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Motivations

Quantum gravity is still rather poorly understood although it expected to play
a fundamental role in structure of our present universe.

Gravity is intrinsically non-linear, with a dimensional coupling constant and
non-renormalisable

Recent on-shell S-matrix computations in pure and extended supergravity
showed that many simplifications take place leading to surprisingly simple re-
sults compared to the Feynman graph approach

In this talk we want to explain that the remarkable properties of on-shell
gravity amplitudes allow to perform concrete physically motivated
computations in pure gravity coupled to various kind of massive matter
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Quantum gravity as an effective field theory

[Donoghue] has explained that one can evaluate some long-range infra-red
contributions in any quantum gravity theory and obtain reliable answers
independent of the UV completion.

Some physical properties of quantum gravity are universal being independent
of the UV completion

We are interested in quantum gravity contributions at loop order that depend
only on the structure of the effective tree Lagrangian

These will be infra-red contributions involving only the structure of the tree
amplitudes and independent of the UV completion
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Physics of the effective field theory approach

Using the effective field theory approach to gravity one can compute
I the classical (post-Newtonian) and quantum contributions to the

gravitational potential between masses
I Quantum corrections to the bending angle of massless particle by a

massive classical object
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Classical physics from loops

We will be considering the pure gravitational interaction between massive and
massless matter of various spin

LEH ∼

∫
d4x

(
−

2
κ2 R+ κhµνTµνmatter

)
,

We will be considering perturbative computations κ2 = 32πGN

M =
1
 h
Mtree +  h0M1−loop + · · · .
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Classical physics from loops

The tree-level contribution is the 1-graviton exchange giving the classical
Newtonian potential in the non-relativistic limit

Mtree ∝ GN
(m1m2)

2

~q2

The potential is obtained by

V(r) =
∫

d3~q
(2π)3

1
4m1m2

M(~q) ei~q·~r
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

Putting back the factors of  h and c the Klein-Gordon equation reads

(�−
m2c2

 h2 )φ = 0

Notice that the  h dependence on the mass term
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Classical physics from loops

Let’s consider the one-loop contribution for a say a massive scalar of mass m

The triangle contribution with a massive leg p2
1 = p2

2 = m2 reads

∫
d4`

`2((`+ p1)2 − m2c2

 h2 )((`− p2)2 − m2c2

 h2 )

∣∣∣∣∣
finite part

∼
1

m2

(
log(s) +

π2m
 h
√

s

)
Pierre Vanhove (IPhT & IHES) Quantum Gravity & equivalence principle 25/08/2014 7 / 26



Classical physics from loops

The 1/ h term at one-loop contributes to the same order as the classical tree
term [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Donoghue, Holstein; Bjerrum-Bohr, Donoghue, Vanhove]

M =
1
 h

(
GN(m1m2)

2

~q2 +
G2

N(m1m2)
2(m1 + m2)

|~q|
+ · · ·

)
+ h0G2

N O(log(~q2))+· · ·

For the scattering between a massive matter of mass m and massless matter of
energy E one gets

M ∼
1
 h

(
GN

(mE)2

~q2 + G2
N

m3E2

|~q|

)
+  hG2

NO
(
log(~q2), log2(~q2)

)
.

The mechanisms generalizes to higher loop-order amplitudes to leads to the
higher order post-Newtonian corrections
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Classical physics from loops

The one-loop contribution is a small correction if and only if

GNm|~q|� 1 .

This condition implies that the impact parameter b has to be much larger that
the Schwarzschild radius of the massive scalar

b� rS .

For the evaluation of the post-Newtonian corrections this correction is clearly
satisfied has the potential is evaluation far away from the massive source but
when massless particles are involved we will need to rethink about this
condition
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections
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V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections

I If λ =  h/(m1 + m2) is the Compton wavelength

C
GNm1m2(m1 + m2)

(r ± λ)2 ' C
GNm1m2(m1 + m2)

r2 ± C
GNm1m2

 h︷          ︸︸          ︷
(m1 + m2)λ

r3

I Q in the potential V(r) is ambiguous but V(r) is not observable
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2)

The coefficients of 1/
√
−q2 and log(−q2) in the amplitude are

unambiguously defined and depend on the long range physics
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2)

I Q ′ is the short distance UV divergences of quantum gravity: need to add
the R2 term [’t Hooft-Veltman]

S =

∫
d4x|− g|

1
2

[
2

32πGN
R+ c1R

2 + c2RµνRµν + · · ·
]
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated using effective
field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein; Bjerrum-Bohr, Donoghue,

Vanhove]

M1−loop(q2) =
GN(m1m2)

2

q2 + C
G2

N(m1m2)
2(m1 + m2)

|q|

+  h
(
QG2

N(m1m2)
2 log(−q2) + Q ′G2

N(m1m2)
2)

The coefficients C and Q are independent of the UV completion and any quan-
tum gravity theory should give these computations
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Perturbative technics

Classical Newton’s potential is obtained in the non-relativistic limit

V(|~q|) =
GNm1m2

~q2 V(r) = −
GNm1m2

r

m1 m2

q2

hµν

is derived by a tree-level graph exchanging a graviton
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Loop amplitude

Since we are only interested in the long range graviton exchange, it is enough
to just evaluate the gravitons cut

hµν

hµν
m1

m2

we need to know the gravitational Compton amplitudes on a particle of spin s
with mass m

Xs,m + graviton→ Xs,m + graviton
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Gravitational compton scattering

Gravitational Compton scatting off a massive particle of spin s = 0, 1
2 , 1

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

using Feynman rules and DeWitt or Sannan’s 3- and 4-point vertices this is a
big mess but this will be simplified using the momentum kernel formalism to
gravity amplitude
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The Momentum Kernel formalism Gravity amplitude

The KLT relation allow to express the field theory multi-particle tree-level
amplitudes as bilinear of color ordered Yang-Mills amplitudes

Mtree
n = (−1)n−3

∑
σ,γ∈Sn−3

S[γ(2, . . . , n − 2)|σ(2, . . . , n − 2)]k1

×An(1,σ(2, . . . , n − 2), n − 1, n)Ãn(n − 1, n,γ(2, . . . , n − 2), 1)

The color ordered Yang-Mills amplitudes satisfy the annihilation relation
∀β ∈ Sn−2

∑
σ∈Sn−2

S(σ(2, . . . , n − 1)|β(2, . . . , n − 1))|k1A(1,σ(2, . . . , n − 1), n) = 0

[Bern, Carrasco, Johansson] [Kawai,Lewellen, Tye; Tye, Zhang;Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard,

Søndergaard, Vanhove; Stieberger]
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The Momentum kernel in field theory

The α ′ → 0 limit of the monodromy relations between string theory
amplitudes lead to an object named momentum kernel S

S[i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

(
p · kit +

k∑
q>t

θ(t, q) kit · kiq

)

θ(t, q) = 1 if (it − iq)(jt − jq) < 0 and 0 otherwise

[Bern, Carrasco, Johansson; Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]
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Tree amplitudes with massive external legs I

We are interested into pure gravity amplitudes of gravitons scattering off
massive particles, the relation between gravity and YM amplitude stays the
same [Bjerrum-Bohr, Donoghue, Vanhove]

We remark

I The amplitude relation is valid in any dimensions
I The momentum kernel is a function of the scalar products ki · kj

I Massive particle in 4 dimensions are massless particle in higher
dimensions

This implies that the expression for the gravity amplitudes as bilinear of YM
amplitudes will apply as well with massive matter external states
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Tree amplitudes with massive external legs II
Another argument goes back to the way the relation is derived from the
properties of the string theory amplitudes

Avector(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

dn−3x f (xi − xj)
∏

16i<j6n

(xi − xj)
2α ′ki·kj

I Massive state vop are of the form V =: (∂X)n+1eik·X : with α ′k2 = n

I The OPE between the plane-wave still gives (xi − xj)
2α ′ki·kj

I The function f (xi − xj) develops new poles 1/(xi − xj)
m with m integer to

accommodate for the masses α ′(k2
i + k2

j ) = m

But the momentum kernel and the amplitudes relations arises from the phases
of (xi − xj)

2α ′ki·kj they are still valid in the same form for massive external
states
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes

M(Xsg→ Xsg) = GN × (p1 · k1)As(1234)Ã0(1324)

As(1234) is the color ordered amplitudes scattering a gluon off a massive spin
s state Xsg→ Xsg
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two QED Compton
amplitudes using the monodromy relations

(k1 · k2)As(1234) = (p1 · k2)As(1324)

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

The gravity Compton scattering is expressed as the square of QED (abelian)
Compton amplitudes

++=

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravity Low-energy theorems from QED

A first physical consequence of the relation between the gravitational
Compton amplitudes and the QED amplitudes are low-energy theorem for
gravity
These low-energy theorem are important for determining the long range -
small momentum transfer - contributions and for making the connection with
classical GR

M(Xsg→ Xsg) = GN
p1 · k1 p1 · k2

k1 · k2
As(1324)Ã0(1324)

The QED Compton amplitude is exact at fixed angle up to order p2 so this
immediately leads to the fact that the Compton gravity amplitude is exact up
to order p4

The relation provides a much simpler expression for the soft graviton
behaviour than the derivation by [Gross, Jackiw; Jackiw]
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I The cut contributions

M|singlet cut =

∫
d4−2ε`

`21`
2
2
∏4

i=1 `1 · pi

M|non−singlet cut =

∫
d4−2ε`

<e
(

tr−(/̀1/p1
/̀2/p2)

)4

`21`
2
2
∏4

i=1 `1 · pi
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I In the non-relativistic limit the amplitude decomposes

M ' G2
N (m1m2)

4(I4(s, t) + I4(s, u)) + G2
N(m1m2)

3s(I4(s, t) − I4(s, u))

G2
N(m1m2)

2 (I3(s, m1) + I3(s, m2)) + G2
N(m1m2)

2I2(s)
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The one-loop amplitude between massive particles

hµν

hµν
m1

m2

We are only interested in the 1/
√
−q2

and log(−q2) terms since the terms
of (q2)n/

√
−q2 and (q2)n log(−q2) are

negligible in the non-relativistic limit.
Only the massless graviton cut is enough.

I The result is given by

M ' G2
N(m1m2)

2

 6π︸︷︷︸
C

m1 + m2√
−q2

−
41
5︸ ︷︷ ︸

Q

log(−q2)
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Universality of the result I

In the non-relativistic limit the second order potential reads

M(2)(q2) ' G2
N(m1m2)

2

(
C
(m1 + m2)√

−q2
+ Q h log(−q2)

)

The coefficient C and Q have a spin-independent and a spin-orbit contribution

C, Q = C, QS−I 〈S1|S1〉 〈S2|S2〉+ C, QS−O
1,2 〈S1|S1〉~S2 ·

~p3 × p4

m2
+ (1↔ 2)

This expression is generic for all type of matter, the numerical coefficients are
the same for all matter type
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Universality of the result II

The universality of the coefficients with respect to the spin of the external
states is a consequence of

I The reduction to the product of QED amplitudes
I the low-energy theorems of [Low, Gell-Mann, Goldberger] and [Weinberg]

In the non-relativistic limit the QED Compton amplitudes reads

A(Xsγ→ Xsγ) ' 〈S|S〉A(X0γ→ X0γ) +
~S · Â

m
The KLT formula gives that the tree gravity amplitude reads

M(Xsg→ Xsg) ' 〈S|S〉M(X0g→ X0g) +
~S · M̂

m

The low-energy theorem imply that Â and M̂ are independent of the spin s
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Universality of the result III

I In the cut this leads to universality of the result [Bjerrum-Bohr, Donoghue, Vanhove]

I This is totally what one expects from the equivalence principle and the
multipole expansion of the gravitational interaction between massive
states

I The long range quantum correction involves low-energy gravity degrees
of freedom and is independent of any microscopic high-energy model
dependent contributions
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The one-loop amplitude for massless particles

ℓ2

ℓ1
p1

p2 p3

p4

The gravitational one-loop amplitude between a massless and a massive
particle E � m and GNm|q|� 1

Mclassical(s) =
1
 h

(
GN

(mE)2

q2 + G2
N

m3E2√
−q2

)

The result is independent of the spin as in the previous case
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The one-loop amplitude for massless particles

ℓ2

ℓ1
p1

p2 p3

p4

The gravitational one-loop amplitude between a massless and a massive
particle E � m and GNm|q|� 1

Mquantum(s) = (GNmE)2
(
(cUV +

mE
q2 ) log s + log2 s

)

The coefficient cUV depends on the high-energy UV behaviour.
The rest of the coefficients are universal
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The one-loop amplitude for massless particles

ℓ2

ℓ1
p1

p2 p3

p4

The gravitational one-loop amplitude between a massless and a massive
particle E � m and GNm|q|� 1

Mquantum(s) = (GNmE)2
(
(cUV +

mE
q2 ) log s + log2 s

)
These taking the soft graviton emission into account one is left with non
vanishing quantum correction
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The one-loop amplitude for massless particles

ℓ2

ℓ1
p1

p2 p3

p4

The gravitational one-loop amplitude between a massless and a massive
particle E � m and GNm|q|� 1

Mquantum(s) = (GNmE)2
(
(cUV +

mE
q2 ) log s + log2 s

)
There is no birefringence effects to contrary to case with electrons loops
contributing to the interaction [Drummond, Hathrell;Berends, Gastmans]
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The bending angle

The geodesic equation in a background metric where we have quantized the
interaction of the graviton with the massive source including the light fields

b2 = r2
S

(
4
θ2 +

15π
8θ

+ cvac

(
`P

rS

)2
)

No violation of the equivalence principle but the vacuum contribution
depends on the massless matter in the loop
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Outlook

Recent progresses from string theory technics, on-shell unitarity, double-copy
formalism simplifies a lot perturbative gravity amplitudes computations

I The amplitudes relations discovered in the context of massless
supergravity theories extend to the pure gravity case with massive matter

I The use of quantum gravity as an effective field theory allows to
compute universal contributions from the long-range corrections

I We can reproduce the classical GR post-Newtonian corrections to the
potential and understand some generic properties using low-energy
theorems

I We can evaluate various interesting quantum corrections to physically
observable quantities (to appear [Bjerrum-Bohr, Donoghue,

Holstein, Planté, Vanhove])
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