

# Cosmic variance of the local Hubble flow

Radek Wojtak

NBIA-APCTP Copenhagen, 19.08.2014





- 1. Observational constraints on  $H_0$  from SNe Ia and CMB
- 2. Cosmic variance of the local Hubble flow
  - analytic approach
  - cosmological simulations
- 4. Results from large-scale simulations: Jubilee and Big MultiDark

collaborators: Alexander Knebe, David Rapetti, Steffen Hess, Stefan Gottloeber, Ilian Iliev, Gustavo Yepes

- 3. Cosmic variance and the difference between  $H_0$  from SNe Ia and CMB
- 4. Is there a tension between Planck and the local Universe ?
- 5. Gravitational redshift from large scale structures
- 6. Effect of the gravitational redshift on cosmological parameters from SNe Ia

collaborators: Jophiel Nyman Wiis, Tamara Davis



 $H_0 = 73.8 \pm 2.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 

- 140 SNe Ia at 0.023<z<0.10
- distance calibration: LMC, MW parallaxes and NGC4258 maser
- ~600 Cepheids in 8 SN Ia hosts



Riess et al (2011)

1%?



2% percent solution: CMB (Planck)



$$H_0 = (67.3 \pm 1.2) \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

(assuming the standard flat 6-parameter cosmology)



Planck Collaboration (2014)

#### H<sub>0</sub> from CMB and Sne Ia: comparison





#### Inhomogeneous universe





SDSS

#### Millennium Simulation







#### Linear calculation of $\delta H_0/H_0$





 $R [h^{-1}Mpc]$ 

Dark Cosmology Center

Wang, Spergel & Turner (1998)

### (weakly non)Linear + redshift distribution of SNe Ia (-



Dark Cosmology Centre

What about using cosmological simulations ?



Dark Cosmology Centre

#### Advantages of using cosmological simulations

- fully nonlinear evolution
- velocity bias
- realistic positions/velocities of galaxies
- possibility of selecting observers and host galaxies of SNe Ia

 $p(\delta H_0/H_0) \sim p(\delta H_0/H_0|observer,hosts)p(observer,hosts)$ 

#### Options:

- observers in MW-like galaxies, voids etc.
- different environments of SN host galaxies
- redshift distribution of SN
- survey geometry: complete/incomplete sky coverage

#### Jubilee Simulation and Big MultiDark



Jubilee 6 Gpc/h 6000<sup>3</sup> particles min resolved halo mass: 7×10<sup>10</sup>M<sub>☉</sub> ~Planck cosmology



halo distribution 6Gpc/h×6Gpc/h Big MultiDark 2.5 Gpc/h 3840<sup>3</sup> particles min resolved halo mass: 2×10<sup>10</sup>M<sub>☉</sub> ~Planck cosmology



DM distribution 1Gpc/h×1Gpc/h





Dark Cosmology Center

Wojtak et al (2014)





Observers: random DM haloes  $10^{12}M_{\odot} < M < 10^{13}M_{\odot}$ 



Dark Cosmology Centre







#### Local Hubble flow at z<0.025 and z>0.025

- observers: LG-like haloes  $10^{12}M_{\odot}$  < M <  $10^{13}M_{\odot}$
- convolution with the redshift distribution of SNe Ia
- split into: 0<z<0.025 and 0.025<z<0.10



Dark Cosmology Centre

Dark Cosmology Centre

# cosmic variance currently ~1%

Ways of improvement: - redshift distribution

- min and max redshift
- (survey geometry)

distances calibration currently ~3%

Ways of improvement:

- more Cepheids
- more SNe calibrators
- metallicity dependence of
- P-L relation
- maser distance

- ...

Is there a tension between Planck and the local Universe?

cosmic variance is negligible in the current error budget

 $\sim 2\sigma$  tension in terms of the H<sub>0</sub> determination

evidence for tension when including local constraints on the age of the Universe

not significant

strong



 $(0-2)\sigma$  not significant (2-3.2) $\sigma$  substantial (3.2-4.5) $\sigma$  strong

Effect of inhomogeneities in H<sub>0</sub> determination from CMB 2 Dark Cosmology Centre

 $d_A^{\text{eff}}(z_s) = \langle d_A(z_s, \boldsymbol{n}) \rangle = \bar{d}_A(z_s) [1 + \langle \Delta \rangle (z_s)]$ 



Dark Cosmology Center

Clarkson, Umeh, Maartens & Durrer (2014)







### Effect of gravitational redshift on cosmological inference from SNe Ia

#### Gravitational potential and mass/size scales

8 dp x M(1-m)/6  $10^{20}$  $\frac{Z=A\phi/c^2=0.1}{Z=A\phi/c^2=0.1}$ 10<sup>15</sup> M haloes St.A 10<sup>10</sup> mass scale [M<sub>o</sub>] Aple=10° km/s 10<sup>5</sup>  $10^{0}$ NS SUN WD10<sup>-5</sup> EARTH 10<sup>-10</sup> 10<sup>10</sup> 10-10  $10^{-5}$ 10<sup>5</sup>  $10^{0}$ size scale [pc]

Dark Cosmology Centre

### Gravitational redshift: first signal from SDSS clusters



Gravitational redshift from large-scale structures

Dark Cosmology Centre



#### Wiis, Davis, Wojtak (in prep)



observers in underdense environment blueshift observers in overdense environment redshift



Dark Cosmology Center

Wiis, Davis, Wojtak (in prep)



Dark Cosmology Centre

- 1.  $H_0$  SNe Ia: cosmic variance of ~1%; current measurement accuracy of ~3%
- 2.  $H_0$  from CMB: 5% bias (?)
- 3.  $\sim 2\sigma$  tension between H<sub>0</sub> from SNe Ia and CMB
- 4. Strong evidence between Planck and local Universe when taking into account constraints on the age of the Universe from local chronometers
- 5. Gravitational redshift from LSS: ~20 km/s
- 6. Impact of the gravitational redshift on measurement of cosmological parameters from SNe Ia:

 $\Delta\Omega_{\Lambda}/\Omega_{\Lambda} \approx 1\%$