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Lecture topics:

“» HMXBs and LMXBs — a cartoon overview

% Roche-lobe overflow (RLO): case A, case B, case C
+ Stability criteria for mass transfer / stellar evolution
% The orbital angular momentum balance equation

<+ Common envelope + spiral-in

» Formation of millisecond pulsars
e Detailed evolution of LMXBs

NBI 2009
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How to make a double pulsar
Perfect playground for:

- population synthesis

- Monte Carlo simulations

® Things you need to consider:

® - stellar evolution (incl. He-star evoution)

- various binary interactions
(mass transfer, accretion, CE
® tidal interactions, GWR)

- asymmetric supernovae

B
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e supernova

. young
pulsar




standard X-ray binaries

HMXB
16 M

=

- wind accretion 1.3 Mg

- beginning atmospheric
Roche-lobe overflow

timescale: 10°- 10° yr

Fop=3.1T days

0=23 Ry

LMXB 1.4 M

0.6 M

- Roche-lobe overflow timescale: 108_ 109 yr

a=200 R : pDrb=232 days




Be-star X-ray binary




Aspects of Roche-lobe overflow

Stability ?
response of donor star ?

Accretion ? dynamically stable ?

super-Eddington ?
jet ?
B-field, spin ?

¥ ™
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Mode of mass loss ?

specific orbital angular momentum ?

NBI 2009




Equipotential surfaces

effective gravitational _ o = 1000 A,
pOtentlaI: I P .= 247 days

orb

L, = 57.8 R,

Roche-lobe radius:
R, 0.49 g*"

a 0.6¢" +ln(1+q”3)
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Stellar evolution
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Stability criteria for mass transfer

exponents of radius to mass:

dInR,
;donor =
dlnM,

adiabatic or thermal response of the donor star to mass loss

initial stability criteria:

nuclear burning tidal spin-orbit couplings
gravitational wave radiation

yields mass loss rate!




The Orbital Angular Momentum Balance Equation

J o = M;‘yz PRUEE orbital angular momentum

logarithmic differentiation
U (e=0, tidal circularization)
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Low-mass stars: magnetic wind!
= loss of spin angular momentum

In tight binaries the system
is tidally locked (synchronized)
(uncertain) and spin-orbit couplings operate
= loss of orbital angular momentum

Spin-orbit couplings:

- fx . change in stellar moment of inertia
I oy (as a result of nuclear burning or mass loss)

M, <15M,
P < 2days




Mass loss:

Ju  a+Bq +5y(l+q’ M, B: mass ejected from accretor

J I+ M, - fx. in a relativistic jet
(isotropic re-emission)

/ o: direct fast wind

- =

=~ §: mass loss via circumbinary
coplanar toroid with
radius: y2a

accretion efficiency: e =1-a--90 (M s = - €M)




Common envelope + spiral-in evolution

dynamically unstable mass transfer:
» deep convective envelope of donor star

(rapid expasion in response to mass loss)

® M donor > M accretor

(orbit shrinks in response to mass loss) U
common envelope

drag force — dissipation of orb. ang. mom. + deposition of E ., in the envelope

outcome: o
rejection of stellar envelope
e huge reduction of orbital separation (NS orbiting a naked helium star)

_ | merging of NS + core
Needed to explain observed tight systems!! (Thorne-Zytkow object / black hole)
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Intermediate Mass X-ray Binaries
Why are so few IMXBs observed ?

HMXB: wind accretion (beginning atmospheric RLO)
RLO is dynamically unstable and a CE forms

LMXB: stable RLO

IMXB: wind accretion is too weak, and
RLO is often unstable (or very short)



Formation of millisecond pulsars (MSPs)

First pulsar discovered in 1967 (today ~1800 pulsars are known)
First binary pulsar discovered in 1974: PSR 1913+16 (today ~50 systems are known)
First millisecond pulsar discovered in 1982: PSR 1937+21 (P=1.5 msec)

Millisecond pulsar characteristics: P-Pdot diagram
* high incidence of binaries among millisecond pulsars

e rapid spin (P < 20 msec)

/ e relatively weak magnetic fields (B=10 . 109G)

old neutron stars which have been “recycled”
via accretion of mass and angular momentum




Single millisecond pulsars

All single millisecond pulsars are born in a binary system.

Once a recycled millisecond pulsar turns on its
emission of ultra-relativistic particles, it is often able to

completely evaporate its companion and thus end up
as an isolated millisecond pulsar.

Observational evidence:

v eclipsing MSPs with 0.02 M, companions
v" the “planetary pulsar”, PSR 1257+12 R
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Summary:

% To study the formation and evolution of compact binaries

one must have a detailed knowledge stellar evolution and
binary interactions

% Millisecond pulsars are old "rejuvenated” pulsars

%+ Common envelope + spiral-in explain very narrow orbits

< HMXBs and LMXBs are wellknown b/c they are detected
— IMXBs are not detected

++» Perfect scenario for Monte Carlo simulations




