal-to-noise ratio measurements of the trigonometric
parallaxes of MW Cepheids using the fine guidance sensor
(FGS) on HST. Benedict et al. (2007) reported parallax mea-
surements for 10 Cepheids, with mean individual precision of
8% and an error in the mean of the sample of 2.5%. These
were used in R09 as a test of the distance scale provided by
NGC 4258, but the improvement in precision beyond the first
rung in the previous section suggests greater value in their use
to enhance the calibration of the first rung.

van Leeuwen et al. (2007) reanalyzed Hipparcos observa-
tions and determined independent parallax measurements for
the same 10 Cepheids (albeit with half the precision of HST/
FGS) and for three additional Cepheids (excluding Polaris
which is an overtone pulsator and whose estimated funda-
mental period is an outlier among the Cepheids pulsing in
the fundamental mode). The resulting sample can be con-
sidered an independent anchor with a mean, nominal uncer-
tainty of just 1.7%. We use the combined parallaxes tabulated
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Fig. 3. Constraints in the Ωm–H0 plane. Points show samples
from the Planck-only posterior, coloured by the corresponding
value of the spectral index ns. The contours (68% and 95%)
show the improved constraint from Planck+lensing+WP. The
degeneracy direction is significantly shortened by including WP,
but the well-constrained direction of constant Ωmh

3 (set by the
acoustic scale), is determined almost equally accurately from
Planck alone.

3.3. Matter densities

Planck can measure the matter densities in baryons and dark
matter from the relative heights of the acoustic peaks. However,
as discussed above, there is a partial degeneracy with the spec-
tral index and other parameters that limits the precision of the
determination. With Planck there are now enough well measured
peaks that the extent of the degeneracy is limited, giving Ωbh

2 to
an accuracy of 1.5% without any additional data:

Ωbh
2 = 0.02207 ± 0.00033 (68%; Planck). (17)

Adding WMAP polarization information shrinks the errors by
only 10%.

The dark matter density is slightly less accurately measured
at around 3%:

Ωch
2 = 0.1196 ± 0.0031 (68%; Planck). (18)

3.4. Optical depth

Small-scale fluctuations in the CMB are damped by Thomson
scattering from free electrons produced at reionization. This
scattering suppresses the amplitude of the acoustic peaks by e

−2τ

on scales that correspond to perturbation modes with wavelength
smaller than the Hubble radius at reionization. Planck measures
the small-scale power spectrum with high precision, and hence
accurately constrains the damped amplitude e

−2τ
As. With only

unlensed temperature power spectrum data, there is a large de-
generacy between τ and As, which is weakly broken only by the
power in large-scale modes that were still super-Hubble scale
at reionization. However, lensing depends on the actual ampli-
tude of the matter fluctuations along the line of sight. Planck

accurately measures many acoustic peaks in the lensed tempera-
ture power spectrum, where the amount of lensing smoothing de-
pends on the fluctuation amplitude. Furthermore Planck’s lens-
ing potential reconstruction provides a more direct measurement

of the amplitude, independently of the optical depth. The combi-
nation of the temperature data and Planck’s lensing reconstruc-
tion can therefore determine the optical depth τ relatively well.
The combination gives

τ = 0.089 ± 0.032 (68%; Planck+lensing). (19)

As shown in Fig. 4 this provides marginal confirmation (just un-
der 2σ) that the total optical depth is significantly higher than
would be obtained from sudden reionization at z ∼ 6, and is con-
sistent with the WMAP-9 constraint, τ = 0.089 ± 0.014, from
large-scale polarization (Bennett et al. 2012). The large-scale E-
mode polarization measurement is very challenging because it
is a small signal relative to polarized Galactic emission on large
scales, so this Planck polarization-free result is a valuable cross-
check. The posterior for the Planck temperature power spectrum
measurement alone also consistently peaks at τ ∼ 0.1, where the
constraint on the optical depth is coming from the amplitude of
the lensing smoothing effect and (to a lesser extent) the relative
power between small and large scales.

Since lensing constrains the underlying fluctuation ampli-
tude, the matter density perturbation power is also well deter-
mined:

σ8 = 0.823 ± 0.018 (68%; Planck+lensing). (20)

Much of the residual uncertainty is caused by the degeneracy
with the optical depth. Since the small-scale temperature power
spectrum more directly fixes σ8e

−τ, this combination is tightly
constrained:

σ8e
−τ = 0.753 ± 0.011 (68%; Planck+lensing). (21)

The estimate of σ8 is significantly improved to σ8 = 0.829 ±
0.012 by using the WMAP polarization data to constrain the op-
tical depth, and is not strongly degenerate with Ωm. (We shall
see in Sect. 5.5 that the Planck results are discrepant with re-
cent estimates of combinations of σ8 and Ωm from cosmic shear
measurements and counts of rich clusters of galaxies.)

3.5. Spectral index

The scalar spectral index defined in Eq. (2) is measured by
Planck data alone to 1% accuracy:

ns = 0.9616 ± 0.0094 (68%; Planck). (22)

Since the optical depth τ affects the relative power between large
scales (that are unaffected by scattering at reionization) and in-
termediate and small scales (that have their power suppressed
by e

−2τ), there is a partial degeneracy with ns. Breaking the de-
generacy between τ and ns using WMAP polarization leads to a
small improvement in the constraint:

ns = 0.9603 ± 0.0073 (68%; Planck+WP). (23)

Comparing Eqs. (22) and (23), it is evident that the Planck tem-
perature spectrum spans a wide enough range of multipoles to
give a highly significant detection of a deviation of the scalar
spectral index from exact scale invariance (at least in the base
ΛCDM cosmology) independent of WMAP polarization infor-
mation.

One might worry that the spectral index parameter is degen-
erate with foreground parameters, since these act to increase
smoothly the amplitudes of the temperature power spectra at
high multipoles. The spectral index is therefore liable to po-
tential systematic errors if the foreground model is poorly con-
strained. Figure 4 shows the marginalized constraints on the
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S. Henrot-Versillé77, C. Hernández-Monteagudo13,84, D. Herranz72, S. R. Hildebrandt11, E. Hivon66,101, M. Hobson6, W. A. Holmes74,
A. Hornstrup17, Z. Hou32, W. Hovest84, K. M. Huffenberger28, A. H. Jaffe61, T. R. Jaffe102,10, J. Jewell74, W. C. Jones30, M. Juvela29,

E. Keihänen29, R. Keskitalo23,14, T. S. Kisner83, R. Kneissl43,8, J. Knoche84, L. Knox32, M. Kunz18,65,3, H. Kurki-Suonio29,48, G. Lagache65,
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ABSTRACT

Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temper-
ature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (� >∼ 40) are extremely well described by the standard
spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology,
the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical den-
sities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147±0.00062)×10−2,Ωbh

2 = 0.02205±0.00028,
Ωch

2 = 0.1199± 0.0027, and ns = 0.9603± 0.0073, respectively (Note that in this abstract we quote 68% errors on measured parameters and 95%
upper limits on other parameters.) For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s−1 Mpc−1, and a high
value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-
redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO)
surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone.
We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of
extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional
astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter
ΛCDM cosmology. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter
content of the Universe. We find an upper limit of r0.002 < 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like
relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the
effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent
agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and
CMB data, the dark energy equation of state parameter is constrained to be w = −1.13+0.13

−0.10. We also use the Planck data to set limits on a possible
variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM
model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum
at low multipoles. The unusual shape of the spectrum in the multipole range 20 <∼ � <∼ 40 was seen previously in the WMAP data and is a real
feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in
an otherwise self-consistent analysis of the Planck temperature data.

Key words. Cosmology: observations – Cosmology: theory – cosmic microwave background – cosmological parameters 1
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H0 from CMB and Sne Ia: comparison 

H0 revisited 1149

Figure 6. The direct estimates (red) of H0 (together with 1σ error bars) for the NGC 4258 distance anchor (equation 9) and for all three distance anchors
(equation 18d). The remaining (blue) points show the constraints from P13 for the base "CDM cosmology and some extended models combining CMB
data with data from baryon acoustic oscillation surveys. The extensions are as follows: mν , the mass of a single neutrino species; mν + $k, allowing a
massive neutrino species and spatial curvature; Neff, allowing additional relativistic neutrino-like particles; Neff + msterile, adding a massive sterile neutrino and
additional relativistic particles; Neff + mν , allowing a massive neutrino and additional relativistic particles; w, dark energy with a constant equation of state
w = p/ρ; w + wa, dark energy with a time varying equation of state. I give the 1σ upper limit on mν and the 1σ range for Neff. See P13 for further details on
these extended models.

However, in addition to the methodological issues that drove the design of the SH0ES project, there are significant problems in using
the LMC and MW distance anchors. Although there are several accurate and consistent eclipsing binary distance estimates to the LMC
(Fitzpatrick et al. 2002; Ribas et al. 2002; Pietrzyński et al. 2009, 2013) H0 derived using the LMC as a distance anchor is extremely sensitive
to any metallicity dependence of the P–L relation (equation 11). I show that the R11 sample contains sub-luminous low-metallicity Cepheids,
pointing either to a stronger than expected metallicity dependence of the near-IR P–L relation (in conflict with the Freedman & Madore 2011
analysis), a possible misidentification of these objects as classical Cepheids, or to some unidentified systematic error in their magnitudes. The
presence of these sub-luminous Cepheids causes some sensitivity to the rejection criteria used to identify outliers from the mean P–L relation.
However, if a strong metallicity prior is imposed, the global fits and derived values of H0 become insensitive to the outlier rejection criteria.
(It is also worth noting that the strong metallicity prior also affects the value of H0 derived using NGC 4258 as a distance anchor: we find
H0 = 70.6 ± 3.3 km s−1 Mpc−1 compared to the value H0 = 72.0 ± 3.0 km s−1 Mpc−1 quoted by H13.) One would have greater confidence
in using the LMC anchor if there were stronger observational constraints on ZW.

The sample of MW Cepheids with parallax measurements is small and contains only one star that overlaps with the period range sampled
by Cepheids in the SNe host galaxies (cf. Figs 2 and 4). Use of the MW Cepheids as an anchor is therefore susceptible to sample biases and
small number statistics. The distance modulus to NGC 4258 derived from the MW Cepheids is lower by about 1.6σ compared to the H13
megamaser distance modulus. As a consequence, H0 derived using the MW Cepheids as a distance anchor is higher than that derived from
the megamaser distance and is discrepant by about 2.2σ with the Planck base "CDM value. This is the largest discrepancy reported in this
paper with the Planck determination of H0. Observations with the GAIA satellite will increase the number of Galactic Cepheids with accurate
parallaxes into the many thousands. It will be interesting to see whether the tensions with the megamaser distance and with the Planck base
"CDM cosmology persist.

The value of H0 derived here from the megamaser distance is within 1σ of the Planck base "CDM value of H0. Although there are
some tensions between the three distance anchors, none are sufficiently compelling to justify excluding either the MW or LMC anchors from
a joint fit. Imposing the strong metallicity prior, the combination of all three distance anchors raises H0 to 72.5 ± 2.5 km s−1 Mpc−1, which
is within 1.9σ of the Planck base "CDM value.

Fig. 6 compares these two estimates of H0 with the P13 results from the Planck+WP+highL+BAO3 likelihood for the base "CDM
cosmology and some extended "CDM models. I show the combination of CMB and BAO data since H0 is poorly constrained for some of

3 Planck temperature likelihood combined with the WMAP polarization likelihood at low multipoles combined with high-resolution CMB experiments combined
with baryon acoustic oscillation (BAO) measurements.

MNRAS 440, 1138–1152 (2014)

 at R
oyal Library/C

openhagen U
niversity Library on A

ugust 13, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

1.9σ 

2.5σ 

1.0σ 

Riess at al (2011) 

Riess at al (2011) 
+ improved maser distance 

Riess at al (2011) 
+ improved maser distance 
−  LMC+MW calibration 

Efstathiou (2014) 



Dark Cosmology Center 

Inhomogeneous universe 

126 M. I. Scrimgeour et al.

Figure 6. Same as for Fig. 5 but for the correlation dimension D2(r). The D2(r) measurements for the combined WiggleZ data in each of the four redshift
slices are shown as black error bars. A !CDM model with best-fitting bias b2 is shown in blue. A fifth-degree polynomial fit to the data is shown in red. The
red error bar and label show the homogeneity scale RH measured by the intercept of the polynomial fit with 2.97 (1 per cent away from homogeneity), with the
error given by lognormal realizations. This scale is consistent with the !CDM intercept with 2.97, labelled in blue.

Figure 7. The effect of bias on a !CDM N (<r) model (left) and D2(r) model (right) at z = 0.2. Increasing the bias increases the value of N (<r) on small
scales, and decreases the value of D2(r) on small scales, and produces a larger homogeneity scale, as seen by the intercepts of the curves with 1 per cent of
homogeneity (N = 1.01 and D2 = 2.97, red dotted lines).
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and amplitude constrained by CMB Ñuctuations ; for some scales (k-values) P(k) is e†ectively directly observed, but we allow

for the possibility of strong features on those scales not directly sampled by currently available data by imposing limits based

on the CMB dipole (the GalaxyÏs peculiar velocity with respect to the CMB rest frame). Third, we impose no constraints at all

on the input P(k) (which does not even appear explicitly in this calculation), other than that it be Gaussian and not violate the

aforesaid CMB dipole constraint.

contains general expressions for and related variables. In we compute for matter power spectra given bySection 2 d
H

° 3 d
H

three viable cosmological models which are normalized by the 4 yr COBE DMR data and satisfy constraints from large-scale

structure data. In we study the e†ects of unexpected features in P(k) which may boost by adding a d-function bump to a° 4 d
H

smooth matter power spectrum given by a viable cosmological model. In we apply Bayesian statistics to derive robust° 5

upper limits on and related variables, using the CMB dipole velocity of v \ 627 km s~1 et al. et al.d
H

(Kogut 1993 ; Fixsen

these upper limits are independent of the actual form of the matter power spectrum. contains discussions and1994) ; Section 6

a summary.
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Figure 3. The 68%, 95% and 99.7% confidence-level proba-

bilities of log-normally distributed matter fluctuations (right

vertical axis) and consequently of the local Hubble parameter

(left vertical axis), as a function of co-moving size of the mat-

ter fluctuation (top ticks) or, equivalently, redshift (bottom

ticks). As in Fig. 2 we show the 1-σ band relative to the value

H
local
0 /H

CMB
0 − 1.

which has zero mean, variance σ
2
R

and support (−1, ∞]
– in agreement with the fact that δρ/ρ > −1. More-

over, for σR → 0 it approaches the gaussian distribution

of Eq. (3). In Fig. 3 we show the 68%, 95% and 99.7%

confidence level fluctuations of the local Hubble param-

eter induced by log-normally distributed matter pertur-

bations. We show separately the case for both over- and

under-densities as they are no longer symmetric when

using a skewed distribution such as Eq. (4). Using the

log-normal distribution, we see that local voids at a low

redshift are actually more likely than they would appear

from a gaussian distribution. From here on, we will use

the superscripts +, − to refer to the distinct distributions

of positive and negative perturbations and their proper-

ties, in particular the mean systematic error σ
±
H0

. For

the symmetric gaussian distribution we of course have

σ
+
H0

= σ
−
H0

.

Discussion In order to estimate the mean system-

atic error on local determinations of the Hubble constant

we average the 68% confidence level on δH/H over the

survey range:

σ
±
H0

=
�ˆ

zmax

zmin

dz WSN(z)
�

δH
±

H

�2� 1
2

. (5)

In the equation above, the quantity WSN(z) represents

the redshift distribution of the SNe used in [2], which is

peaked at the lower redshifts. It is important to stress at

this point that we are assuming that the SNe are isotrop-

ically distributed over the sky. This implies that we are

neglecting the effect of the anisotropic distribution of the

sources, which could increase sizably the magnitude of

the cosmic variance. We list in Table I the numerical

values of Eq. (5) for combinations of cases where either

the gaussian distribution of Eq. (3) or the skewed log-

normal distribution of Eq. (4) is used.

As δH/H is naturally larger at lower redshift, the value

of σH0 depends strongly on WSN(z) and, in particular,

on zmin and zmax. If one were to extend the upper range

zmax then the cosmic variance σH0 could be reduced at

the cost that the uncertainty in the values of the cos-

mological parameters Ωm, ΩΛ, negligible in the current

analysis, would begin to play a role. Alternatively, one

could reduce the effect of the cosmic variance by increas-

ing the lower cutoff zmin. As discussed earlier, Ref. [23]

claims that the expansion rate estimated from SNe within

74h
−1

Mpc (corresponding approximately to z = 0.023)

is 6.5% ± 1.8% larger than the one measured from SNe

outside this region. Consequently, one can alleviate the

Hubble bubble effect by adopting zmin = 0.023 [2]. In

Table I, we also show the values of σH0 corresponding to

this choice. The median redshift of the SN redshift dis-

tribution is zmedian � 0.025 if zmin = 0.010 is used, and

zmedian � 0.033 if zmin = 0.023 is adopted instead. Also,

from Figures 2 and 3 one can see that this mismatch of

6.5% can be explained by a local inhomogeneity in agree-

ment with the standard model at about 2σR.

It is now natural to ask how much this additional er-

ror from the cosmic variance of our local gravitational

potential can relieve the tension of 9% between the cen-

tral values of the two observations discussed at the be-

ginning. Before proceeding, however, we should point

out that Ref. [2] besides limiting in most of the anal-

ysis the sample to zmin = 0.023, also tries to address

the cosmic variance uncertainty by correcting each SN

Ia on the Hubble diagram for the expected perturbation

of its redshift as determined from the IRAS PSCz den-

sity field [41], in particular by adopting the model B05

of Ref. [8]. The result of this velocity correction causes

the final value of H0 to decrease by 0.5% ± 0.1%. While

this approach is in our opinion the right way to proceed

so as to deal with the cosmic variance, in light of the

tension between H
CMB
0 and H

local
0 and the uncertainties

in the model of Ref. [8],
3

we think it is worth consider-

ing the case in which one does not use the results of [8]

and more conservatively estimates the variance stemming

3
The analysis of [8] depends on the estimate of the bias, assumes

a linear relation between velocities and galaxy counts, and is

affected by the selection function of the IRAS PSCz density field

which drops off at larger scales. Also, the model B05 of [8] cannot

explain the Hubble bubble detected by [23], which we mentioned

at the beginning.
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Figure 1. Histograms of redshift (zCMB) for both CfA3 and OLD SNe Ia. The
mean redshifts are, respectively, 0.027 and 0.024. There is one OLD SN above
z = 0.12 not shown.

Figure 2. Histograms of time of first observation in the rest frame, relative to
maximum light in B, as calculated by MLCS2k2. OLD has more objects with
very early measurements which are useful for constraining the rise time and
better understanding the explosion mechanism.

multiple nights to acquire calibration and host-galaxy reference
images. Nightly requests of two SNe to other observers were
typical during this period. Beginning in the fall of 2005, two
changes significantly increased both the number of SNe we
observed and the sampling per object. Instead of a single
night per month, we received roughly seven nights per month.
Additionally, several other observing programs made significant
numbers of SN observations for us in time they could not use.
The most notable group was the CfA component of the Kepler
Mission.33 We tried to observe new, high-priority SNe every
one or two nights until ∼10 days past maximum light and less
frequently thereafter. Weather and competing targets sometimes
reduced the actual cadence. Secondary standards from Landolt
(1992) and Smith et al. (2002) were observed on photometric
nights and reference images for host-galaxy subtraction were
obtained after the SN had faded sufficiently, usually a year after
maximum light. Figure 4 shows a histogram of the number of
nights observed for each SN in the CfA3 sample. The mean
number is 15 and the median is 12. The number of objects with
20-or-more nights of observation is 45 and the number with
10-or-more nights is 121.

33 http://kepler.nasa.gov/

Figure 3. Plot of MLCS2k2 ∆ vs. redshift (CMB) for the CfA3 sample. Objects
closer than z = 0.01 are not shown. The highest redshift for a given ∆ is
consistent with an approximate, effective peak limiting magnitude of 18.5 mag.
At high redshift, in H09, no objects with ∆ > 0.75 are found in the ESSENCE,
SNLS, and Higher-Z samples used.

Figure 4. Histogram of the number of nights each CfA3 SN Ia was observed in
R/r ′ band, representative of V and i′ also. B is slightly less. U is often much
less as it fades first, or nonexistent for when the filter was broken. The mean is
15 nights and the median is 12. There are 121 objects with 10 or more nights
and 45 with 20 or more.

2.3. Pipeline: Reduction Stage

In this stage, raw images are processed to the point where all
their star-like objects have had their flux measured, but not yet
calibrated. Images first undergo bias subtraction and flat fielding.
Dome-screen flats were used for BV RIr ′i ′ while twilight flats
were used for U. The 4Shooter images had their bad pixels
masked out while the Minicam and Keplercam images did not
require this. The small, but non-negligible, I-band fringes on
the 4Shooter were removed to the extent possible by subtracting
fringe frames created from several nights of I-band images.
The i ′-band fringes on the Minicam and Keplercam were much
smaller in amplitude, making fringe correction unnecessary.

The cosmic-ray removal algorithm, la_cosmic (van Dokkum
2001), in the form of the IDL code, la_cosmic.pro, by Joshua
Bloom, was then applied to the flat-fielded images to remove
most of the cosmic rays. It uses a two-dimensional Laplacian
algorithm to detect cosmic rays. Although removing the cosmic
rays did not have a significant effect on the photometry and

3
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3
The analysis of [8] depends on the estimate of the bias, assumes

a linear relation between velocities and galaxy counts, and is

affected by the selection function of the IRAS PSCz density field

which drops off at larger scales. Also, the model B05 of [8] cannot

explain the Hubble bubble detected by [23], which we mentioned

at the beginning.

4

Case Density Contrast

Distribution

zmin σ
+
H0 σ

−
H0 δH

+
0

� km/s
Mpc

�
Adding errors

linearly

Adding errors

in quadrature

I pgau of Eq. (3) 0.010 2.1% 2.1% 1.58 ∆H = 1.6σ ∆H = 2.1σ

II plogn of Eq. (4) 0.010 2.4% 1.7% 1.79 ∆H = 1.5σ ∆H = 2.1σ

III pgau of Eq. (3) 0.023 1.2% 1.2% 0.90 ∆H = 1.9σ ∆H = 2.4σ

IV plogn of Eq. (4) 0.023 1.3% 1.1% 0.97 ∆H = 1.8σ ∆H = 2.4σ

Table I. Cosmic variance σ
±
H0 of the local Hubble parameter calculated using Eq. (5). pgau and plogn denote the statistical

distribution used to describe the density contrast, δρ/ρ, gaussian (3) or lognormal (4). zmin denotes the minimum redshift of

the SNe included in the sample. The gaussian distribution has symmetric errors, σ
+
H0 = σ

−
H0 . The quantity δH

+
0 gives the

absolute error relative to σ
+
H0 for H

local
0 . Finally, ∆H ≡

��H local
0,unc − H

CMB
0

�� = 2.5σ describes how much the tension between

the CMB and local measurement of H0 is reduced when σ
+
H0 is included as a systematic error. The quantity H

local
0,unc is the

0.5%-larger uncorrected value of the local Hubble constant, see the main text for more details.

Case I Case II Case III Case IV
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Figure 4. Probability of having an inhomogeneity that in-

duces a δH/H (left vertical axis) or δH (right vertical axis)

larger than a given value for the cases listed in the legend and

in Table I. Also shown is the 1-σ band relative to the value

H
local
0,unc/H

CMB
0 − 1.

from standard inhomogeneities. We therefore compare
the global H

CMB
0 to the 0.5%-larger uncorrected value of

H
local
0,unc = 74.2±2.4 km s−1 Mpc−1. This slightly increases

the tension which is now ∆H ≡
��H local

0,unc − H
CMB
0

�� = 2.5σ.
As the error from cosmic variance is systematic in nature
it should be kept separate from the statistical one. Just
to give a rough estimate, we list in Table I how much
the tension is reduced by adding the errors linearly or in
quadrature. When using the log-normal distribution we
employ the value σ

+
H0

as H
local
0 > H

CMB
0 .

Conclusions The simple analysis of this Letter car-
ries two messages. The first is that local measurements
of the Hubble parameter are limited to the minimum sys-
tematic error δH

+
0 listed in Table I. These results qual-

itatively agree with previous estimations of the cosmic
variance of the local expansion rate (see e.g. [20, 29, 30]).

The second point is that by including the effect of a
local inhomogeneity – in particular a local underdensity
– the tension between CMB and local measurements of

the Hubble constant is alleviated, even though only par-
tially. One can quantify the remaining tension by esti-
mating the probability that inhomogeneities stemming
from a standard matter power spectrum can explain the
9% discrepancy. We show in Fig. 4 the result for the four
cases discussed in Table I: it is evident that one needs a
very rare large-scale structure to explain away the offset
in the Hubble rates. If this tension is further increased,4
a cosmology beyond the standard model may prove nec-
essary.

Of course, a more thorough analysis is needed in order
to precisely quantify the effect of the local inhomogene-
ity on measurements of the expansion rate, possibly by
introducing the effect of perturbations of the local grav-
itational potential directly in the first steps of the data
analysis, as in [2]. Nonetheless, the results of this Let-
ter provide a quick and easy way – equations (1) to (5)
– to estimate the systematic error σH0 , which can be
specialized to a given survey by using the corresponding
distribution of standard candles WSN(z).

Finally, in the present era of “precision” cosmology it
is of crucial importance to fully understand the source of
this offset in the Hubble rates, if it is a mere systematic
error or new physics. If one neglects this issue, a fit of
a cosmological experiment at large scale combined with
local measurements of the Hubble constant biases the ex-
tracted cosmological parameters e.g. the equation of state
of dark energy and the effective number of relativistic de-
grees of freedom. On the other hand, disregarding local
measurements on the basis of this disagreement might
potentially obscure a hint of cosmology beyond the stan-
dard model. This is clearly shown by the analysis of the
Planck collaboration, see e.g. Eqs (91-93) in [3].
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4 Other analyses report higher local Hubble rates, see e.g. [42].
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Turner, Cen & Ostriker (1992) CDM, ~107 particles ! 

observer SN host galaxy 
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Advantages of using cosmological simulations 

- fully nonlinear evolution 
-  velocity bias 
-  realistic positions/velocities of galaxies 
-  possibility of selecting observers and host galaxies of SNe Ia 

                  p(δH0/H0)~p(δH0/H0|observer,hosts)p(observer,hosts) 

  Options: 
  - observers in MW-like galaxies, voids etc. 
  - different environments of SN host galaxies 
  - redshift distribution of SN 
  - survey geometry: complete/incomplete sky coverage  
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Jubilee Simulation and Big MultiDark 

Jubilee 
6 Gpc/h 
60003 particles 
min resolved halo mass: 7×1010M¤ 
~Planck cosmology 

Big MultiDark 
2.5 Gpc/h 
38403 particles 
min resolved halo mass: 2×1010M¤ 
~Planck cosmology 

halo distribution 
6Gpc/h×6Gpc/h 

DM distribution 
1Gpc/h×1Gpc/h 
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Predictions for the current sample of SNe Ia 

- observers: LG-like haloes 1012M¤<M<1013M¤ 
-  convolution with the redshift distribution of SNe Ia 
-  zmin=0.023 (70 Mpc/h) and zmax=0.10 (300 Mpc/h) 
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Local Hubble flow at z<0.025 and z>0.025 

- observers: LG-like haloes 1012M¤<M<1013M¤ 
-  convolution with the redshift distribution of SNe Ia 
-  split into: 0<z<0.025 and 0.025<z<0.10 
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4:5% ! 2:1%, but it is still worthwhile to test whether the larger
SN Ia sample and updated distances presented here provide evi-
dence for or against a void.

Following Zehavi et al. (1998), it is convenient to work with
the SN distances in units of km s"1, making them independent
of the distance scale. The ambiguity in the zero point of the
Hubble diagram disappears if we use the quantityH0dSN, which
can be calculated as

H0dSN ¼ 65ð100:2 !65"25ð ÞÞ km s"1; ð10Þ

where we define !65 & !0 þ 5 log h65, tabulated in the third
column of Table 4. These can be compared to scale-independent
luminosity distances: for an object at a cosmological redshift z
in a flat universe,

H0dL(z) ¼ c 1þ zð Þ
Z z

0

!M 1þ z0ð Þ3þ !"

h i"1=2
dz0; ð11Þ

and the difference u ¼ H0dL(z)" H0dSN is the host galaxy pe-
culiar velocity. The deviation from the Hubble law is given by
"H /H ¼ u/H0dSN.

The top panel of Figure 16 shows "H /H for the 95 SNe Ia in
the full Hubble flow sample, where we have used our standard
assumptions: a peculiar velocity uncertainty of !300 km s"1,
#add ¼ 0:08 mag, and an !M ¼ 0:3, !" ¼ 0:7 cosmology. We
then partition the full sample into two parts at each value of
H0dSN (such that there are at least six objects in the smaller
subset) and calculate the best-fit Hubble constants Hinner and
Houter, as well as their corresponding uncertainties (see eqs. [2]
and [3] of Zehavi et al. 1998). We define the void amplitude,
"H & (Hinner " Houter)/Houter, and display this quantity, with its
uncertainty, as a function of the partition radius in the middle
panel of Figure 16. We normalize "H by its uncertainty in the
bottom panel to illustrate the void significance.

The full Hubble flow sample clearly shows a void signature;
the most significant void is derived when the sample is parti-
tioned at H0dSN ’ 7400 km s"1 (between SN 2000ca and SN
2000bh at H0dSN ¼ 7293 and 7494 km s"1, respectively), with
"H ¼ 6:5% ! 1:8%, similar in both location and amplitude to
the Zehavi et al. (1998) result. We have performed a number of
statistical tests to assess the significance of the result. We created
3 ; 105 Monte Carlo realizations of the data set with Hubble law
deviations drawn from a Gaussian distribution with a standard
deviation equal to the uncertainty in each data point and fitted for
the most significant void or overdensity at each partition radius.
Only 0.2% of the time was there a void as significant as the one
seen in the actual data (at any location). Because this result de-
pends on our assumed error distribution, we also created synthetic
data sets with the Hubble law deviations randomly resampled
from the deviations in the full data set (both with and without
resampling of their errors). We have also performed a full boot-
strap resampling analysis to determine the distribution of the
void amplitude and significance around their best-fit values. In
all of these tests a void with the significance as in the actual data
was seen at most 1.2% of the time, and typically much less often,
depending on the details of the synthetic sample, suggesting that
the result is valid at the 2.5Y3.5 # level of confidence.

The result also seems robust to jackknife tests; eliminating
any one, two, or even three points from the sample does not re-
sult in a very large change in the void characteristics. With the
three largest outliers removed (without justification; these objects
are not peculiar in any way), the void amplitude only decreases

to 5:2% ! 1:8%. We have also confirmed that the result persists
using the 51 SNe Ia from 1997 onward only, an independent
sample from Zehavi et al. (1998). The newer data show an even
stronger result, "H ¼ 9:1% ! 2:6% (at the same location), but
there are only a handful of recent SNe Ia more distant than
10,000 km s"1 and the most robust results come from the full
sample. Indications of this void can also be seen in other distance
estimates to SNe Ia (although with largely overlapping samples),
including the ‘‘gold’’ sample of Riess et al. (2004), which used
a slightly earlier implementation of MLCS2k2 (Jha 2002), and
#m15 distances presented by Prieto et al. (2006), suggesting that
it is not an artifact limited to our particular analysis.

The significance of the void at 7400 km s"1 is high partly be-
cause it is near the middle of the sample, such that Hinner and
Houter (and thus, their ratio) are most precisely measured. The
data suggest that a void of similar amplitude may be present
if the sample is partitioned near H0dSN ’ 4800 km s"1. In-
deed, if we attempt to fit a three-zone model, the data support a
model with "H ’ 8% closer than 4600 km s"1, and "H ’ 5%
for 4600 km s"1PH0dSNP 7400 km s"1, both relative to the
outer region beyond 7400 km s"1. However, another three-zone
scenario with nearly the same likelihood has "H ’ 5% nearer

Fig. 16.—Indications of a local void. The top panel shows the deviation from
the Hubble law for each object in the full Hubble flow sample. The radius of
each circle is inversely proportional to the uncertainty, with several representa-
tive points showing the error bars explicitly to calibrate the symbol size. The solid
line shows the best-fit Hubble constants in the two-zone model with the most
significant void; the shaded regions give the 1 # uncertainty on each of these
values. The middle panel shows the void amplitude, "H & Hinner/Houter " 1, as
a function of the radius at which the sample is partitioned, with the shaded re-
gion illustrating the 1 # uncertainty. The bottom panel shows the significance
of the void, i.e., the void amplitude divided by its uncertainty. The most sig-
nificant void occurs when the sample is partitioned at H0dSN ’ 7400 km s"1,
with "H ¼ 6:5% ! 1:8%.

MLCS2k2 DISTANCES TO SNe Ia 141No. 1, 2007

~2% with <1σ tension 

3.6σ 
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Conclusion: 1% error from cosmic variance 

cosmic variance 
currently ~1% 

Ways of improvement: 
-  redshift distribution 
-  min and max redshift 
-  (survey geometry)  

distances calibration 
currently ~3% 

Ways of improvement: 
-  more Cepheids 
-  more SNe calibrators 
-  metallicity dependence of   
P-L relation 
-  maser distance 
-  … 



Dark Cosmology Center 

Is there a tension between Planck and the local Universe ? 

cosmic variance is negligible 
in the current error budget 

~2σ tension in terms  
of the H0 determination 

not significant 

evidence for tension when 
including local constraints on the 
age of the Universe 

strong 

Figure 1: Constraints (1 and 2 σ joint) in the tU–H0 plane from local measurements (black
solid contours, the dashed contours corresponds to the single parameter, marginalized
constraint) and CMB data (blue). The transparent set of contours correspond to WMAP
and the filled contours to Planck.

to WMAP’s. This shift is well within the WMAP 1 σ confidence region, but
the reduced Planck error-bars mean that now the 1 σ confidence regions of
CMB and local measures do not overlap (only the 2 σ joint still do). This
represents the above mentioned “tension”. We will return on this in Sec. 4.1
below.

The smallness of the Planck allowed region on this plane is due to the
assumption of the ΛCDM model. In Fig. 2 we show how this changes for
simple (one or two parameters) extensions to the ΛCDM model. Among
the extensions considered, non-standard effective neutrino species and non-
standard equation of state parameter for dark energy, bring the CMB and
the local measures closer.

This is further illustrated in Fig. 3 (top panels) for the effective number
of neutrino species (Neff) extension to ΛCDM. A Neff value larger than the
standard 3.046 brings in better agreement the H0 determinations, but the
agreement worsens for tU .

Similarly the bottom left panel of Fig. 3 shows the effect for the (to-
tal) neutrino mass, Mν , extension and the bottom right panel for the non-
standard equation of state parameter, w, extension of ΛCDM. Clearly the
constraints on Mν obtained using the local H0 determination are very tight
thanks to the (local) H0 central value. Also values of w < −1 bring the two

11

Verde, Protopapas & Jimenez (2013) 

(0-2)σ       not significant 
(2-3.2)σ    substantial 
(3.2-4.5)σ strong  
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Effect of inhomogeneities in H0 determination from CMB ?  

What is the distance to the CMB?

How relativistic corrections remove the tension with local H0 measurements

Chris Clarkson1, Obinna Umeh2, Roy Maartens2,3 and Ruth Durrer4

1Astrophysics, Cosmology & Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
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The success of precision cosmology depends not only on accurate observations, but also on the the-

oretical model – which must be understood to at least the same level of precision. Subtle relativistic

effects can lead to biased measurements if they are neglected. One such effect gives a systematic

shift in the distance-redshift relation away from its background value, due to the accumulation of all

possible lensing events. We estimate the expectation value of this aggregated lensing using second-

order perturbations about a concordance background, and show that the distance to last scattering

is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-

mological parameters. We show that this removes the tension between local measurements of H0

and those measured through the CMB and favours a closed universe.

I. INTRODUCTION

Cosmology has entered a precision era. The premier
cosmological dataset is the anisotropies and polarization
of the cosmic microwave background (CMB). This is not
only due to the highly accurate data, but also because
of its simple theoretical description, which allows accu-
rate calculations. Present CMB codes like CAMB [1]
and CLASS [2] are typically 0.1% accurate and, together
with contemporary data, provide a determination of ba-
sic cosmological parameters to the percent level – and
substantially lower in the case of curvature [3]. A key
problem with the current CMB measurements is that the
Hubble parameter H0 is significantly different from that
measured locally [4–6]. Why?

Parameter estimation from the CMB is extremely sen-
sitive to dA(z∗), where z∗ � 1090 is the redshift of the
last scattering surface. More precisely it depends on the
angular size of the sound horizon, θ = r∗/dA(z∗), where
r∗ is the sound horizon at last scattering. The Planck
collaboration [3] has reported θ = (1.04131± 0.00063)×
10−2, hence it measures this scale with an accuracy of
better than 10−3. The accuracy of r∗ is slightly worse,
about 4.5 × 10−3, which is also the accuracy of dA(z∗).
These numbers indicate that a change of a few percent
in dA(z∗) is critical for parameter estimation of the CMB
at the present level of accuracy.

Most calculations of the CMB anisotropies are per-
formed within first-order perturbation theory and only
CMB lensing requires a second-order analysis. We con-
sider here the change in the angular-diameter distance
due to the presence of structures in the Universe to
second-order in perturbation theory. We show that it
is critical to include this change at the present level of
accuracy, as it induces changes to the theoretical model
much larger than the current measurements. It removes

the the tension between the CMB and local values of
H0. Furthermore, parameters such as Ωm can be many
sigma away from their naive values without this relativis-
tic second-order correction.
The observed angular-diameter distance at observed

redshift zs in direction n is

dA(zs,n) = d̄A(zs)[1 +∆(zs,n)], (1)

which has a perturbation ∆(zs,n) about the the back-
ground distance

d̄A(zs) =
1

(1 + zs)

� zs

0

dz

(1 + z)H
=

χs

(1 + zs)
. (2)

Here χs is the comoving distance (in the background ge-
ometry) to the source at redshift zs and H is the comov-
ing Hubble rate. The perturbation ∆(zs,n) comes from
the fact that the Universe is not actually homogeneous
and isotropic, but contains cosmic structures which in-
duce fluctuations in the geometry. At linear order in
perturbation theory, the lensing convergence κ = −∆
produces no change in the mean value �dA� (although it
does give a variance) [7]. At second-order, however, non-
linear effects give a relativistic correction to the distance-
redshift relation that a typical observer would expect.
This correction can be calculated from the ensemble av-
erage:

d
eff
A (zs)=�dA(zs,n)�= d̄A(zs)[1 + �∆�(zs)], (3)

where we assume statistically isotropic Gaussian initial
perturbations, so that there is no dependence on direc-
tions (all directions receive the same correction). If it is
not correctly taken into account, the shift in the ‘back-
ground’ distance-redshift relation by �∆� results in a shift
in the inferred cosmological parameters which appear in
the distance-redshift relation.

ar
X

iv
:1

40
5.

78
60

v1
  [

as
tro

-p
h.

CO
]  

30
 M

ay
 2

01
4

3

Figure 1: Fractional correction �∆�(z) to the distance [see (3)] for a fiducial model Ωm = 0.35, h = 0.65, w = −1 and ns = 1,
showing local (dotted) and total (solid) �∆� (left). The correction is negative for z <∼ 0.25 (dashed), purely from the local

contribution (dotted). At high z >∼ 10 the corrections are similar to an open ΛCDM model with Ωeff
K ≈ 0.043 (grey ‘curved’,

shown for high z). An open model with evolving dark energy is a better fit down to z ∼ 3 [orange, ‘curved+w (high)’]. For
low z an effective open model with percent level changes to the background parameters gives a good approximation to �∆�(z)
[red, ‘curved+w (low)’]. Right, we show �∆� together with two approximations discussed later in the text [see (20) and below],
illustrating the accumulation of lensing at high redshift.

is the squared amplitude of the primordial curvature per-

turbation at scale k0 = 0.05Mpc
−1

, and ns − 1 is the

spectral tilt.

For �∆loc�, all terms in (4) are proportional to

(∇�Φ0)
2
, so �∆loc� ∝ �(∇�Φ0)

2�, where

�(∇�Φ0)
2
� =

1

2
�∇⊥iΦ0∇

i
⊥Φ0� =

1

3

�
dk kP0(k)T

2
(k).(10)

This gives a small negative contribution, and is the dom-

inant contribution at low-z (z <
∼ 0.5), as shown in Fig. 1.

The expectation value of the dominant integrated con-

tributions can be reduced to a form convenient for nu-

merical integration (see the Appendix for details):

�∆int� =
π

χs

∞�

�=0

�
�(�+ 1)

2�+ 1

�2 � χs

0

dχ

χ3

�
16χ2χs ln (χs/χ)

+18χ3
− 19χ2χs + χ3

s

�
g2(χ)

�
P0T

2
����

k=(�+1/2)/χ
. (11)

For large distances we can estimate analytically the

scaling behaviour when baryons are neglected. A crude

estimate of the transfer function is (adapted from [15])

T (k = �/χ) ≈ 1/
�
1 + 0.115(�/χkeq)2

�
, where keq ≈

0.075Ωmh2
Mpc

−1
is the equality scale. The main con-

tribution to the sum in (11) is from small scales with

� > χskeq. Approximately, the � factors out of the inte-

gral and the sum from χskeq to infinity gives a factor of

∼ 1/(4keqχs), assuming g ∼ g∞. The integral becomes

∼ 6.6(keqχs)
4
, giving

�∆int� ∼ 7.5∆2
R(keqχs)

3
≈ 0.02

�
Ωmh2

0.14

�3 �
χs

10Gpc

�3

.

(12)

For a standard cosmology this implies corrections around

the percent level for 10Gpc distances, making �∆int� the

dominant part of the signal for z >
∼ 1.

The generic behaviour of �∆�(z) is shown in Fig. 1:

at low z the amplitude is small, O(10
−4

), and negative

for z <
∼ 0.2 − 0.3 depending on the model. At higher

z, the amplitude is positive, implying larger distances,

and grows roughly linearly in z according to (11) reach-

ing percent-level around z ∼ 5 − 10, thereafter grow-

ing [roughly approximated by (12)] to several percent by

z ∼ 10
3
. A higher matter density or Hubble constant in-

creases the amplitude of �∆�, while increasing the baryon

fraction or including a tilt to ns < 1 decreases it by tens

of percent.

Small-scale sensitivity

The convergence of the sum in (11) is very slow, reflect-

ing the sensitivity to the accumulation of many small-

scale lensing events. We can attempt to estimate the con-

vergence rate analytically to determine the modes that

are important. For the transfer function and approxima-

tions leading to (12), we may replace the formal sum to

infinity with a cutoff at �max = χskmax, implying that

5

Figure 2: We show the distribution of values for h and Ωm from the Planck data when using only the background angular

diameter distance (left panel, black dots) and when including the correction ∆∗ (left panel, red to blue dots). In a flat model

the resulting Hubble parameter is generally larger than local measurements. Alternatively, we consider the Riess et al. [21]

value for h and determine the curvature ΩK (right upper panel) or dark energy equation of state w (right lower panel) needed

to fit the CMB distance. At the boundary of each plot we also show the one dimensional probability distribution function of

the corresponding variable.

Hence taking this shift to the distance into account to-

gether with local observations, the CMB data actually

prefers a marginally closed model or evolving dark en-

ergy. This is in contrast to the standard calculation of

distance where it is difficult to relieve the CMB/local H0

tension [3–6].

Clearly, the analysis presented here is not definitive for

several reasons. First, as mentioned above, the Planck

measurements of cosmological parameters are not inde-

pendent and especially the Planck value of Ωmh
2
is not

independent of the distance dA. We have also assumed a

simple linear transfer function [15]. A full likelihood anal-

ysis should be performed with �∆� properly included.

Furthermore, aggregated lensing not only leads to a

average shift in the distance to the CMB but there

are other contributions to ∆ which are direction depen-

dent [13]. We expect its fluctuations to be imprinted as

additional fluctuations in the CMB. However, since the

dominant contribution comes from very small scales, we

expect these fluctuations to show up mainly at very high

� � 2000 and we believe that the effect on the mean dis-

tance discussed here is the dominant one in present CMB

experiments. To do a fully consistent analysis, which

combines second order fluctuations in the distance with

temperature perturbations, a 3rd order Boltzmann solver

would be needed. A interesting future project which is

(far!) beyond the scope of the present paper.

IV. COSMOLOGICAL PARAMETERS AT
LOWER REDSHIFT

Let us consider a specific model in detail. We fix the

baryon density at the Planck value [3], Ωbh
2
= 0.022,

and choose the matter density Ωmh
2
= 0.147, the Hub-

ble parameter H0 = 100h km s
−1

Mpc
−1

with h = 0.65,

and we fix ns = 1. We use the transfer function approx-

imated in [15]. Figure 1 shows the resulting �∆�(z). It

is tempting to recast the change to d̄A(z) as simply an

effective dark energy model – a model with weff(z), with

other model parameters as before. This gives the correct

d
eff
A (z), using the general formula for w(z) in terms of

Clarkson, Umeh, Maartens & Durrer (2014) 
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Gravitational redshift: first signal from SDSS clusters  

- SDSS 
-  ~8000 galaxy clusters 
-  ~105 redshifts 

Gravitational redshift  
corresponding to the potential well 
in galaxy clusters with masses 
~1014M¤ (≈3σ detection) 

Wojtak, Hansen & Hjorth (2011) 
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Gravitational redshift from large-scale structures 

Wiis, Davis, Wojtak (in prep) 
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How does our local neighbourhood influence our global view? 3

received. It is natural to think that both places should
be located in galaxies (observers are located in galaxies
and observe galaxies as well). In order to generate a
catalog of galaxies, we apply an HOD (Halo Occupation
Distribution) model to the catalog of dark matter haloes
found in the simulation. We use distinct haloes (haloes
which are not subhaloes of larger haloes) detected by the
Bound-Density-Maxima halo finder as the peaks in the
density field. We assume that every halo has one central
galaxy and a number of satellite galaxies. The satellite
number for a given halo mass is drawn from a Poisson
distribution whose mean is a power-law function of the
halo mass. Parameters defining the mass dependance of
the mean satellite number were taken from (Zheng et al.
2005). Every galaxy is assigned the mean gravitational
potential of all dark matter particles within the virial
sphere of its host dark matter halo.

The gravitational redshift depends on the position of ob-
server and selection of the observed galaxies. The most
general way to quantify this effect is to compute the dis-
tribution of gravitational redshifts perceived by a set of
observers observing the same set of galaxies (every ob-
server can measure the mean gravitational redshift using
the whole set of galaxies). This distribution represents
the probability of observing gravitational redshift due
to peculiar location of the observer in the cosmic web
(and subject to observational selection). We begin with
a simple and straightforward set up: observers located
in central galaxies of dark matter haloes with masses
(1− 2.5) × 1012M! and observational sample consisting
of all galaxies found in the simulation at redshift z = 0.
This set of observers represents locations of Milky-Way-
like galaxies (in terms of the halo mass of the Milky Way;
see Li & White 2008) and the observational sample cor-
responds to a complete and shallow (redshift evolution
is neglected) galaxy survey. The black line in Fig. 2
shows the distribution of the mean gravitational redshift
at the positions of observers (the same set of galaxies
observed by observers located at different positions in
the simulation box). The distribution is determined by
the positions of observers in the cosmic web. Depend-
ing on whether the observer is located in an overdense
or underdense region, the light from the observed galax-
ies becomes respectively blueshifted (negative values) or
redshifted (positive values). The highest expected value
of the gravitational redshifts is close 0 what is a con-
sequence of the fact that a randomly drawn galaxy is
more likely located in environment where the local grav-
itational potential is nearly equal to the mean potential
of all galaxies. On the other hand, 95 per cent of the al-
lowed gravitational redshifts ranges between ±4 × 10−5

(zgc = ±13 km/s).

As a consequence of a flux limit, most of the surveys tend
to target most luminous galaxies which in turn populate
overdense regions of the Universe. Similarly, supernovae
surveys tend to target dense fields on the sky in order
to maximise detection rate. Therefore, it seems to make
sense to consider selection effect which relies on prob-
ing denser parts of the Universe or selecting more lumi-
nous/massive objects. Fig. 2 shows how the gravitational
redshift changes when galaxies are selected in more mas-
sive haloes populating denser parts of the Universe. The
minimum mass of 1013M! and 1014M! corresponds to
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Figure 2. Distribution of the gravitational redshift at positions
of Milky-Way galaxies from light emitted by all galaxies (black),
galaxies in group/cluster-like haloes with Mh > 1013M! (red) and
galaxies in cluster-like haloes with Mh > 1014M! (blue). The
width of the distributions shows a typical scatter due to location
of observers in the cosmic web, whereas gradual shift of the dis-
tributions show effect of selecting galaxies in denser environments.
Positive (negative) values correspond to actual redshift (blueshift)
of the observed spectra.

selecting galaxies in groups/clusters and only clusters, re-
spectively. It is clearly visible that selecting galaxies in
denser environments increases considerably probability
of redshift against blueshift (positive value of the gravi-
tational redshift).

2.2. Time dependence of the gravitational redshift

The above calculations are based on redshift z = 0 snap-
shot, therefore they do not account for time evolution
of cosmic structures. Here we repeat our analysis us-
ing haloes found in z = 1 snapshot. This redshift is
approximately an upper limit for currently observed su-
pernovae (there are only a few at redshift z > 1). We
apply the same selection criteria as before: all galaxies,
galaxies in haloes with minimum mass of 1013h−1M!

and 1014h−1M! (all at redshift z = 1). Observers are lo-
cated in Milky-Way-like galaxies at redshift z = 0. The
dashed lines in Fig. 2 show the resulting distributions of
the gravitational redshift.

Comparing the distributions determined for all galaxies
(black lines), we notice a very slight offset between them.
This shift results from the fact that the matter density
contrast at higher redshift is on average smaller than
at redshift z = 0 and therefore the corresponding mean
potential is slightly higher than at redshift z = 0. It
is striking, however, that the widths of both distribu-
tions are virtually unchanged. This property is related
to the fact that the primary contribution to scatter in
gravitational redshift comes from large-scale structures
at scales of 100h−1Mpc. In order to show this, we con-
sider the time evolution of the source term (right-hand
side) in the cosmological Poisson equation. The evolu-
tion can be described using linear perturbation theory.
Fig. 3 shows the resulting source term in equation 2 as
a function of cosmological redshift. It is clearly readable
from the plot that the source term is a non-decreasing
function of redshift. It grows by 31% at redshift z = 2
and it remains constant at higher redshifts. Late-time
evolution of the source term is related to the fact that

Towards realistic predictions 

observers in overdense environment 
redshift 

observers in underdense environment 
blueshift 

ΔΩΛ=-0.008 ΔΩΛ=+0.008 

void with 
R~70Mpc/h 
δρ/ρ~0.4 

Wiis, Davis, Wojtak (in prep) 



Dark Cosmology Center 

Summary 

1.  H0 SNe Ia: cosmic variance of ~1%; current measurement accuracy of ~3% 

2.  H0 from CMB: 5% bias (?) 

3.  ~2σ tension between H0 from SNe Ia and CMB 

4.  Strong evidence between Planck and local Universe when taking into account 
constraints on the age of the Universe from local chronometers 

5.  Gravitational redshift from LSS: ~20 km/s 

6.  Impact of the gravitational redshift on measurement of cosmological 
parameters from SNe Ia: 

     ΔΩΛ/ΩΛ≈1% 


