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CONSTRAINTS ON CLOSED STRING EFFECTIVE	


ACTION FROM AMPLITUDE CALCULATIONS	



Comments on relation to supergravity field theory amplitudes.	



•  FEATURES OF CLOSED STRING PERTURBATION THEORY:	



•  NON-PERTURBATIVE FEATURES - DUALITY: 	


Connects perturbative with non-perturbative effects.	



Powerful constraints imposed by SUSY, Duality, Unitarity	



Connections with quantum eleven-dimensional supergravity.	



I will consider narrowly-focused aspects of the low energy effective 	


string action obtained from closed string scattering amplitudes.	



•  CONNECTIONS WITH BEAUTIFUL MATHEMATICS: 	


        Modular Forms;  Automorphic forms for higher-rank groups;  Multi-Zeta Values; …….	



MBG, Stephen Miller, Pierre Vanhove            arXiv:1404.2192	


MBG,  Eric D’Hoker,                                              arXiv:1308.4597	


MBG,  Eric D’Hoker, Boris Pioline, Rudolfo Russo;    arXiv:1405.6226	



See Talk by Basu for detailed references.	





THE LOW ENERGY EXPANSION OF STRING THEORY	



Expanding the curvature in small fluctuations of the metric around D=10 Minkowski	


space gives contributions to “classical” MULTI-GRAVITON scattering amplitudes. 	



EINSTEIN-HILBERT 	



1
α′4

∫
d10x

√
− det G e−2φ R + . . . several other supergravity fields	



•  LOWEST ORDER TERM reproduces the results of classical supergravity 	



•  Expansion in powers of  	

 α′R , α′D2 , . . .

α′ = ℓ2s
ℓs      is STRING 	


LENGTH SCALE	

 e−φ =

1
gs

STRING COUPLING 	


      CONSTANT	

SCALAR FIELD	



  - DILATON	


METRIC  – 	

Gµν

•  HIGHER ORDER TERMS:   	



 Moduli-dependent coefficient	



1
α′

∫
d10x

√
− det G F(φ, . . . ) R4 + . . .



d8R4
�

Mass dimension	



11 dimensions	


   M-theory	



  N-graviton scattering	



6	



7	



DISCRETE DUALITY GROUPS	



D space-time	


dimensions	



9	



8 	



5	



4	



.	



.	
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3	



SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 	



E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

N=8 supergravity	



THE LOW ENERGY EXPANSION OF (TYPE IIB) STRING THEORY	


HIGHER DERIVATIVE CORRECTIONS to Einstein theory	



d6 R5

d4 R6

R5 d2 R5

R6

d4 R5

d2 R6

R4 d2R4 d4R4 d6R4

BPS interactions	



          -violating	


(Not present in SUGRA)	



�16

G8

U(1)
Type IIB	





G(R)/K(R)

SCALAR FIELDS (MODULI) AND DUALITY	



Scalar fields parameterize a symmetric space 	



SUPERGRAVITY (low energy limit of string theory): 	



G(Z)\G(R)/K(R)
STRING THEORY:	



Discrete identifications of scalar fields	



groups in     series 	


 (real split forms) 	



En
(Cremmer, Julia)	



+

 +

 +  ….

g�2
s g0

s g2
s

Sum of functional integrals over Riemann surfaces	



g2h�2
s � (genus-h Riemann surface)	



Only a discrete arithmetic subgroup 	


of          is symmetry of string theory 	


           – even at tree level.  	



G(Z)DUALITY GROUP	


G(R)

STRING PERTURBATION THEORY:  Expansion around boundary of moduli space.	


e.g. in powers of                      (c.f. FEYNMAN DIAGRAMS of quantum field theory) :	

gs = eφ ≪ 1



HOW POWERFUL ARE THE CONSTRAINTS IMPOSED BY	


SUSY,  DUALITY AND UNITARITY ??	



The aim is to investigate the exact moduli dependence of low lying terms in the 	


low energy expansion.	



Duality relates different regions of moduli space –	


connects perturbative and non-perturbative features in a highly nontrivial manner.	





FOUR-GRAVITON SCATTERING IN TYPE II STRING THEORY	

e.g.	



(non-analytic pieces are essential, but will be ignored here)	



TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?	



BOUNDARY DATA:  STRING PERTURBATION THEORY	



inverse string coupling constant	



Ω = Ω1 + iΩ2Type IIA:	

 Ω = g−1
A = e−φA Type IIB:	



For now focus on the ten-dimensional cases with one modulus: 	



SL(2, Z) duality	



Ω2 = g−1
B = e−φB

moduli	



Linearized curvature 	

 ⇠ kµk⌫⇣⇢�R

AD(s, t, u;µD) = R4 TD(s, t, u; µD)

Symmetric function of Mandelstam invariants          (with                     ).	

s, t, u s + t + u = 0
Has an expansion in power series of                             and                             .	

�2 = s2 + t2 + u2 �3 = s3 + t3 + u3

⇠ s2p+3q + . . .

Coefficients are duality invariant functions of 	


scalar fields (moduli, or coupling constants).	



TD(s, t, u; µD) =
∑

p,q

E(D)
(p,q)(µD)σp

2σq
3



g = e�coupling	



TREE-LEVEL: (VIRASORO AMPLITUDE)	



dilaton	


Polarisation	


    tensor	



=
3
�3

+ 2�(3)��3 + �(5)��5 �2 +
2�(3)2

3
��6 �3 +

�(7)
2

��7 �2
2

+
2�(3)�(5)

3
��8 �2�3 +

�(9)
4

��8 �3
2 +

2
27

(2�(3)3 + �(9))��9 �2
3 + . . .

Tree-level SUPERGRAVITY	



�2 = s2 + t2 + u2

�3 = s3 + t3 + u3 = 3stu

R4 d4R4 d6R4

d10R4

d12R4

d8R4

skR4 � d2kR4

INFINITE SERIES of             terms.  Coefficients are powers of    values 	


with rational coefficients – as in loop amplitudes in quantum field theory	



d2kR4 ⇣

A(4)
0 (�r, kr;�) = e�2� R4 T (4)

0 (s, t, u)

T (4)
0 =

4
stu

�(1� ��s)�(1� ��t)�(1� ��u)
�(1 + ��s)�(1 + ��t)�(1 + ��u)



Integral over complex structure	



GENUS ONE	



These coefficients look analogous to the tree-level coefficients:	



 WHAT IS THE CONNECTION BETWEEN THEM??	



Low energy expansion - integrate powers of the genus-one Green function over the torus 	


and over the modulus of the torus – difficult! 	



Genus-one	


lattice factor 	


for d-torus;	


moduli	

 ρd

A(4)
1 (ϵr, kr;φ, ρd) =

π

16
R4

∫

M1

|dτ |2

(Im τ)2
B1(s, t, u; τ)Γd,d,1(ρd; τ)

(MBG,  Russo,  Vanhove)	

A(4)
1 an =

(
π

3
+ 0 σ2 +

πζ(3)
9

σ3 + . . .

)
R4e.g	

 d = 0 , D = 10

moduli	

 ∈ SO(d, d)/(SO(d) × SO(d))

B1(s, t, u; τ) =
∫

Σ4

∏i=4
i=1 d2z

(Im τ)4
exp

⎛

⎝−α′

2

∑

i<j

ki · kj G(zi, zj)

⎞

⎠



α′Expand in powers of      :	



GENUS TWO :	



B2(s, t, u;Ω) =
∫

Σ4

|YS |2

(detY )2
exp

⎧
⎨

⎩−α′

2

∑

i<j

ki · kj G(zi, zj)

⎫
⎬

⎭

An invariant of genus-h	


 Riemann surface defined 	


by Zhang and Kawazumi.	



D’Hoker, MBG	

Bi-form (projection operator)	


contains	

 |ω(x)ω(y) |2

ϕ(Σ) = −1
8

∫

Σ2
P (x, y)G(x, y)

d6 R4
d4 R4

A(4)
2 (ϵr, kr;φ, ρd) =

π

64
e2φ R4

∫

M2

dµ2 B2(s, t, u; Ω)Γd,d,2(ρd;Ω)

Genus-two Green function	



| �(z1) �(z2) �(z3) �(z4) |2Sp(4, Z)-invariant measure proportional to                                           and 	

O(s2)
ω(z)where         is holomorphic abelian differential	



D’Hoker, Gutperle, Phong	



 Lowest-order term 	

O(s2)

A(4)
2 = g2

s
4
3
ζ(4) σ2R

4

Proportional to volume of 	


genus-two moduli space	



(
O(s3) Next term 	



+ 64
∫

M2

dµ2 ϕ σ3 R4 + . . .
)



 Recently evaluated.     	

 D’Hoker, MBG, Pioline, R.Russo 

(
A(4)

2 = g2
s

4
3
ζ(4) σ2R

4 +4ζ(4)σ3R
4 + . . .

)

d6 R4d4 R4

Result:	



 Strikingly, it turns out that :	

 (∆
Sp(4) − 5) ϕ = 0

So integrate by parts: 	


∫

M2

dµ2 ϕ =
1
5

∫

M2

dµ2 ∆
Sp(4) ϕ

Integral picks up non-zero boundary contribution from the limit in which the 	


genus-two surface degenerates into the union of two genus one surfaces 	



Using expression for 	

ϕ ϕ



GENUS THREE AND HIGHER	



•  Problems with singularities in the pure spinor formalism at genus > 4 	


    (for four-graviton amplitude) remain to be resolved.	



•  New issues for genus > 4 (for four-graviton amplitude) in Ramond-Neveu-
Schwarz formalism (integration over super-Riemann surfaces).  Superspace is 
non-projected so cannot express the amplitude as an integral over bosonic 
moduli.  (Donagi, Witten)	



BUT!  There may be a spurious factor of 3	



Alternative to supermoduli 	


space of RNS formalism  	



Technical difficulties analysing 3-loops.   Recently, Gomez and Mafra constructed the 
genus-three amplitude using Berkovits’ PURE SPINOR FORMALISM.  They evaluated the 
leading low energy behaviour,  giving,	



A3−loop
10 = g4

(
4
27

ζ(6) σ3 + . . .

)
R4

d6 R4



EXTENSIONS TO N-PARTICLE AMPLITUDES	



    Non-trivial MZV’s with odd weights arise, starting at weight 	


w = 11 ⇣(5, 3, 3) + . . .

w = 8⇣(5, 3) + . . . weight	

First case is	



•  OPEN-STRING TREES:  For            coefficients of higher derivative interactions involve 	


          (Yang-Mills)                non-trivial multi-zeta values (MZV’s)	

 (Mafra, Schlotterer, Stieberger)	



N > 4

weight, w =
�

i ni; depth = r

ζ(n1 . . . , nr) =
∑

0<k1<...<kr

r∏

l=1

k−nl
l

             component basis vector of 	


colour-ordered Yang-Mills tree amplitudes.	


(N-3)! -•  CLOSED-STRING TREE amplitudes	



           (gravity) 	



(N � 3)!⇥ (N � 3)!

Atree
N = A�

Y M Stree
�� ({sij)}) Ã�

Y M

matrix	



Very brief summary	



……………AND MUCH MORE	



(MBG, Mafra, Schlotterer)	

•  CLOSED-STRING 1-LOOP 5-POINT AMPLITUDE 	



“DOUBLING” OF YANG-MILLS THEORY TREE AMPLITUDES  	



A1�loop
5 = A�

Y M S1�loop
�� ({sij)}) Ã�

Y M

2 × 2 matrix	



Pure spinor formalism	





NON-PERTURBATIVE EXTENSION	



Duality, supersymmetry and unitarity constraints	



Focus here on the simplest nontrivial duality group	

SL(2, Z)
Type IIB in D=10 dimensions	





TYPE IIB SUPERGRAVITY	



u� : −2 , −3/2 , −1 , −1/2 , 0 , 0

Ten-dimensional supersymmetric extension of Einstein theory. 	



U(1)

Pµ , λ , Gµνρ , ψµ, gµν , F5

@µ⌦/⌦2 ⌦�
1
2

2 (Fµ⌫⇢ + i⌦2Hµ⌫⇢)

dilaton          dilatino           3-form              gravitino           metric            5-form       	



•  Fields carry          charges	

 u� :

•  Pattern of      non-conserving higher-order interactions.	

u�

•  Scalars	

 Ω = Ω1 + iΩ2 , Ω2 = e−φ = g−1
B

SL(2, Z)\SL(2, R)/U(1)span coset space                                        	



( )−1
string coupling	



•                duality symmetry     	

SL(2, Z)

Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

a, b, c, d ∈ Z ad − bc = 1



 HIGHER-DERIVATIVE INTERACTIONS 	


Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

Higher-derivative terms in IIB:

Ω→ aΩ+b
cΩ+d

How is            constrained by supersymmetry??

SL(2,Z) - invariant action:

Consider composite operator            :  U(1) charge u, 
dimension ∆ = 2n+ 2

∓u/2

F (u) in (Ω, Ω̄)→

cΩ̄+d
cΩ+d

u/2
F (u) in (Ω, Ω̄)

F (u) in

e.g.

P(u)2n+2

Index i labels degenerate terms

has holomorphic and antiholomorphic weights          .

S(n) = α′
n−4 

u i


d10xF (u) in (Ω, Ω̄)P(−u) i2n+2

F (u) in

R4 u = 0 , ∆ = 8;

λ16 u = −24 , ∆ = 8;

(GḠ)pR4 u = 0 , ∆ = 2p+ 8;

P(u)
2n+2 U(1) u ∆ = 2n + 2Consider a composite operator             of           charge    , dimension                    . 	



SL(2, Z)-invariant action (Einstein frame)	



S(n) = ℓ2n−8
s

∑

u,i

∫
d10x eF (u) i

n (Ω)P(−u) i
2n+2

F (u) i
n ±u/2has holomorphic and anti-holomorphic weights	



iIndex   labels degeneracy of the term.	



HOW IS          CONSTRAINED BY SUPERSYMMETRY?	

F (u) i
n

e.g.	

 R4 : u = 0 , ∆ = 8 ; λ16 : u = −24 , ∆ = 8 ;

(GḠ)p R4 : u = 0 , ∆ = 2p + 8



CONSEQUENCES OF SUPERSYMMETRY	



Invariance 	


of action	



Difficult to implement in detail in absence of off-shell superspace formalism.	



i.e,	



Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

Strongly constrains the form of	

 S(n) δ(n)

Leads to expression of general form  :    (suppressing superscripts and  coefficients)	



	



Classical supersymmetry :

Classical IIB supersymmetry transformations

Compensating U(1) transform. 
δ(0)Ω = 2λǫΩ2

where         is any field with U(1) charge u and Φ(u)
δ(0)Φ(u) = δ̂(0)Φ(u) + δ̃

(0)
u Φ(u)

δ̃
(0)
u Φ(u) = u (λǫ− λ∗ǫ∗)Φ(u)

δ(0)S(n) = α′
n−4


d10x



u


F (u) in δ̂(0)


P(−u) i2n+2



−2iDF (u) in λǫP(−u) i2n+2 + 2iD̄ F
(u) i
n λ∗ǫ∗ P(−u) i2n+2



where is modular covariant derivative on charge u.D = iΩ2 ∂
∂Ω −

u
4

Df (u) = f (u+1)
Modular covariant derivative	



D Fn = Fn + Fm1 Fn�m1 + Fm1 Fm2 Fn�m2�m1

+ · · · + Fm1 Fm2 . . . Fn�m1�···�mn�1 + . . .

Consequences of supersymmetry

[δ , δ]Φ = [δ(0) + α′
3
δ(3) + . . . , δ(0) + α′

3
δ(3) + . . . ]Φ

Invariance 
of action

On-shell
algebra

= a · P Φ + Φ eqn. of motion + δgaugeΦ

Difficult to implement in detail in absence of off-shell 
superspace formalism.   Modified torsion constraints.

Strongly constrains the form of

i.e,

∞

m=0

δ(m)
∞

n=0

S(n) = 0

(δ(0) + α′
3
δ(3) + . . . )(S(0) + α′

3
S(3) + . . . ) = 0

F (u)n , δ(m)

Consider general form of component supersymmetry.

On-shell	


algebra	





Solution is NON-HOLOMORPHIC EISENSTEIN SERIES	



(a)  Simple examples non-degenerate examples                                     :	

�MRHI\ i SR F (u) i
n MW�VIHYRHERX


 i)            preserving:   e.g.	

 d4 R4U(1) R4

DF (u)
n = cu F (u+2)

n D̄ F (u+2)
n = c̄u+2 F (u+2)

n

Implies  LAPLACE EIGENVALUE EQUATION :	



D̄D F (u)
n = cuc̄u+2 F (u)

n

∆Ω = 4Ω2
2 ∂Ω ∂Ω̄∆Ω F (0)

n = s(s − 1)F (0)
n

where	

u = 0 , c0 c̄2 = s(s − 1) n = 2s = 1
2∆ − 1

Parabolic subgroup	



Poincare series –	


manifest 	



Es(Ω) =
∑

gcd(p,q)=1

Ωs
2

|p + qΩ|2s
=

∑

γ∈Γ∞\SL(2,Z)

(Im γΩ)s

SL(2, Z)



NON-HOLOMORPHIC EISENSTEIN SERIES	



•               - INVARIANT  (generalises to higher rank duality groups)	

SL(2, Z)

F0 = Ωs
2 +

√
πΓ(s − 1

2 )ζ(2s − 1)
ζ(2s)Γ(s)

Ω1−s
2

•  ZERO MODE             - TWO POWER-BEHAVED TERMS (perturbative) :  	

k = 0

•  NON-ZERO MODES            - D-INSTANTON SUM	

k > 0

Fk =
2�s

�(2s)�(s)
|k|s� 1

2 �2s�1(k) �
1
2
2 Ks� 1

2
(2�|k|�2)

K-Bessel function	


Ks(y) � e�y y�1/2

y >> 1

�n(k) =
X

p|k

pn

divisor sum	



� �s� 1
2

�(2s)�(s)
|k|s�1 �2s�1(k) e�2�|k|�2

•  Solution of LAPLACE EIGENVALUE EQN. (consequence of maximal supersymmetry)	



�� = �2
2(�

2
�1

+ �2
�2

)�� Es(�) = s(s � 1) Es(�)

•  FOURIER SERIES	

 Es(Ω) = 2
∞∑

k=0

Fk(Ω2) cos(2πikΩ1)



ILLUSTRATED BY FOUR-GRAVITON AMPLITUDE                                  (Einstein frame)	

E(D)
(p,q)(Ω)σp

2σq
3 R4

TREE-LEVEL	

 D-INSTANTONS	



2ζ(2s) Es(Ω) ∼ 2ζ(2s) Ωs
2+(. . . ) 2ζ(2s−1) Ω1−s

2 +
∞∑

k=1

µ(k, s)
(
e2πikΩ + c.c.

) (
1 + O(Ω−1

2

)

GENUS-	

(s − 1/2)

NON-RENORMALIZATION AT HIGHER LOOPS	



D=10 examples (in string frame):	



TREE + 1-LOOP	



∆ = 8 , s = 3
21/2-BPS

Ω
1
2
2 E(0,0) R4 E(0,0) = 2ζ(3)E 3

2
(Ω)

TREE + 2-LOOP	



∆ = 12 , s = 5
21/4-BPS

Ω
3
2
2 E(1,0) d4R4 E(1,0) = ζ(5)E 5

2
(Ω)

examples :	



Modular covariant derivative	



F (u)
3 = Du F (0)

3 = Du E 3
2

F (8)
3 G8 , F (24)

3 λ16

ii)           - violating processes at order          :	

U(1) n = 3



A NOTE ON THE                     CORRESPONDENCE.                     	

AdS5 × S5

α′2

L4
=

1
g2

Y MN
≡ 1

λ

AdS/CFT 	


dictionary	



Ω2 ≡ e−ϕ =
4π

g2
Y M

YM coupling	



‘t Hooft coupling	



Inverse string	


    coupling	



AdS length scale	



Type IIB STRING THEORY in       	


D=5 Anti de-Sitter space       	



 ⇔ 	

 D=4 SU(N) YANG-MILLS 	


 on boundary of AdS5	



= 2ζ(3) N2 λ− 3
2 + 4ζ(2) N0 λ

1
2 + 2

√
πN

∑

k

|k|σ2(k)e−2π|k|/g2
Y M

+2πikΩ1

1 ≪ λ ≪ N

N → ∞

PLANAR contribution   	

 measure obtained from              Yang-Mills 	


              k-INSTANTON as 	



SU(N)
N → ∞

(Dorey, Hollowood, Khoze)	


λ ≫ 1

Effective       string action	

R4 1
α′

∫
d10x

√
− det G Ω− 1

2
2 E 3

2
(Ω) R4

Coefficient of gauge invariant Yang-Mills correlator, e.g.	

 ⟨O(x1) . . . O(x4)⟩

N
1
2

⎛

⎝2ζ(3)g−3/2
s + 4ζ(2)g

1
2
s + 2

√
π

∑

k ̸=0

|k|σ2(k)e−2π|k|/gs+2πikΩ1

⎞

⎠

 ⇔ 	





Detailed structure not yet derived in detail from supersymmetry but is based on	


duality with M-theory : 	



iii) HIGHER ORDER  	


(F (0)

6 (Ω) ≡ E(0,1)(Ω))Next order  	



(∆ = 14 , n = 6 , u = 0)1/8-BPS

Ω−1
2 F (0)

6 (Ω) σ3 R4

d6 R4

R4
The square of the	


coefficient of  	



Expand integrand to next order in          ,  leads to an integral that satisfies	

s, t, u

INHOMOGENEOUS LAPLACE EQUATION: 	

 (MBG,  Vanhove)	



(∆Ω − 12) F (0)
6 (Ω) = −

(
2ζ(3) E 3

2
(Ω)

)2

 11-dimensional supergravity on two-torus = Type IIB on a circle	



The inhomogeneous Laplace equation was obtained by evaluation of two-loop 	


    11-dimensional supergravity compactified on two-torus.	





SOLUTION OF THE INHOMOGENEOUS LAPLACE EQUATION	


MBG, Miller, Vanhove	



(∆Ω − 12) f(Ω) = −
(
2ζ(3) E 3

2
(Ω)

)2

FOURIER SERIES:	

 f(Ω) =
∑

n

f̂n(Ω2) e2πinΩ1 .

BOUNDARY CONDITIONS :  	

 f̂n(Ω2) = O(Ω3
2) , Ω2 → ∞

Weak coupling (TREE LEVEL) power behaviour	



Weak coupling	



f̂n(Ω2) = O(Ω−2
2 ) , Ω2 → 0

SUBTLE consequence of                invariance	

SL(2, Z)

Strong coupling	



These b.c.’s determine a unique solution by fixing the coefficient of the solution of the 	


homogeneous equation,                                ,   for each value of   .  	

αn

√
y K 7

2
(2π|n|y) R

EQUATION FOR FOURIER MODES :	

 Fourier mode 	


   of source	

(Ω2

2 ∂2
Ω2

− 12 − 4π2n2Ω2
2) f̂(Ω2) = Sn(Ω2)



GENUS	

 0 1 2 3    Non-Perturbative	



•  ALL PERTURBATIVE CONTRIBUTIONS AGREE WITH EXPLICIT CALCULATIONS	


(BUT GENUS 3 string calculation needs RE-CHECKING)	



ZERO MODE - four power-behaved terms :	



f̂0(Ω2) =
2 ζ(3)2

3
Ω3

2 +
4 ζ(2) ζ(3)

3
Ω2 +

4 ζ(4)
Ω2

+
4 ζ(6)

27
Ω−3

2 +
∑

m̸=0

f̂m
0 (Ω2)

∼ 945 ζ(3)2 ζ(5)
4 π5

1
Ω2

2

+ O(log Ω2)Ω2 → 0 cancellation of          term by	


infinite number of  “instantons”. 	



Ω−3
2

� e�4�|m|�2
��2(|m|)2

|m|5 �2
2

+ O(��3
2 )

�
�2 � �

•  NON-PERTURBATIVE TERMS	

 2 X 2 matrix of polynomial coefficients	



�fm
0 (�2)=

32 � �2(|m|)2

315 |m|3
�

i,j=0,1

ri,j(�|m|�2) Ki(2�|m|�2) Kj(2�|m|�2)

Bilinear in 	

K0 , K1

� e�4�m�2

Behaviour suggestive of charge-zero INSTANTON / ANTI-INSTANTON pairs.	





NON-ZERO MODES:	



�fn(�2) = �n

�
�2 K 7

2
(2�|n|�2) +

�

n1+n2 = n
(n1,n2) �= (0,0)

M ij
n1,n2

(�|n|�2) Ki(2�|n1|�2) Kj(2�|n2|�2)

2 X 2 matrix of polynomial coefficients	



i.j = 0, 1

'SRWXERX �n HIXIVQMRIH�F]�GERGIPPEXMSR
SJ�XLI ��3

2 XIVQ�MR�XLI �2 � 0 PMQMX� � e�2�(|n1|+|n2|)�2
�2 >> 1

|n1| + |n2| < |n|“INSTANTON / ANTI-INSTANTON” pair if 	

 (sign n1 = �sign n2)

charge < action	



(sign n1 = sign n2)|n1| + |n2| = |n| = |n1 + n2|BPS INSTANTON PAIR if 	


charge = action	



�fn(�2) � e�2�|n|�2

�
8

�2(|n|)
|n|5/2

�(3) �1/2
2 + O(1)

�
+ c e�2�(|n|+1)�2(. . . ) + . . .

�2 >> 1



•  Solution can be expressed as a Poincare series: 	



where 	

 Φ(Ω) = a0(Ω2) +
∑

n ̸=0

an(Ω2) e2πinΩ1

f(Ω) =
∑

γ ∈Γ∞\SL(2,Z)

Φ(γΩ)

(            is linear in              )	

an(Ω2) K0 , K1

•  D-instantons contribute with distinctive leading powers of       (      ) – origin 	


     not understood in detail.	



Ω2 g−1

(b) Higher order in     (non-trivial degeneracy)	

α′

Laplace eigenvalue  equation generalizes to inhomogeneous simultaneous 	


equations : 	



Lower order source coefficients	



(δij D̄D − λ(u)
n;ij)F

(u) j
n =

∑

j,k,m,v

F (v) j
m F (u−v) k

n−m + . . .

[Some examples  (e.g. Basu + Sethi; MBG, Russo,  Vanhove).]	





Automorphic functions for higher-rank groups ;	



Langlands Eisenstein series’ associated with	


maximal parabolic subgroups of G.	



HIGHER-RANK DUALITY GROUPS	


MBG, Miller, Russo, Vanhove	



Pioline	



•  Encodes perturbative string results in compactified theories. 	



Duality Group	



6	



7	



space-time	


dimension	



9	



8 	



5	



4	



3	



SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 	



E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

G(Z)

10A 	

1

•  D-INSTANTONS fill out expected fractional BPS orbits – minimal, next-to-minimal, …. 	



EG
3
2 ,0,...,0 R4 EG

5
2 ,0,...,0 D4R4

EG
(0,1) D6R4 Satisfies inhomogeneous 	



Laplace equation for G	



EG
s1,...,sr

rank r	


labels associated with nodes of Dynkin diagram	



s1, . . . , sr ∈ C

Compactify M-theory on a d-torus to D=11-d dimensions 	





1 

2 

3 4 d+1 5 d 

Dynkin diagram for 	

Ed+1

Maximal Parabolic Subgroups and Eisenstein Series	



A maximal parabolic subgroup      associated with a simple root 	

βPβ

dual to simple root 	

ωβ β g ∈ N eH(g) KIwasawa	



Cartan	



EG
β;s :=

∑

γ∈Pβ(Z)\G(Z)
e 2 s ⟨ωβ ,H(γg)⟩

β

Pβ = Lβ Uβ

Lβ

Uβ

Levi subgroup obtained 	


by deleting root  	



Unipotent radical – upper 	


triangular with unit diagonal 	



Maximal parabolic Eisenstein series	





S-DUALITY OF N-PARTICLE AMPLITUDES	


are zero at all loops	

D2R4 , R5

E(0,1)(Ω) (D6R4 + D4R5 + D2R6)

E 5
2
(�) (D4R4 + D2R5 + R6)

Non-BPS.  Only partially understood.  	


Is there a 5-loop contribution? 	



E(2,0)(Ω) (D8R4 + D6R5 + D4R6)

Detailed agreement at tree and 	


one loop in any dimension.	



 	


We know from perturbative information that there must be at least one new modular 	


function for                        that starts at one loop and has no tree contribution.	


	



D6R5 , D4R6 , . . .

MBG, Mafra, Schlotterer	



Vanish at one loop in D=10 	



Modular coefficient            unknown but (rather impressively) the ratio 	


of tree to one loop is the same in each case for terms with the same	


kinematic structure.  	



E(2,0)

BUT 	


there must be at least one  new coefficient function for                               that starts 	


at one loop and has no tree contribution.	


	



D6R5 , D4R6 , . . .



•  To what extent do string theory dualities constrain the structure of 	


     perturbative supergravity? – ultraviolet divergences??	



•  Some results on higher derivative interactions for N<8 SUSY	

 e.g. Tourquine, Vanhove	



Need more information regarding higher orders in the low energy expansion.	



   String theory is free of  UV divergences,  How do such divergences arise in the 	


   field theory limit?   	



COMMENTS:	



DOES IT HAVE A 5-LOOP CONTRIBUTION? (Is it protected from higher loop corrections)?	



What is the structure of                      ?	

E(2,0)(Ω) D8R4


