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Why we like N = 4 SYM

✔ Maximally supersymmetric, conformal four-dimensional gauge theory

✔ Is believed to be integrable, in the planar limit at least

✔ Remarkable relations between various quantities:

✗ Scattering amplitudes: An(pi) = 〈p1, p2, . . . , pn|S|0〉

✗ (Light-like) Wilson loops: Wn = 〈trP exp

(

i

∮

Cn

dx ·A(x)

)

〉

✗ Correlation functions: Gn(xi) = 〈O(x1)O(x2) . . .O(xn)〉

✔ Scattering amplitudes suffer from IR divergences and require a regularisation

✔ Exact scattering matrix S = 1

How much physics can we learn from scattering amplitudes in N = 4 SYM?
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e
+
e
− annihilation in QCD

✔ PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗, Z0

✔ A virtual photon or Z0−boson decay into quarks and gluons that undergo a hadronization
process into hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):

energy-energy correlations (EEC), thrust, heavy mass, . . .

✔ Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy
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Energy-energy correlations

✔ Function of the angle 0 ≤ χ ≤ π between detected particles
[Basham,Brown,Ellis,Love]

EEC(χ) =

〈

1

∆χ

∑

a,b

EaEb

Q2
θ
(
∆χ− | cos θab − cosχ|

)

〉

events

Total energy
∑

a Ea = Q

✔ Conventional (‘amplitude’) approach

EEC(χ) =
1

σtot

∑

a,b

∫

dσa+b+X
EaEb

Q2
δ(cos θab − cosχ)

✔ Weak coupling expansion in QCD

EEC(χ) = a
S
A(χ) + a2

S
B(χ) +O(a3

S
)

✔ Current status (1978 – today):

✗ Very precise experimental data

✗ Poor analytical control, B(χ) is known numerically

✔ Final goal: develop more efficient method to computing EEC
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(Eb,~pb)
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e
+
e
− annihilation in N = 4 SYM

✔ Define EEC in N = 4 SYM and evaluate it at weak/strong coupling

e+

e−

✔ From QCD to N = 4 SYM: introduce an analog of the electromagnetic current

✗ (protected) half-BPS operator built from the six real scalars ΦI (with I = 1, . . . , 6)

OIJ
20′ (x) = tr

[
ΦIΦJ − 1

6
δIJΦKΦK

]

✗ To lowest order in the coupling, O20′(x) produces a pair of scalars out of the vacuum

✗ For arbitrary coupling, the state O20′(x)|0〉 can be decomposed into an infinite sum over

on-shell states with an arbitrary number of scalars (s), gauginos (λ) and gauge fields (g)
∫

d4x eiqx O20′ (x)|0〉 = |ss〉+ |ssg〉+ |sλλ〉+ . . .
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EEC in N = 4 SYM

✔ Conventional approach

EEC(χ) =
1

σtot

∑

a,b,X

∫

dLIPS
∣
∣Aa+b+X

∣
∣2

EaEb

Q2
δ(cosχ− cos θab)

✔ The amplitude of creation of the final state |a, b,X = everything〉

Aa+b+X = 01 0+ +

λ

λ

ss

s

s

s
g

+ . . .

✔ Matrix elements (sij = (pi + pj)
2 with p2i = 0 )

|Ass|2 =
∣
∣〈s(p1)s(p2)|O20′ |0〉

∣
∣2 =

2

s12

[
1 + aFvirt(q

2)
]

|Assg |2 =
∣
∣〈s(p1)s(p2)g(p3)|O20′ |0〉

∣
∣2 = a

s12

s13s23

|Asλλ|2 =
∣
∣〈λ(p1)λ(p2)s(p3)|O20′ |0〉

∣
∣2 = a

2

s12

’t Hooft coupling a = g2YMN/(4π2)
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EEC from amplitudes I

✔ The total cross section

σtot(q) =

∫

dLIPS2 |Ass|2 +

∫

dLIPS3

(
|Assg |2 + |Asλλ|2

)
+O(a2)

=
N2 − 1

16π

[
1 + aFvirt(q

2)
]
+ a

∫

dLIPS3
s212 + 2s13s23

s12s13s23
+O(a2) =

N2 − 1

16π
+ 0 · a+O(a2)

✔ Energy-energy correlations

EEC =

[ ∫

dLIPS2 w(p1, p2) |Ass|2 +

∫

dLIPS3 w(p1, p2, p3)
(
|Assg |2 + |Asλλ|2

)
+O(a2)

]

/σtot

Weight factors for EEC

w(p1, p2, . . . ) =
∑

a,b

EaEb

q2
δ(cos θab − cosχ)

(Ea,~pa)

(Eb,~pb)

✔ One-loop calculation (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

EECN=4 =
a

4z2(1− z)
ln

1

1− z
+O(a2)

IR finite, positive definite function of z = (1− cosχ)/2 , 0 < z < 1

✔ Two-loop correction is hard to compute (∼ 102 diagrams)
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EEC from amplitudes II

✔ Conventional approach

EEC(χ) =
1

σtot

∑

a,b,X

∫

dLIPS
∣
∣Aa+b+X

∣
∣2

EaEb

Q2
δ(cosχ− cos θab)

The amplitude of creation of the final state |a, b,X = everything〉

q=(Q,~0)

s

s
g

λ

λ̄

Aa+b+X =

∫

d4x eiqx〈a, b,X|O20′(x)|0〉

✔ Main disadvantages:

✗ presence of infrared divergences in transition amplitudes Aa+b+X

✗ integration over the Lorentz invariant phase space of the final states dLIPS

✗ necessity for summation over all final states
∑

X

✗ no analytical results beyond one loop

✔ New approach: EEC can be computed from correlation functions of energy flow operators
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EEC from correlation functions

✔ Total cross section from the optical theorem

σtot(q) =
∑

X

(2π)4δ(4)(q − pX)|AO
20′→X |2

=

∫

d4x eiqx
∑

X

〈0|O†(0)|X〉 e−ixpX 〈X|O(0)|0〉

=

∫

d4x eiqx 〈0|O†(x)O(0)|0〉 = 1

16π
(N2 − 1)θ(q0)θ(q2)

Wightman correlation function, protected for 1/2-BPS operators

✔ Generalization to EEC

EEC ∼
∑

X

〈0|O†(x)|X〉w(X)〈X|O(0)|0〉 = 〈0|O†(x)E(~n1)E(~n2)O(0)|0〉

Energy flow operator

E(~n)|X〉 =
∑

a

Ea δ(2)(Ω~pa − Ω~n)|X〉

✔ Relation to the energy-momentum tensor in N = 4 SYM
[Sveshnikov,Tkachov],[GK,Oderda,Sterman]

~niT0i(t,r~n)

E(~n) =
∫ ∞

0
dt lim

r→∞
r2 ~niT0i(t, r~n)
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EEC from correlation functions II

✔ Energy flow correlations [GK,Sterman],[Belitsky,GK,Sterman],[Hofman,Maldacena]

E(~n1) E(~n2)

〈E(~n1)E(~n2)〉q = σ−1
tot

∫

d4x eiqx〈0|O†(x) E(~n1)E(~n2)O(0)|0〉

Energy flow in the direction of ~n1 and ~n2

✔ Average over the orientations ~n1 and ~n2 with the relative angle χ kept fixed

EEC =

∫

dΩ1dΩ2 δ(~n1 · ~n2 − cosχ)〈E(~n1)E(~n2)〉q/q2

✔ Multi-fold integral of Wightman 4pt function

EEC ∼
∫

d4x eiqx

︸ ︷︷ ︸

Fourier

∫ ∞

0
dt1dt2 lim

ri→∞
r21r

2
2

︸ ︷︷ ︸

Detector limit

〈0|O†(x)T0~n1
(x1)T0~n2

(x2)O(0)|0〉
︸ ︷︷ ︸

Wightman corr. function

∣
∣
∣
∣
∣
xi = (t, r~ni)

✗ Compute corr.function 〈O†(x)T (x1)T (x2)O(0)〉 in Euclid

✗ Continue to Minkowski with Wightman prescription

✗ Take detector limit + perform Fourier
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Correlation functions in N = 4 SYM

✔ Quantum corrections to various correlation functions are determined by the same scalar function

〈O(x1)O(x2)O(x3)O(x4)〉E =
1

x2
12x

2
23x

2
34x

2
41

Φ(u, v; a)

〈O(x1)T (x2)T (x3)O(x4)〉E =
1

(x2
12x

2
23x

2
34)

2
P (∂u, ∂v)Φ(u, v; a)

Conformal ratios

u = x2
12x

2
34/(x

2
13x

2
24) , v = x2

23x
2
41/(x

2
13x

2
24)

✔ Universal function in N = 4 SYM at weak coupling [Eden,Schubert,Sokatchev],[Bianchi et al]

Φ(u, v) =aΦ(1)(u, v) + a2
(
1

2
(1 + u+ v)

[

Φ(1)(u, v)
]2

+ 2

[

Φ(2)(u, v) +
1

u
Φ(2)(v/u, 1/u) +

1

v
Φ(2)(1/v, u/v)

])

+O(a3)

Φ(1)(u, v) ‘box’ integral, Φ(2)(u, v) ‘double’ box integral

✔ N = 4 superconf. symmetry allows us to determine Φweak(u, v) to six loops [Eden,Heslop,GK,Sokatchev]

✔ AdS/CFT correspondences predicts Φ(u, v) at strong coupling [Arutyunov, Frolov]
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From Euclid to Minkowski

✔ Brute force method: compute anew using Schwinger-Keldysh technique (too hard)

✔ Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman

✔ Warm-up example: free scalar propagator DEuclid(x) = 〈φ(x)φ(0)〉 ∼ 1/x2

〈0|φ(x)φ(0)|0〉 =
∑

n

〈0|φ(x)|n〉〈n|φ(0)|0〉

=
∑

En>0

e−iEn(x0−i0)+i~p~x〈0|φ(0)|n〉〈n|φ(0)|0〉 ∼ 1

(x0 − i0)2 − ~x2

✔ How to get Wightman correlation functions (‘magic’ recipe) [Mack]

✗ Go to Mellin space:

ΦEuclid =

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a)u

j1vj2 , u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
41

x2
13x

2
24

✗ Substitute x2
ij → x2

ij,+ = x2
ij − i0 · x0

ij

ΦWightman =

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a)

(
x2
12,+x2

34,+

x2
13,+x2

24,+

)j1
(
x2
23,+x2

41,+

x2
13,+x2

24,+

)j2

✔ M(j1, j2; a) is known both at weak and strong coupling in planar N = 4 SYM
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All-loop prediction for EEC

Master formula

EEC(χ) =
1

4z2(1− z)

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a)
︸ ︷︷ ︸

corr.function

K(j1, j2)
︸ ︷︷ ︸

detector

(
1− z

z

)j1+j2

︸ ︷︷ ︸

angular dependence

The dependence on the angle χ enters through

z = (1− cosχ)/2 , 0 < z < 1

Detector function is independent on the coupling

K(j1, j2) =
2Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

The dependence on the coupling constant resides in the Mellin amplitude

Φ(u, v; a) =

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2; a)u

j1vj2

M(j1, j2; a) = aM (1)(j1, j2) + a2M (2)(j1, j2)
︸ ︷︷ ︸

are known

+ . . .
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Warm up exercise

✔ Master formula at one loop

EEC(1−loop) =
a

4z2(1− z)

∫ −δ+i∞

−δ−i∞

dj1dj2

(2πi)2
M (1)(j1, j2; a)K(j1, j2)

(
1− z

z

)j1+j2

Mellin amplitude

M (1)(j1, j2) = −1

4
[Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)]

2

K(j1, j2) =
2Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

✔ Change integration variable j1 + j2 → j1

EEC(1−loop) = − a

4z2(1− z)

∫
dj1dj2

(2πi)2
j21

2(j1 − j2)2j22
π

sin(πj1)

(
1− z

z

)j1

=
a

4z2(1− z)

∫
dj1

2πi

π

j1 sin(πj1)

(
1− z

z

)j1

=
a

4z2(1− z)

−∞∑

k=−1

(−1)k

k

(
1− z

z

)k

=
a

4z2(1− z)
ln

1

1− z
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EEC at two loops

Final result for EEC

EECN=4 =
1

4z2(1− z)

{

aF1(z) + a2
[
(1− z)F2(z) +

1
4
F3(z)

]
+O(a3)

}

, z = 1
2
(1− cosχ)

Fw(z) are linear combinations of functions of homogenous weight w = 1, 2, 3

F1(z) = − ln(1− z)

F2(z) = 4
√
z

[

Li2
(
−√

z
)
− Li2

(√
z
)
+

1

2
ln z ln

(
1 +

√
z

1−√
z

)]

+ (1 + z)
[
2Li2(z) + ln2(1− z)

]
+ 2 ln(1− z) ln

(
z

1− z

)

+ z
π2

3
,

F3(z) = (1− z)(1 + 2z)

[

ln2
(
1 +

√
z

1−√
z

)

ln

(
1− z

z

)

− 8Li3

( √
z√

z − 1

)

− 8Li3

( √
z√

z + 1

)]

− 4(z − 4)Li3(z) + 6(3 + 3z − 4z2)Li3

(
z

z − 1

)

− 2z(1 + 4z)ζ3 + 2
[
(3− 4z)z ln z

+ 2(2z2 − z − 2) ln(1− z)
]
Li2(z) +

1

3
ln2 (1− z)

[
4(3z2 − 2z − 1) ln(1− z)

+ 3(3− 4z)z ln z
]
+

π2

3

[
2z2 ln z − (2z2 + z − 2) ln(1− z)

]



"Current Themes in High Energy Physics and Cosmology", August 29, 2014 - p. 16/19

From weak to strong coupling

NLO

LO

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

EEC(a = 0.05)

NLO

LO

-1.0 -0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EEC(a = 0.1)

cosχ cosχ

✔ At weak coupling EECN=4 has a shape which is remarkably similar to the one in QCD

✔ Going from one to two loops, EEC flattens

✔ This agrees with strong coupling prediction for EEC in planar N = 4 SYM [Hofman,Maldacena]

EECN=4

a→∞∼ 1

2

[

1 + a−1 (1− 6z(1− z)) +O(a−3/2)
]

No jets at strong coupling
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End-point asymptotics I

Small angle correlations χ → 0 (or z ∼ χ2 → 0): calorimeters measure nearly collinear particles

EEC
z→0∼ a

4z

[
1 + a

(
ln z − 1

2
ζ3 + ζ2 − 3

)]
χ

✔ Corrections are enhanced by ln z, no homogenous transcedentality

✔ Resummation of leading log’s a(a ln z)k using the “jet calculus” [Konishi,Ukawa,Veneziano]

EEC
z→0∼ a

4z

∫ 1

0
dx x2D(x,Q2/Sab)

=
a

4z
(Q2/Sab)

−γT (3) =
a

4
z−1+γT (3)

γT (3) = a+O(a2) – twist-2 time-like anomalous dimension of spin S = 3

D(x,Q2/Sab) probability to fragment into a pair of partons with Sab = 2EaEb(1− cosχ) ∼ Q2z

✔ Resummation weakens singularity of EEC for χ → 0, jets at weak coupling
∫ χ0

0
d cosχEEC ∼ a

γT (3)
∼ 1 , (χ0 ≪ 1)
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End-point asymptotics II

EEC in the back-to-back kinematics χ → π (or y ≡ 1− z ∼ (π − χ)2 → 0)

EEC
z→1∼ 1

4y

{

a ln(1/y)− a2

2

[

ln3(1/y) +
π2

2
ln(1/y)

]}
χ

✔ Large (Sudakov) corrections ak(ln y)n come from the emission of soft and collinear particles

✔ All order resummation [Collins, Soper]

EEC ∼ 1

8y
H(a)

∫ ∞

0
db b J0(b)S(b

2/y; a)

J0(b) Bessel function; S(b2/y; a) the Sudakov form factor (with b0 = 2 e−γE )

S = exp

[

−1

2
Γcusp(a) ln

2

(
b2

yb20

)

− Γ(a) ln

(
b2

yb20

)]

Dependence on the coupling constant is encoded in three functions

Γcusp(a) = a− 1
2
ζ2a

2 , Γ(a) = − 3
2
ζ3a

2 , H(a) = 1− ζ2a

✔ Perturbative corrections to EEC(z → 1) have homogeneous transcedentality
[
EECQCD(z → 1)

]

maximal transcedentality = EECN=4(z → 1)
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Conclusions and open questions

✔ Energy correlations are good/nontrivial physical observables in N = 4 SYM

✔ Relation to energy flow correlations in QCD (most complicated part)?

✔ All symmetries of N = 4 SYM are preserved, what is the manifestation of integrability?

✔ Interpolation between weak and strong coupling?

✔ Other proposals for ‘good’ observables?


	Why we like N=4 SYM
	e+e- annihilation in QCD
	Energy-energy correlations
	e+e- annihilation in N=4 SYM
	EEC in N=4 SYM
	EEC from amplitudes I
	EEC from amplitudes II
	EEC from correlation functions
	EEC from correlation functions II
	Correlation functions in N=4 SYM
	From Euclid to Minkowski 
	All-loop prediction for EEC
	Warm up exercise
	EEC at two loops
	From weak to strong coupling
	End-point asymptotics I
	End-point asymptotics II
	Conclusions and open questions

