IRRENS




 The last 400 years of astronomy were about
"seeing” a silent movie.

LIGO/VIRGO and LISA hope to deliver the “sound track”




A very brief introduction....
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General relativity in a nutshell

e Imagine space as a stretched rubber sheet
e A mass on the surface will cause a deformation
e Another mass dropped onto the sheet will roll towards that mass

"The curvature of space determines how matter should move

- and the matter determines the curvature of space”
(Einstein’s field equations)
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Einstein’s field equations

How does the distribution of mass-energy determine the geometry ?

EEN O sirain (curvature) = const. x stress (mass, energy)

space-time curvature tensor
stress-energy tensor (source term)
scalar constant "effectiveness of distorting space-time”

(cosmological constant)

Riemannian coordinates
(curved space): Ml Minkowski flat space:

ds’ = g 4 dxdx” : : : ds’ =—c’dt” +dx’ +dy* +dz’°

(special relativity)
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Weak field vacuum limit

Consider a small pertubation from a flat space-time:

is a solution to Einstein’s field eq.
(the equation for a plane wave)

Analogue to Hooke’s law:

“force” “displacement”

F
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Nature of the gravitational waves

The emitted waves carry information of the changes in the gravitational
field of the source as a result of a change in the distribution of mass,
energy and momentum

Gravitational waves propagate with the speed of light

(the graviton has zero rest mass)

They give rise to fluctuations in the metric where they pass through
The waves force field is transverse to its propagation direction and

has quadrupolar symmetry (i.e. the graviton has S=2)

Y
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Gravitational wave emission

A time-varying quadrupole moment™ gives rise to
emission of gravitational waves with a strain amplitude:

" 2G quadrupole moment
ﬂv'“% 72

(Newtonian/quadrupole approximation)
distance to source

an asymmetric distribution of mass with respect to the rotation axis:

gravitational waves no gravitational waves
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The physical meaning of “h”

Remember: ds® = gy dx"dx" = (1, +h,,) dx"dx"

) ) ravitational
Consider the following geometry: a,ave

oL o h.=0 (before)

L+dL ,
o< ® h,=h (during)
-

\
test masses

> X
OL h
2 _ 2 o= r _ : :
(L+ol) = I+ L < L 2 the wave (strain) amplitude is
twice the relative length change
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The effect on Leonardo da Vinci

for many astrophysical sources
\

NS-NS collision at 200 Mpc
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The value of & for astrophysical sources

_2G

h Q.

v 4
0 etd

order-of-magnitude estimate

10" at outskirts of our Milky Way (10 kpc)
e 10 at the Virgo cluster of galaxies (15 Mpc)

10" at 200 Mpc

10 at the Hubble distance (3 Gpc)
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Gravitational wave luminosity

energy flux

2
L=r -[FdQ luminosity
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Gravitational wave luminosity

order-of-magnitude estimate

where (M,R,T,v) are characteristic values of the source

1 mm mountain on a neutron star: steel rod:

Y
M=1.4 Mg M=140.000 kg |

R=10 km, Ar=1 mm R=20 meters
Q=2mv=1000 rad/s v=300 m/s

Lgwr=103° erg/s L gwr=10"2* erg/s

— a factor of ~ 10%° in difference!!!
“Tla+by2 R
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Mergmg neutron star / black hole binaries

O ,

i, Al

,( cos(2@) +const  sin(2@) + const j

sin(2¢)+const —cos(2¢) + const

Fourier decomposition factor
(harmonic number, eccentricity)
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_32G MW 1+(73/24)e + (37/96)¢

5 a (1_82)7/2

e €T+ (121/304)e>] 18172

(1_62 )3/2 de

determine C,from initial condition: a=agy, e=eq

C 612/19
ﬁ [1+(121/304)e* """
—e
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Formation and evolution of compact stellar X-ray sources
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Fig. 16.16. Isochrones for the merging time of double neutron star binaries, as calculated
by the authors. The curves correspond to values of (from left to right): 3 x 10° yr, 3 Myr,
30 Myr, 300 Myr and 3 Gyr, respectively. The five detected Galactic double neutron star
systems are indicated with «.
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The Hulse-Taylor pulsar
(PSR B1913+16)
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Gravitational waves do exist!
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Gravitational wave detection (cont.)

T ==
- _ o l
= |

o =2 S (e0C.=0) | B i i M

strain amplitude:

2
o> 4nd

gwr

h(n,e)= (%[h2 + h?

+,max X, max

tight

1/2 _
)2 = { 16 G ngr(n,e)} massive
nearby

=1.0x107" - 8(re) (Mm M+ m)‘“3) (Porb )2 (4!
' n M 1hr 1kpc

scale factor
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Gravitational wave observatories
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LIGO Laser Interferometer Gravitational wave Observatory

wave amplitude: h ~ 10

. -16
accuracy to achieve: AL ~ 10
ameter of the nucleus of an atom!)
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L aser interferometer
- how to achieve AL ~10716 cm ?

Sensitivity noise: photon, thermal and seismic
5 cm wide laser beam shining on 10" atoms
Light is reflected 100 times | |

Al ,, o Ad o< AL o< h(r)
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Sensitivity of LIGO/VIRGO

angular resolution:
~ 1 sq. deg. on sky
(3 detectors LIGO/VIRGO)

merger time

separation

20km
100 1000
Frequency f, Hz
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Expected Detected Merger Rates
of Compact Binaries

m Initial LIGO
= NS-NS 1/3000 yrs —1/3

Advanced LIGO .«
NS-NS 1/yr — 2/day
BH-BH 2/month — 10/day

Advanced LIGO will equal the 1-yr integrated
observation time of initial LIGO in roughly 3 hours
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. _.Laser' I'nterferémeter Spacg Anten.na LISA . :

While one can only measure LISA's absolute armlength (distance between the . launch ~2018
test masses) to within 10 meters, one will be able to measure any changes in - .

the armlengths .much more-accurately — down to 10 picometers (about 1/10th

the size of an atom)!. - : o
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Observed frequencies: LISA & LIGO
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Astrophysical sources

Single (one-time) burst events: extra galactic
Massive black hole mergers

IO  Supernova core collapse (non axisymm.)

160 Colliding neutron star + black hole binaries

Persistent sources (continuous emission): Galactic
% Galactic resolved compact binaries (WD, NS, BH)

% Big Bang ? /
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“Murmurs’ from the Big Bang

signals from the early Universe

: AN R inflation
tiny fraction™
of a second

380,000
years
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Summary of lecture

Brief intro. to GTR and concept of gravitational waves
Wave amplitude and physical deformation
Gravitational wave luminosity

Detection of gravitational waves
« LIGO: high frequencies (10 Hz - 10 kHz)

. LISA: low frequencies (0.1 mHz — 0.1 Hz)

Sources of gravitational waves
. Burst sources: extra galactic
 Continuous sources: Galactic

v A new epoch of astronomy!
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