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Introduction

I Three kinds of symmetries with different physical consequences.
I Global unbroken symmetries as isotopic spin or SU(3)V in

three-flavor QCD.
I Unique vacuum annihilated by the symmetry gener.: Qa|0〉 = 0
I Particles are classified according to multiplets of this symmetry

and all particles of a multiplet have the same mass.
I If the up and down quarks had the same mass, then the QCD

action would be invariant under an SU(2)V flavor symmetry.
I and the proton and the neutron would have the same mass.
I This is not the case because the mass matrix of the quarks breaks

explicitly SU(2) and even more SU(3) flavor symmetry.
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I Then, we have the global spontaneously broken symmetries as
SU(3)L × SU(3)R (broken to SU(3)V ) symmetry in QCD for zero
mass quarks.

I Degenerate vacua: Qa|0〉 = |0′〉.
I Not realized in the spectrum, but it implies the presence of

massless particles, called Goldstone bosons.
I They are the pions in QCD with 2 flavors.
I This is one physical consequence of the spontaneous breaking.
I Another one is the existence of low-energy theorems.
I The ππ scattering amplitude is fixed at low energy.
I One gets the two scattering lengths:

a0 =
7mπ

32πF 2
π

; a2 = − mπ

16πF 2
π

explicit breaking by a mass term.
I Scattering amplitude is zero for massless pions at low energy

because Goldstone bosons interact with derivative coupling
implying a shift symmetry.
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I Finally, we have the local gauge symmetries for massless spin 1
and spin 2 particles.

I Local gauge invariance is necessary to reconcile the theory of
relativity with quantum mechanics.

I It allows a fully relativistic description, but eliminating, at the same
time, the presence of negative norm states in the spectrum of
physical states.

I Although described by Aµ and Gµν , both photons and gravitons
have only two physical degrees of freedom in d=4,

I and respectively

d − 2 and
(d − 2)(d − 1)

2
− 1

in d space-time dimensions.
I Another consequence of gauge invariance is charge conservation

that, however, follows from the global part of the gauge group.
I Yet another physical consequence of local gauge invariance is the

existence of low-energy theorems for photons and gravitons:
[F. Low, 1958; S. Weinberg, 1964]
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I Let us consider Compton scattering on spinless particles.
I The scattering amplitude Mµν is gauge invariant:

kµ1 Mµν = kν2 Mµν = 0

I The previous conditions determine the scattering amplitude for
zero frequency photons and one gets the Thompson
cross-section:

σT =
8π
3

(
e2

mc2

)2

=
8π
3

rcl

where rcl is the classical radius of a point particle of mass m and
charge e.
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I The interest on the soft theorems was recently revived by
[Cachazo and Strominger, arXiv:1404.1491[hep-th]].

I They study the behavior of the n-graviton amplitude when the
momentum q of one graviton becomes soft (q ∼ 0).

I The leading term O(q−1) was shown to be universal by Weinberg
in the sixties.

I In a previous paper Strominger et al derived the Weinberg
universal behavior from the Ward identities of the BMS
transformations.

I They suggest a universal formula for the subleading term O(q0).
I They speculate that also the next to the leading term follows from

the BMS transformations.
I In this seminar we show that the first three leading terms of order

q−1,q0,q are a direct consequence of gauge invariance.
I This result is valid for an arbitrary space-time dimension d.
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One photon and n scalar particles

(a) (b)

I The scattering amplitude Mµ(q; k1 . . . kn), involving one photon
and n scalar particles, consists of two pieces:

Aµn(q; k1, . . . , kn) =
n∑

i=1

ei
kµi

ki · q
Tn(k1, . . . , ki + q, . . . , kn)

+ Nµ
n (q; k1, . . . , kn) .

I and must be gauge invariant for any value of q:

qµAµn =
n∑

i=1

eiTn(k1, . . . , ki + q, . . . , kn) + qµNµ
n (q; k1, . . . , kn) = 0
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I Expanding around q = 0, we have

0 =
n∑

i=1

ei

[
Tn(k1, . . . , ki , . . . , kn) + qµ

∂

∂kiµ
Tn(k1, . . . , ki , . . . , kn)

]
+ qµNµ

n (q = 0; k1, . . . , kn) +O(q2) .

I At leading order, this equation is

n∑
i=1

ei = 0 ,

which is simply a statement of charge conservation
[Weinberg, 1964]

I At the next order, we have

qµNµ
n (0; k1, . . . , kn) = −

n∑
i=1

eiqµ
∂

∂kiµ
Tn(k1, . . . , kn) .
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I This equation tells us that Nµ
n (0; k1, . . . , kn) is entirely determined

in terms of Tn up to potential pieces that are separately gauge
invariant.

I However, it is easy to see that the only expressions local in q that
vanish under the gauge-invariance condition qµEµ = 0 are of the
form,

Eµ = (B1 · q)Bµ
2 − (B2 · q)Bµ

1 ,

where Bµ
1 and Bµ

2 are arbitrary vectors (local in q) constructed with
the momenta of the scalar particles.

I The explicit factor of the soft momentum q in each term means
that they are suppressed in the soft limit and do not contribute to
Nµ

n (0; k1, . . . , kn).
I We can therefore remove the qµ leaving

Nµ
n (0; k1, . . . , kn) = −

n∑
i=1

ei
∂

∂kiµ
Tn(k1, . . . , kn) ,

thereby determining Nµ
n (0; k1, . . . , kn) as a function of the

amplitude without the photon.
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I Inserting this into the original expression yields

Aµn(q; k1, . . . , kn) =
n∑

i=1

ei

ki · q
[
kµi − iqνJµνi

]
Tn(k1, . . . , kn) +O(q) ,

where

Jµνi ≡ i
(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)
,

is the orbital angular-momentum operator and Tn(k1, . . . , kn) is the
scattering amplitude involving n scalar particles (and no photon).

I The amplitude with a soft photon with momentum q is entirely
determined in terms of the amplitude without the photon up to
O(q0).

I This goes under the name of F. Low’s low-energy theorem.
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I Low’s theorem is unchanged at loop level for the simple reason
that even at loop level, all diagrams containing a pole in the soft
momentum are of the form shown, with loops appearing only in
the blob and not correcting the external vertex.

I Can we get any further information at higher orders in the soft
expansion?

I One order further in the expansion, we find the extra condition,

1
2

n∑
i=1

eiqµqν
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) + qµqν

∂Nµ
n

∂qν
(0; k1, . . . , kn) = 0 .

I This implies

n∑
i=1

ei
∂2

∂kiµ∂kiν
Tn(k1, . . . , kn) +

[
∂Nµ

n

∂qν
+
∂Nν

n
∂qµ

]
(0; k1, . . . , kn) = 0 ,
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I Gauge invariance determines only the symmetric part of the
quantity ∂Nν

n
∂qµ

(0; k1, . . . , kn).
I The antisymmetric part is not fixed by gauge invariance.
I Indeed, this corresponds exactly to the gauge invariant terms

considered above.
I Then, up to this order, we have

Aµn(q; k1, . . . , kn)

=
n∑

i=1

ei

ki · q

[
kµi − iqνJµνi

(
1 +

1
2

qρ
∂

∂kiρ

)]
Tn(k1, . . . , kn)

+
1
2

qν

[
∂Nµ

n

∂qν
− ∂Nν

n
∂qµ

]
(0; k1, . . . , kn) + O(q2) .

I It is straightforward to see that one gets zero by saturating the
previous expression with qµ.
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I In order to write our universal expression in terms of the
amplitude, we contract Aµn(q; k1, . . . , kn) with the photon
polarization εqµ.

I Finally, we have the soft-photon limit of the single-photon, n-scalar
amplitude:

An(q; k1, . . . , kn)→
[
S(0) + S(1)

]
Tn(k1, . . . , kn) +O(q) ,

where

S(0) ≡
n∑

i=1

ei
ki · εq

ki · q
,

S(1) ≡ −i
n∑

i=1

ei
εqµqνJµνi

ki · q
,

where Jµνi is the angular momentum.
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One graviton and n scalar particles
I In the case of a graviton scattering on n scalar particles, one can

write

Mµν
n (q; k1, . . . , kn) =

n∑
i=1

kµi kνi
ki · q

Tn(k1, . . . , ki + q, . . . , kn)

+ Nµν
n (q; k1, . . . , kn) ,

I Nµν
n (q; k1, . . . , kn) is symmetric under the exchange of µ and ν.

I For simplicity, we have set the gravitational coupling constant to
unity.

I On-shell gauge invariance implies

0 = qµMµν
n (q; k1, . . . , kn)

=
n∑

i=1

kνi Tn(k1, . . . , ki + q, . . . , kn) + qµNµν
n (q; k1, . . . , kn) .
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I At leading order in q, we then have
n∑

i=1

kµi = 0 ,

I It is satisfied due to momentum conservation.
I If there had been different couplings to the different particles, it

would have prevented this from vanishing in general.
I This shows that gravitons have universal coupling

[Weinberg, 1964]).
I At first order in q, one gets

n∑
i=1

kνi
∂

∂kiµ
Tn(k1, . . . , kn) + Nµν

n (0; k1, . . . , kn) = 0 ,

I while at second order in q, it gives
n∑

i=1

kνi
∂2

∂kiµ∂kiρ
Tn(k1, . . . , kn) +

[
∂Nµν

n

∂qρ
+
∂Nρν

n

∂qµ

]
(0; k1, . . . , kn) = 0 .
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I As for the photon, this is true up to gauge-invariant contributions
to Nµν

n .
I However, the requirement of locality prevents us from writing any

expression that is local in q and not sufficiently suppressed in q.
I Using the previous equations, we write the expression for a soft

graviton as

Mµν
n (q; k1 . . . kn)

=
n∑

i=1

kνi
ki · q

[
kµi − iqρJ

µρ
i

(
1 +

1
2

qσ
∂

∂kiσ

)]
Tn(k1, . . . , kn)

+
1
2

qρ

[
∂Nµν

n

∂qρ
− ∂Nρν

n

∂qµ

]
(0; k1, . . . , kn) +O(q2) .

I This is essentially the same as for the photon except that there is
a second Lorentz index in the graviton case.

I Unlike the case of the photon, the antisymmetric quantity in the
second line of the previous equation can also be determined from
the amplitude Tn(k1, . . . , kn) without the graviton.
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I Saturating the previous expression with qµ we get of course zero.
I If we instead saturate it with qν , we get

qνMµν
n (q; k1, . . . , kn)

=
1
2

qρqσ

{ n∑
i=1

(
kµi

∂

∂kiρ
− kρi

∂

∂kiµ

)
∂

∂kiσ
Tn(k1, . . . , kn)

+

[
∂Nµσ

n

∂qρ
− ∂Nρσ

n

∂qµ

]
(0; k1, . . . , kn)

}
= 0 ,

I The vanishing follows from the equation above (implied by gauge
invariance), remembering that Nµν

n is a symmetric matrix.
I Therefore the amplitude is gauge invariant.
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I The same equation allows us to write the relation ,

−i
n∑

i=1

Jµρi
∂

∂kiν
Tn(k1, . . . , kn) =

[
∂Nρν

n

∂qµ
− ∂Nµν

n

∂qρ

]
(0; k1, . . . , kn) ,

which fixes the antisymmetric part of the derivative of Nµν
n in terms

of the amplitude Tn(k1, . . . , kn) without the graviton.
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I Using the previous equation, we can then rewrite the terms of
O(q) as follows:

Mµν
n (q; k1, . . . , kn)

∣∣
O(q)

= − i
2

n∑
i=1

qρqσ
ki · q

[
kνi Jµρi

∂

∂kiσ
− kσi Jµρi

∂

∂kiν

]
Tn(k1, . . . , kn)

= − i
2

n∑
i=1

qρqσ
ki · q

[
Jµρi kνi

∂

∂kiσ
−
(
Jµρi kiν

) ∂

∂kiσ

−Jµρi kσi
∂

∂kiν
+
(
Jµρi kσi

) ∂

∂kiν

]
Tn(k1, . . . , kn)

=
1
2

n∑
i=1

1
ki · q

[(
(ki · q)(ηµνqσ − qµηνσ)− kµi qνqσ

) ∂

∂kσi

− qρJ
µρ
i qσJνσi

]
Tn(k1, . . . , kn) .
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I Finally, we contract with the physical polarization tensor of the soft
graviton, εqµν .

I We see that the physical-state conditions

qµεµν = qνεµν = 0 ; ηµνεµν = 0

set to zero the terms that are proportional to ηµν , qµ and qν .
I We are then left with the following expression for the graviton soft

limit of a single-graviton, n-scalar amplitude:

Mn(q; k1, . . . , kn)→
[
S(0) + S(1) + S(2)

]
Tn(k1, . . . , kn) +O(q2) ,

I where

S(0) ≡
n∑

i=1

εµνkµi kνi
ki · q

,

S(1) ≡ −i
n∑

i=1

εµνkµi qρJ
νρ
i

ki · q
,

S(2) ≡ −1
2

n∑
i=1

εµνqρJ
µρ
i qσJνσi

ki · q
.
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I These soft factors follow entirely from gauge invariance.
I We have also looked at higher-order terms and found that gauge

invariance does not fully determine them in terms of derivatives
acting on Tn(k1, . . . , kn).
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Soft limit of n-gluon amplitude

n

1

(a)

n− 1

1

n

(c)

n

n− 1

(b)

I We consider a tree-level color-ordered amplitude where gluon n
becomes soft with q ≡ kn.

I Being the amplitude color-ordered, we have to consider only two
poles.
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I We get

Aµ;µ1···µn−1
n (q; k1, . . . , kn−1)

=
δµ1
ρ kµ1 + ηµµ1qρ − δµρqµ1

√
2(k1 · q)

Aρµ2···µn−1
n−1 (k1 + q, k2, . . . , kn−1)

−
δ
µn−1
ρ kµn−1 + ηµn−1µqρ − δµρqµn−1

√
2(kn−1 · q)

Aµ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+ Nµ;µ1···µn−1
n (q; k1, . . . , kn−1) .

I We have dropped terms from the three-gluon vertex that vanish
when saturated with the external-gluon polarization vectors in
addition to using the current-conservation conditions,

(k1 + q)ρ Aρµ2···µn−1
n−1 (k1 + q, k2, . . . , kn−1) = 0 ,

(kn−1 + q)ρ Aµ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q) = 0 ,

which are valid once we contract with the polarization vectors
carrying the µj indices.
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I By introducing the spin-one angular-momentum operator,

(Σµσ
i )µiρ ≡ i (ηµµiηρσ − ηµρηµiσ) ,

we can write the total amplitude as

Aµ;µ1···µn−1
n (q; k1, . . . , kn−1)

=
δµ1
ρ kµ1 − iqσ(Σµσ

1 )µ1
ρ√

2(k1 · q)
Aρµ2···µn−1

n−1 (k1 + q, k2, . . . , kn−1)

−
δ
µn−1
ρ kµn−1 − iqσ(Σµσ

n−1)
µn−1

ρ√
2(kn−1 · q)

Aµ1···µn−2ρ
n−1 (k1, . . . , kn−2, kn−1 + q)

+ Nµ;µ1···µn−1
n (q; k1, . . . , kn−1) .

I Notice that the spin-one terms independently vanish when
contracted with qµ.
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I On-shell gauge invariance requires

0 = qµAµ;µ1···µn−1
n (q; k1, . . . , kn−1)

=
1√
2

Aµ1µ2···µn−1
n−1 (k1 + q, k2, . . . , kn−1)

− 1√
2

Aµ1···µn−2µn−1
n−1 (k1, . . . , kn−2, kn−1 + q)

+ qµNµ;µ1···µn−1
n (q; k1, . . . , kn−1) .

I For q = 0, this is automatically satisfied.
I At the next order in q, we obtain

− 1√
2

[
∂

∂k1µ
− ∂

∂kn−1µ

]
Aµ1···µn−1

n−1 (k1, k2 . . . kn−1)

= Nµ;µ1···µn−1
n (0; k1, . . . , kn−1) .

I Similar to the photon case, we ignore local gauge-invariant terms
in Nµ;µ1···µn−1

n because they are necessarily of a higher order in q.
I Thus, Nµ;µ1···µn−1

n (0; k1, . . . , kn−1) is determined in terms of the
amplitude without the soft gluon.
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I With this, the total expression becomes

Aµ;µ1···µn−1
n (q; k1 . . . kn−1)

=

(
kµ1√

2(k1 · q)
−

kµn−1√
2(kn−1 · q)

)
Aµ1···µn−1

n−1 (k1, . . . , kn−1)

− i
qσ(Jµσ1 )µ1

ρ√
2(k1 · q)

Aρµ2···µn−1
n−1 (k1, . . . , kn−1)

+ i
qσ(Jµσn−1)

µn−1
ρ√

2(kn−1 · q)
Aµ1···µn−2ρ

n−1 (k1, . . . , kn−1) +O(q) ,

where

(Jµσi )µiρ ≡ Lµσi ηµiρ + (Σµσ
i )µiρ,

with

Lµσi ≡ i
(

kµi
∂

∂kiσ
− kσi

∂

∂kiµ

)
; (Σµσ

i )µiρ ≡ i (ηµµiηρσ − ηµρηµiσ)
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I In order to write the final result in terms of full amplitudes, we
contract with external polarization vectors.

I We must pass polarization vectors ε1µ1 and εn−1µn−1 through the
spin-one angular-momentum operator such that they will contract
with the ρ index of, respectively, Aρµ2···µn−1

n−1 (k1, . . . , kn−1) and
Aµ1···µn−2ρ

n−1 (k1, . . . , kn−1).
I It is convenient write the spin angular-momentum operator as

εiµi (Σµσ
i )µi

ρA
ρ = i

(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
εiρAρ .
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I We may therefore write

An(q; k1, . . . , kn−1)→
[
S(0)

n + S(1)
n

]
An−1(k1, . . . , kn−1) +O(q) ,

where

S(0)
n ≡ k1 · εn√

2 (k1 · q)
− kn−1 · εn√

2 (kn−1 · q)
,

S(1)
n ≡ −iεnµqσ

(
Jµσ1√

2 (k1 · q)
−

Jµσn−1√
2 (kn−1 · q)

)
.

I Here

Jµσi ≡ Lµσi + Σµσ
i ,

where

Lµνi ≡ i
(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)
, Σµσ

i ≡ i
(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
.
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Soft limit of n-graviton amplitude

I As before the amplitude is the sum of two pieces:

Mµν;µ1ν1···µn−1νn−1
n (q; k1, . . . , kn−1)

=
n−1∑
i=1

1
ki · q

[
kµi η

µiα − iqρ(Σµρ
i )µiα

] [
kνi η

νiβ − iqσ(Σµσ
i )νiβ

]
×Mµ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki + q, . . . , kn−1)

+ Nµν;µ1ν1···µn−1νn−1
n (q; k1, . . . , kn−1) ,

where

(Σµρ
i )µiα ≡ i (ηµµiηαρ − ηµαηµiρ) .
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I On-shell gauge invariance implies

0 = qµMµν;µ1ν1···µn−1νn−1
n (q; k1, . . . , kn−1)

=
n−1∑
i=1

[
kνi η

νiβ − iqρ(Σνρ
i )νiβ

]
Mµ1ν1···µi ···µn−1νn−1

n−1 β (k1, . . . , ki + q, . . . , kn−1)

+ qµNµν;µ1ν1···µn−1νn−1
n (q; k1, . . . , kn−1) .

I Proceeding as before we end up getting

Mµν;µ1ν1···µn−1νn−1
n (q; k1, . . . , kn−1)

=
n−1∑
i=1

1
ki · q

{
kµi kνi η

µiαηνiβ

− i
2

qρ
[
kµi η

µiα
[
Lνρi ηνiβ + 2(Σνρ

i )νiβ
]

+ kνi η
νiβ
[
Lµρi ηµiα + 2(Σµρ

i )µiα
]]

− 1
2

qρqσ
[[

Lµρi ηµiα + 2(Σµρ
i )µiα

] [
Lνσi ηνiβ + 2(Σνσ

i )νiβ
]
− 2(Σµρ

i )µiα(Σνσ
i )νiβ

]}
×Mµ1ν1··· ···µn−1νn−1

n−1 αβ (k1, . . . , ki , . . . , kn−1) +O(q2) .
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I In order to write our expression in terms of amplitudes, we
saturate with graviton polarization tensors using εµν → εµεν where
εµ are spin-one polarization vectors.

I As we did for the case with gluons, we must pass the polarization
vectors through the spin-one operators.

I We get

Mn(q; k1, . . . , kn−1) =
[
S(0)

n + S(1)
n + S(2)

n

]
Mn−1(k1, . . . , kn−1) +O(q2) ,

where

S(0)
n ≡

n−1∑
i=1

εµνkµi kνi
ki · q

,

S(1)
n ≡ −i

n−1∑
i=1

εµνkµi qρJ
νρ
i

ki · q
,

S(2)
n ≡ −1

2

n−1∑
i=1

εµνqρJ
µρ
i qσJνσi

ki · q
.

Paolo Di Vecchia (NBI+NO) Soft behaviour Copenhagen, 25.08.2014 33 / 49



I These soft factors follow from gauge invariance and agree with
those computed by Cachazo and Strominger.

I Remember that

Jµσi ≡ Lµσi + Σµσ
i ,

with

Lµσi ≡ i
(

kµi
∂

∂kiσ
− kσi

∂

∂kiµ

)
, Σµσ

i ≡ i
(
εµi

∂

∂εiσ
− εσi

∂

∂εiµ

)
.
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Comments on loop corrections: gauge theory
I At one-loop the amplitude will have in general IR and UV

divergences.
I We are not giving here a complete study of them.
I The one-loop contributions have been classified into the

factorizing ones and the non-factorizing ones.
I We will concentrate here to the factorizing ones.
I They modify the vertex present in the pole term.
I For the gauge theory they are of the type shown in the figure.

a

n

µ
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=

n

a

µ +

n

a

µ +

n

a

µ

a

n

µ

I They have been computed in QCD and are given by:

Dµ,fact =
i√
2

1
3

1
(4π)2

(
1− nf

Nc
+

ns

Nc

)
(q−ka)µ

[
(εn·εa)−(q · εa)(ka · εn)

(ka · q)

]
[Z. Bern, V. Del Duca, C.R. Schmidt, 1998]
[Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, 1999]

I It is both IR and UV finite and the limit ε→ 0 has been taken.
I It is non-local because of the pole in (qka).
I It is gauge invariant under the substitution εq → q.
I It does not contribute to the leading soft behavior.
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I Attaching to it the rest of the amplitude

Dfact
µ

−i
2q · ka

J µ ,

I J µ is a conserved current:

(q + ka)µJ µ = 0 ,

assuming that all the remaining legs are contracted with on-shell
polarizations.

I We can trade ka with q and we get immediately:

Dfact
µ

−i
2q · ka

J µ = O(q0) ,

I No leading O( 1
q ) correction from the factorizing contribution to the

one-loop soft functions.
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Comments on loop corrections: gravity

n

a

µ
ν =

n

a

µ
ν +

n

a

µ
ν +

n

a

µ
ν

I A similar calculation can be done for the gravity case.
I We consider only the case in which scalar fields circulate in the

loop.
I The result of this calculation is:

Dµν,fact,s =
i

(4π)2

(κ
2

)3 1
30

[
(εn · εa)− (q · εa)(ka · εn)

(q · ka)

]
×
(

(q · εa)(ka · εn)− (εn · εa)(q · ka)
)

kµa kνa +O(q2) ,
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I As in the gauge-theory case, the diagrams Dµν,fact,s contract into a
conserved current:

(ka + q)µJµν = f (ki , εi)(ka + q)ν , (ka + q)νJµν = f (ki , εi)(ka + q)µ .

I This means

kµa kνaJµν = (ka + q)µ(ka + q)νJµν +O(q)

= f (ki , εi)(ka + q)2 +O(q) = 2f (ki , εi)q · ka +O(q) = O(q)

I We therefore have

Dµν,fact,s i
2q · ka

Jµν = O(q) .

I No modification of the two first leading terms.
I As in QCD, we expect that the contribution of other particles

circulating in the loop will not modify this result.
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What about soft theorems in string theory?
I In superstring the soft theorems have been investigated by

B.U.W. Schwab, arXiv:1406.4172 and M. Bianchi, Song He, Yu-tin
Huang and Congkao Wen, arXiv:1406.5155.

I Here we give just few examples in the bosonic string.
I One gluon and three tachyons:

Aµ(p1,p2,q,p3) ∼
√

2α′
Γ(1 + 2α′p3q)Γ(1 + 2α′p2q)

Γ(1 + 2α′(p2 + p3)q)

×
(

p2µ

2α′p3q
− p3µ

2α′p3q

)
I One graviton(dilaton) and three tachyons (p1 + p2 + p3 = −q):

Aµν(p1,p2,p3,q) ∼
(

p1µp1ν

p1q
+

p2µp2ν

p2q
+

p3µp3ν

p3q

)
× Γ(1 + α′

2 p1q)Γ(1 + α′

2 p2q)Γ(1 + α′

2 p3q)

Γ(1− α′

2 p1q)Γ(1− α′

2 p2q)Γ(1− α′

2 p3q)

No coupling with Bµν that is antisymmetric in µ, ν.
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I One gluon and 4 tachyons
With [R. Marotta]

Aµ(p1,p2,p3,q,p4) ∼
∫ 1

0
dz3(1− z3)2α′p2p3z2α′p3p4

3

×
∫ z3

0
dz4(1− z4)2α′p2q(z3 − z4)2α′p3qz2α′p4q

4

×
[

p2µ

1− z4
+

p3µ

z3 − z4
− p4µ

z4

]
I It is gauge invariant: qµAµ = 0.
I The last two lines are equal to (z4 = z3t)

z2α′(p3+p4)q
3

∫ 1

0
dt(1− t)2α′p3qt2α′p4q(1− z3t)2α′p2q

×
[

z3p2µ

1− z3t
+

p3µ

1− t
− p4µ

t

]
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I They are equal to

z2α′(p3+p4)q
3

[
Γ(1 + 2α′p4q)Γ(2α′p3q)

Γ(2 + 2α′(p3 + p4)q)
z3

×2F1(1− 2α′p2q,1 + 2α′p4q; 2 + 2α′(p3 + p4)q; z3)

+
Γ(2α′p4q + 1)Γ(1 + 2α′p3q)

Γ(1 + 2α′(p3 + p4)q)

(
− p4µ

2α′p4q
×2F1(−2α′p2q,2α′p4q; 1 + 2α′(p3 + p4)q; z3)

+
p3µ

2α′p3q
(1− z3)2α′p2q

×2F1(−2α′p2q,2α′p3q; 2α′(p3 + p4)q + 1;− z3

1− z3
)

)

I In the soft limit up to the order q0 we can forget the ratio of
Γ-functions, we can approximate the last two 2F1 with 1 and the
first one with: 2F1(1,1; 2; z3)z3 = − log(1− z3).
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I In this way we get:∫ 1

0
dz3(1− z3)2α′p2p3z2α′p3p4

3

[
− log(1− z3)p2µ

+z2α′(p3+p4)q
3

(
p3µ

2α′p3q
(1− z3)2α′p2q − p4µ

2α′p4q

)]
I It can be written as follows:

1
2α′

[
p3µ

p3q
− p4µ

p4q
+

qρJ(3)
µρ

p3q
− qρJ(4)

µρ

p4q

]

×
∫ 1

0
dz3(1− z3)α

′(p2+p3)
2−2zα

′(p3+p4)
2−2

3

I The last integral is the amplitude for four tachyons and

J(3,4)
µρ = p(3,4)µ

∂

∂p(3,4)ρ
− p(3,4)ρ

∂

∂p(3,4)µ
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Soft theorem for dilaton

I The soft dilaton behavior in string theory goes back to the 70s
[Ademollo et al , 1975] and [Shapiro, 1975].

I The loop amplitudes in the bosonic string are divergent because
of the dilaton tadpole, corresponding to a zero momentum dilaton
disappearing in the vacuum.

I In the previous papers it was proposed how to get rid of these
divergence renormalizing the slope of the Regge trajectory and
the string coupling constant.

I The soft theorem for a dilaton can, in principle, be computed
starting from the expression that we obtained for the graviton
except that now we cannot neglect terms proportional to ηµν as
we did in the case of a graviton.
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I For the graviton we got:

Mµν
n (q; k1 . . . kn)

=
n∑

i=1

kνi
ki · q

[
kµi − iqρJ

µρ
i

]
Tn(k1, . . . , kn)

+
1
2

n∑
i=1

1
ki · q

[(
(ki · q)(ηµνqσ − qµηνσ)− kµi qνqσ

) ∂

∂kσi

− qρJ
µρ
i qσJνσi

]
Tn(k1, . . . , kn) .

and we have neglected the terms in the third line because the
graviton polarization satisfies the identities:

qµεµν = qνεµν = ηµνεµν = 0

I In other words, gauge invariance imposes:

qµMµν
n = f (ki)qν =⇒ qµ (Mµν

n − f (ki)η
µν) = 0

I The extra term with ηµν is irrelevant for the graviton, but not for the
dilaton.

Paolo Di Vecchia (NBI+NO) Soft behaviour Copenhagen, 25.08.2014 45 / 49



I Let us forget for a moment this problem and, in the case of the
dilaton, let us saturate Mµν

n with the dilaton projector:

(ηµν − qµq̄ν − qν q̄µ) Mµν
n ; q2 = q̄2 = 0 ; qq̄ = 1

I We get

S(0) + S(1) + S(2) = −
n∑

i=1

m2
i

(
1 + qρ ∂

∂kiρ
+ 1

2qρqσ ∂2

∂kiρ∂kiσ

)
kiq

−
n∑

i=1

kiµ
d

dkiµ
+ 2

+
n∑

i=1

(
−kiµqσ

∂2

∂kiµ∂kiσ
+

1
2

(kiq)
∂2

∂kiµ∂kiµ

)
I We have checked the previous expression up to order q0

computing the amplitude involving a dilaton and n closed
tachyons.
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I It is given by

Mµν
n ∼

∫ ∏n
i=1 d2zi

dVabc

∏
i<j

|zi − zj |α
′ki kj

∫
d2z

n∏
i=1

|z − zi |α
′ki q

×α′
n∑

i=1

kµi
z − zi

n∑
i=1

kνi
z̄ − z̄i

I In the soft limit (q → 0) we can put directly q = 0 in the
non-diagonal terms, while we have to be more careful with the
diagonal terms that provide the terms of order q−1.

I We have checked that the amplitude for both the graviton and the
dilaton satisfies the general low energy theorems derived above
up to the order q0.

I No extra term proportional to ηµν is needed to reproduce the
previous amplitude and also the amplitude involving massless
closed string states.

I For amplitudes involving N massless open strings, one needs to
add a term ηµν N−2

4 .
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Conclusions
I We have extended Low’s proof of the universality of sub-leading

behavior of photons to non-abelian gauge theory and to gravity.
I On-shell gauge invariance can be used to fully determine the first

sub-leading soft-gluon behavior at tree level.
I In gravity the first two subleading terms in the soft expansion can

also be fully determined from on-shell gauge invariance.
I We have considered the factorizing contribution to both gauge

theories and gravity.
I In non-abelian gauge theories the leading term is not affected by

it, but the next to the leading is affected.
I Similarly in gravity the first two leading terms are not affected by

the factorizing contribution, but the next term is affected.
I For the dilaton gauge invariant terms may appear at the order q0

and therefore they cannot be obtained using gauge invariance as
for the graviton.
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Outlook

I It would be nice to have under control, together with the factorizing
contribution, also the ones involving both the IR and the UV
divergences at one loop.

I In gauge theory they are well established, but in gravity some
more work has to be done.

I It would be very nice to extract everything from string theory in the
limit of α′ → 0.
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