How rare is the Bullet Cluster

David Kraljic, University of Oxford Copenhagen, August 2014

Bullet Cluster and why it's interesting

Review of searches in N-body simulations and their shortcomings

 Searching for Bullet-like systems in Dark Sky Simulations

The Bullet Cluster system

- Observed at z~0.3
- Separated by 0.7 Mpc
- Masses $M_1 \sim 1.5 \ 10^{15} M_{SUN}$ and $M_2 \sim 1.5 \ 10^{14} M_{SUN}$
- Collision head-on and perpendicular to the line of sight
- Shock front velocity ~ 4700 km/s but relative velocity in hydrodynamical simulations smaller
- motivation = is such a system likely/consistent in LCDM
- Estimates of probabilities ranging from 10⁻¹¹ (Lee&Komatsu 2010) to 1% (Hayashi&White 2006) !

Masses frequently combined into <M>, the arithmetic mean Velocity looked at in the comoving or real space

Masses frequently combined into <M>, the arithmetic mean Velocity looked at in the comoving or real space

Masses frequently combined into <M>, the arithmetic mean

Velocity looked at in the comoving or real space

Given certain masses, separation, angles interested in the probability that the relative velocity exceeds a certain number e.g. $P(v_{12}>3000$ km/s; <M> > $10^{14}M_{SUN}/h$; $d_{12} < 10$ Mpc/h; $cos(\theta) < -0.9$)

Masses frequently combined into <M>, the arithmetic mean

Velocity looked at in the comoving or real space

Given certain masses, separation, angles interested in the probability that the relative velocity exceeds a certain number e.g. $P(v_{12}>3000$ km/s; <M> > $10^{14}M_{SUN}/h$; $d_{12} < 10$ Mpc/h; $cos(\theta) < -0.9$)

Initial conditions to reproduce the collision

- From non-cosmological hydrodynamical simulations
 - Springel & Farrar (2007) $d_{12} \sim 3.4$ Mpc and $v_{12} \sim 2060$ km/s
 - Mastropietro & Burkert (2008) $d_{12} \sim 5$ Mpc and $v_{12} \sim 3000$ km/s at z~0.5
- Ideal for N-body simulations because the clusters are well separated (configuration space based halofinders have difficulties resolving the 'actual' collision at z=0.3)

Millenium Run: Hayashi&White (2006)

- MR: 500Mpc/h box
 - Not many extreme objects in terms of mass
- Looked for a subcluster moving away with at least 4500km/s (shock front velocity) separated by at least 0.7Mpc at z~0.3
- Had to extrapolate to get pdf-s for host halo mass > $10^{14} M_{SUN}$ / h
- Probable within LCDM (1%) but uncertain to 2 orders of magnitude dependent on the velocity cut

Lee & Komatsu (2010)

- Used MICE (3Gpc/h box with 2048³ particles)
- Reapplied FoF to clusters to find subclusters
- Probability of finding M&B(2008) initial conditions at z=0 is

~10⁻¹¹ determined by Gaussian interpolation => Improbable in LCDM

Thompson & Nagamine (2012)

- Examined the effect of the box size and resolution in N-body sims. on the pairwise velocity distribution of DM halos
- Better resolution and bigger box extend the tail of the pairwise velocity pdf

Figure 7. Cumulative v_{12} function of DM halos at z=0. This figure shows how increasing the box size increases the number of high- v_{12} pairs, extending the tail of the distribution.

Thompson & Nagamine (2012)

Figure 8. Cumulative v_{12} function of DM halos at z=0. This figure shows the resolution effect. As the resolution increases, the normalization of the distribution increases due to a larger number of lower mass halos with higher velocities.

Estimate $P(v_{12}>3000 \text{ km/s}) \sim 10^{-8}$

To find Bullet-like system need L=4.5Gpc/h with 500³ particles per (Gpc/h)³

- v1: "perhaps implying a tension with LCDM"
- v2: "we find that ... Bullet cluster exists in the far-tail in the distribution "
- Used config.
 Space
 halofinders →
 breakdown at
 short distances

- v1: "perhaps implying a tension with LCDM"
- v2: "we find that ... Bullet cluster exists in the far-tail in the distribution "
- Used config.
 Space
 halofinders →
 breakdown at
 short distances

- v1: "perhaps implying a tension with LCDM"
- v2: "we find that ... Bullet cluster exists in the far-tail in the distribution "
- Used config.
 Space
 halofinders →
 breakdown at
 short distances

- v1: "perhaps implying a tension with LCDM"
- v2: "we find that ... Bullet cluster exists in the far-tail in the distribution "
- Used config.
 Space
 halofinders →
 breakdown at
 short distances

- v1: "perhaps implying a tension with LCDM"
- v2: "we find that ... Bullet cluster exists in the far-tail in the distribution "
- Used config.
 Space
 halofinders →
 breakdown at
 short distances

• DEUS-FUR (box length 21Gpc/h but poor resolution)

• DEUS-FUR (box length 21Gpc/h but poor resolution)

Figure 4. Redshift evolution of the probability density function of the pairwise velocity for FoF(b=0.15) halo pairs from the DEUS-FUR ACDM-W7 simulation with distance separation $d_{12} < 10 \text{ h}^{-1}$ Mpc at z = 0.5 (black), z = 0.3 (grey) and z = 0 (light grey) respectively.

• DEUS-FUR (box length 21Gpc/h but poor resolution)

Figure 4. Redshift evolution of the probability density funct wise velocity for FoF(b=0.15) halo pairs from the DEUS-FU simulation with distance separation $d_{12} < 10 \text{ h}^{-1}$ Mpc at z = 0.3 (grey) and z = 0 (light grey) respectively.

Figure 2. Probability density function of the pairwise velocity from the DEUS-FUR Λ CDM-W7 simulation at z = 0 for pairs with separation $d_{12} < 15 \text{ h}^{-1}$ Mpc detected assuming linking-length values b = 0.1 (light grey), b = 0.15 (grey) and b = 0.2 (black) respectively.

• DEUS-FUR (box length 21Gpc/h but poor resolution)

Figure 4. Redshift evolution of the probability density funct wise velocity for FoF(b=0.15) halo pairs from the DEUS-FU simulation with distance separation $d_{12} < 10 \text{ h}^{-1}$ Mpc at z z = 0.3 (grey) and z = 0 (light grey) respectively.

Figure 2. Probability density function of the pairwise velocity from the DEUS-FUR ACDM-W7 simulation at z = 0 for pairs with separation $d_{12} < 15 \text{ h}^{-1}$ Mpc detected assuming linking-length values b = 0.1 (light grey), b = 0.15 (grey) and b = 0.2 (black) respectively.

Estimate $P(v_{12}>3000 \text{ km/s}) \sim 6*10^{-6} \text{ in LCDM}$ (using b=0.15)

Other approaches

• Forero-Romero et al. (2010) looking at 2D projected displacement between DM and gas in MareNostrum simulations \rightarrow find **Bullet-like** configurations in 1-2% of cases

Mass ~ 1.0 10¹⁴ h⁻¹M_{sun} z = 0.3 360.8 aas -360.6 ^{rody} ₁-4 360.4 360.2 63.0 63.2 63.4 63.6 x [h⁻¹Mpc]

- Most of the inconsistency arises from inadequate size of the N-Body simulation, so the tail of the distribution needs to be extrapolated → Bigger boxes and better resolution needed
- Lots of arbitrariness → the dependence on the cuts in the parameters must be explored in more detail

- Most of the inconsistency arises from inadequate size of the N-Body simulation, so the tail of the distribution needs to be extrapolated → Bigger boxes and better resolution needed
- Lots of arbitrariness → the dependence on the cuts in the parameters must be explored in more detail

• L=8Gpc/h with 1280³ particles per (Gpc/h)³

- Compare with Jubilee (L=6 Gpc/h with 1000³ particles per (Gpc/h)³),
 MICE (L=3 Gpc/h with 666³ particles per (Gpc/h)³),
 Thom.&Nag.(2008) (L=2 Gpc/h with 1000³ particles per (Gpc/h)³)
- Phase space based Halo-finder (ROCKSTAR)
 - Previous studies used FoF with LL b=0.2 or b=0.15
- Currently output only at z=0

• L=8Gpc/h with 1280³ particles per (Gpc/h)³

- Compare with Jubilee (L=6 Gpc/h with 1000³ particles per (Gpc/h)³),
 MICE (L=3 Gpc/h with 666³ particles per (Gpc/h)³),
 Thom.&Nag.(2008) (L=2 Gpc/h with 1000³ particles per (Gpc/h)³)
- Phase space based Halo-finder (ROCKSTAR)
 - Previous studies used FoF with LL b=0.2 or b=0.15
- Currently output only at z=0

• L=8Gpc/h with 1280³ particles per (Gpc/h)³

- Compare with Jubilee (L=6 Gpc/h with 1000³ particles per (Gpc/h)³),
 MICE (L=3 Gpc/h with 666³ particles per (Gpc/h)³),
 Thom.&Nag.(2008) (L=2 Gpc/h with 1000³ particles per (Gpc/h)³)
- Phase space based Halo-finder (ROCKSTAR)
 - Previous studies used FoF with LL b=0.2 or b=0.15
- Currently output only at z=0

For a gravitationally bound system expect the scaling to be $\,v_{12}^{}\,{\sim}\,M^{1/2}$

For a gravitationally bound system expect the scaling to be $v_{12} \sim M^{1/2}$

For a gravitationally bound system expect the scaling to be $v_{12} \sim M^{1/2}$

For a gravitationally bound system expect the scaling to be $v_{12} \sim M^{1/2}$

Prelim.

For a gravitationally bound system expect the scaling to be $v_{12} \sim M^{1/2}$

 $0 \text{ Mpc} / \text{h} < d_{12} < 8 \text{ Mpc} / \text{h}$ 3.5 3.0 Log (v12 in km/s) 2.5 0.853727 + 0.136679x2.0 1.5 13.5 14.0 14.5 15.0 Log ($M_{\rm reduced}$ in $M_{\odot}/{\rm h}$)

Collisional angle dependence on distance

For smaller distances we expect the halos to deviate from the Hubble flow (0°) and become more likely to be in a head-on collision (180°)

Collisional angle dependence on distance

For smaller distances we expect the halos to deviate from the Hubble flow (0°) and become more likely to be in a head-on collision (180°)

Collisional angle dependence on pairwise velocity

High pairwise relative velocities are not from the Hubble flow and originate from the attractive force and are expected to be more head-on

Collisional angle dependence on pairwise velocity

High pairwise relative velocities are not from the Hubble flow and originate from the attractive force and are expected to be more head-on

Collisional angle dependence on mass

For a fixed distance we expect the more massive halos to attract gravitationally more and therefore have a larger probability for a head-on collision

Collisional angle dependence on mass

For a fixed distance we expect the more massive halos to attract gravitationally more and therefore have a larger probability for a head-on collision

Pairs of halos consist of two populations with different M vs v_{12} distribution determined by the relative distance d_{12}

Pairs of halos consist of two populations with different M vs v_{12} distribution determined by the relative distance d_{12}

Prelim.

Pairs of halos consist of two populations with different M vs v_{12} distribution determined by the relative distance d_{12}

Pairs of halos consist of two populations with different M vs v_{12} distribution determined by the relative distance d_{12}

 $3.5 * 10^{13} M_{\odot} < < M >$

 $0.7 * 10^{15} M_{\odot} < < M >$

Relative velocity PDF dependence on distance cuts Prelim.

Relative velocity PDF dependence on distance cuts Prelim.

Relative velocity PDF dependence on distance cuts Prelim.

Relative velocity PDF dependence on angle cuts Prelim.

Relative velocity PDF dependence on angle cuts

Relative velocity PDF dependence on mass cuts Prelim.

Relative velocity PDF dependence on mass cuts

Relative velocity PDF dependence on mass cuts

(cuts from Thompson&Nagamine(2012) and Buillot et al. (2014) ~ M&B(2008) initial conditions)

(cuts from Thompson&Nagamine(2012) and Buillot et al. (2014) ~ M&B(2008) initial conditions)

(cuts from Thompson&Nagamine(2012) and Buillot et al. (2014) ~ M&B(2008) initial conditions)

(cuts of Watson et al.(2013))

(cuts of Watson et al.(2013))

(cuts of Watson et al.(2013))

- Bullet Cluster system offers an opportunity to check LCDM for consistency
- But only now the N-Body simulations have become big enough to start answering the question
- Probability low ~10-4 but higher than in previous similar studies
- Effect of halofinder on the high-velocity tail needs to be resolved

- Bullet Cluster system offers an opportunity to check LCDM for consistency
- But only now the N-Body simulations have become big enough to start answering the question
- Probability low ~10-4 but higher than in previous similar studies
- Effect of halofinder on the high-velocity tail needs to be resolved

- Bullet Cluster system offers an opportunity to check LCDM for consistency
- But only now the N-Body simulations have become big enough to start answering the question
- Probability low ~10-4 but higher than in previous similar studies
- Effect of halofinder on the high-velocity tail needs to be resolved

- Bullet Cluster system offers an opportunity to check LCDM for consistency
- But only now the N-Body simulations have become big enough to start answering the question
- Probability low ~10-4 but higher than in previous similar studies
- Effect of halofinder on the high-velocity tail needs to be resolved