HIGH-MASS STAR FORMATION IN THE OUTER MILKY WAY

Ignacio Negueruela

Copenhaguen November 2014

Universitat d'Alacant Universidad de Alicante

Dept. de Física, Enginyeria de Sistemes i Teoria del Senyal Dpto. de Física, Ingeniería de Sistemas y Teoría de la Señal

Young clusters with massive stars

- Laboratories for massive stars
- Prime sites for star formation
- Initial mass function
- H II regions and molecular clouds

The Anticentre region

Young clusters with massive stars

- Low foreground extinction
- Negligible background contamination
- Star formation in a "quiet" environment

Tracing the Outer Arm Negueruela & Marco 2003, A&A 406, 119

Solving high-mass eclipsing binaries PhD of J. Lorenzo

- Don't use photometry alone to study OB stars
- Take advantage of wide field imaging

Don't use photometry to study OB stars!! Massey et al. (1995, ApJ 454, 151)

Fitzgerald (1970, A&A 4, 234)

Table 1. Adopted $(B-V)_0$ colours

	V	IV-V	IV	III-IV	III	II-III	II	Ib	Iab	Ia
									-	
05	-0.32									
06	-0.32									
07	-0.32									
07.5	-0.31									
08	-0.31				-0.31				-0.29	
09	-0.31	0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.28	-0.28	-0.28
O9.5	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.27	-0.27	-0.27
B0	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.29	-0.24	-0.24	-0.24
B0.5	-0.28	-0.28	-0.28	-0.28	-0.28	-0.30	-0.28	-0.22	-0.22	-0.22
B1	-0.26	-0.26	-0.26	-0.26	-0.26	-0.28	-0.24	-0.19	-0.19	-0.19
B1.5	-0.25	-0.25	-0.25	-0.25	-0.25	-0.27	-0.22	-0.17	-0.18	-0.18
$\mathbf{B2}$	-0.24	-0.24	-0.24	-0.24	-0.24	-0.22	-0.21	-0.16	-0.17	-0.17
B2.5	-0.22	-0.22	-0.22	-0.22	-0.22	-0.20	-0.19	-0.15	-0.15	-0.15
B3	-0.20	-0.20	-0.20	-0.20	-0.20	-0.18	-0.17	-0.13	-0.13	-0.13
B4	-0.18	0.18	0.18	-0.18	-0.18			÷2		-0.11
				0110	5120					• • • • =

Don't use photometry to study OB stars!!

					TABLE 2 Adopted Spectral Type— M_V Relation for OB Stars								
					Spectral Type	v	IV	III	II	Ib	Iab	Ia	
Turner (1980, ApJ 240, 137)				1 03. 04. 05. 06.		- 5.4 - 5.2 - 5.1 - 5.0		-6.4 -6.3 -5.9		-6.4 -6.4		7.0 7.0 7.0	
	V	10-0	10	07.		-4.8		- 5.6	- 5.9	-6.3		- 7.0	1a
05 06 07 07.5	-0.32 -0.32 -0.32 -0.31			O8 . O9 . O9.5 B0 . B0.5 B1 . B2 .	· · · · · · · · · · · · · · · · · · ·	-4.4 -4.1 -3.7 -3.6 -3.0 -2.2	-5.0 -4.7 -4.5 -4.3 -3.8 -3.1	-5.5 -5.4 -5.3 -5.0 -4.8 -4.4 -3.9	-5.9 -5.9 -5.8 -5.6 -5.3 -5.0 -4.7	-6.2 -6.2 -6.1 -6.0 -5.9 -5.9 -5.4	-6.6 -6.5 -6.5 -6.5 -6.5 -6.4 -6.3	- 7.0 - 7.0 - 7.0 - 7.0 - 7.0 - 7.0 - 7.1	
08	-0.31				0.31						(0.29	
09 09.5	$-0.31 \\ -0.30$	$-0.31 \\ -0.30$	-0.31 -0.30	$-0.31 \\ -0.30$	-0.31 -0.30	0.3 0.3	1 0	$-0.31 \\ -0.30$	-	-0.28 -0.27		0 .28 0 .27	$-0.28 \\ -0.27$
B0 B0.5 B1 B1.5 B2 B2.5 B3 B4	$-0.30 \\ -0.28 \\ -0.26 \\ -0.25 \\ -0.24 \\ -0.22 \\ -0.20 \\ -0.18$	$-0.30 \\ -0.28 \\ -0.26 \\ -0.25 \\ -0.24 \\ -0.22 \\ -0.20 \\ -0.18$	$\begin{array}{r} -0.30 \\ -0.28 \\ -0.26 \\ -0.25 \\ -0.24 \\ -0.22 \\ -0.20 \\ -0.18 \end{array}$	$\begin{array}{r} -0.30 \\ -0.28 \\ -0.26 \\ -0.25 \\ -0.24 \\ -0.22 \\ -0.20 \\ -0.18 \end{array}$	$\begin{array}{r} -0.30 \\ -0.28 \\ -0.26 \\ -0.25 \\ -0.24 \\ -0.22 \\ -0.20 \\ -0.18 \end{array}$	-0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1	30 30 38 37 32 30 8	-0.29 -0.28 -0.24 -0.22 -0.21 -0.19 -0.17	-	-0.24 -0.22 -0.19 -0.17 -0.16 -0.15 -0.13		0.24 0.22 0.19 0.18 0.17 0.15 0.13	-0.24 -0.22 -0.19 -0.18 -0.17 -0.15 -0.13 -0.11
				*									

Don't use photometry to study OB stars!!

Fitzgerald (1970, A&A 4, 234)

Table 1. Adopted $(B-V)_0$ colours

	V	IV-V	IV	III-IV	III	II-III	п	Ib	Iab	Ia
05	0.90									
05	-0.32									
06	0.32									
07	-0.32									
07.5	-0.31									
08	-0.31				-0.31				-0.29	
09	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.28	-0.28	-0.28
09.5	_0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.27	-0.27	-0.27
B0	-0.30	-0.30	-0.30	-0.30	-0.30	-0.30	-0.29	-0.24	-0.24	-0.24
B0.5	-0.28	-0.28	-0.28	-0.28	-0.28	-0.30	-0.28	-0.22	-0.22	-0.22
B1	-0.26	-0.26	-0.26	-0.26	-0.26	-0.28	-0.24	-0.19	-0.19	-0.19
B1.5	-0.25	-0.25	-0.25	-0.25	-0.25	-0.27	-0.22	-0.17	-0.18	-0.18
$\mathbf{B2}$	-0.24	-0.24	-0.24	-0.24	-0.24	-0.22	-0.21	-0.16	-0.17	-0.17
B2.5	-0.22	-0.22	-0.22	-0.22	-0.22	-0.20	-0.19	-0.15	-0.15	-0.15
B3	0.20	-0.20	-0.20	-0.20	-0.20	-0.18	-0.17	-0.13	-0.13	-0.13
B4	-0.18	-0.18	0.18	-0.18	-0.18					-0.11

See Negueruela et al. (2007, A&A 471, 485)

APOD image (© Jacob Bassoe)

On-going star formation

Caramazza et al. 2012, A&A 539, A74 (*Chandra*) Prisinzano et al. 2011, A&A 527, A77 (*Spitzer*) Caramazza et al. 2008, A&A 488, 211 Maheswan et al. 2007, MNRAS 379, 1237

See Negueruela et al. (2007, A&A 471, 485)

WISE three-colour image

NGC 1893

Simis 129

Simis 130

Lim et al. 2014, MNRAS 443, 454 Distance ~3.5 kpc from low-mass star isochrone fit

Age 1.7 Myr with a spread of 5 Myr

See Negueruela et al. (2007, A&A 471, 485)

APOD image (© Jacob Bassoe)

Negueruela et al. 2007, A&A 471, 485

OB stars B3-B8 PMS (Herbig Be, T Tauri, naked PMS**)**

Negueruela et al. 2007, A&A 471, 485

HD 242908

O4.5 V Sota et al. 2011 (ApJS 193, 24)

APOD image (© Jacob Bassoe)

Sh2-284 Major star forming region in the outer Milky Way COROT field

(Sh2-284)

Puga et al. 2009 (A&A 503, 107) Cusano et al. 2011 (MNRAS 410, 227)

 $\ell = 212^{\circ}$ d = 3.5-5.5 kpc

Image by Kevin Jardine combining Spitzer/IRAC + $H\alpha$

Sh2-284 Major star forming region in the outer Milky Way COROT field

(Sh2-284)

Puga et al. 2009 (A&A 503, 107) Cusano et al. 2011 (MNRAS 410, 227)

 $\ell = 212^{\circ}$ d = 3.5-5.5 kpc

Image by Kevin Jardine combining Spitzer/IRAC + $H\alpha$

Dolidze 25 (Sh2-284)

Dolidze 25

6 Myr from *UBV* Turbide & Moffat 1993 (AJ 105, 1831) Z = 0.04 from spectral analysis Lennon et al. 1990 (A&A 240, 349) 3 Myr + older population d = 3.6 kpc from photometry Delgado et al. 2010 (A&A 509, A104)

Image by Kevin Jardine combining Spitzer/IRAC + $H\alpha$

Dolidze 25 (Sh2-284)

NOT + FIES

échelle spectra $R = 25\ 000$

FASTWIND analysis of three O9.7 or B0V stars by Sergio Simón-Díaz

Abundances of O and Si are moderately subsolar $(\leq 0.3 \text{ dex})$.

Spitzer/IRAC + $H\alpha$

Dolidze 25 (Sh2-284)

Image by Jim Wood & Eric Chasak

HD 292167

Image by Jim Wood & Eric Chasak

Image by Jim Wood & Eric Chasak

Smaller cluster in the Perseus Arm Sh2-234 = IC 417

Jose et al. 2008 (MNRAS 384, 1675)

 $\ell = 173^{\circ}$ d = 2 kpc

Jose et al. 2008 (MNRAS 384, 1675)

 $\ell = 173^{\circ}$ d = 2 kpc

Jose et al. 2008 (MNRAS 384, 1675)

 $\ell = 173^{\circ}$ d = 2 kpc

Jose et al. 2008 (MNRAS 384, 1675)

 $\ell = 173^{\circ}$ d = 2 kpc

Marco et al., in prep.

 $\ell = 173^{\circ}$ d = 2 kpc

WISE threecolour image (W1, W2, W3)

Marco et al., in prep.

 $\ell = 173^{\circ}$ d = 2 kpc

WISE three-colour image (W1, W2, W3)

Extended association with >30 OB stars

Marco et al., in prep.

 $\ell = 173^{\circ}$ d = 2 kpc

WISE three-colour image (W1, W2, W3)

Part of an even bigger structure?

$$\ell = 173^{\circ}$$
$$d = 2 \text{ kpc}$$

WISE three-colour image (W1, W2, W3)

Effelsberg 11 cm radio continuum

H I observations with Arecibo telescope show a coherent structure with similar V_{LSR} velocities

An Old Supernova Remnant within an H II Complex at ℓ ~173°: FVW 172.8+1.5 Kang et al. 2012, AJ 143, 75

Part of an even bigger structure?

$$\ell = 173^{\circ}$$
$$d = 2 \text{ kpc}$$

WISE three-colour image (W1, W2, W3)

H II region Sh2-206

NGC 1491

Radio study Deharveng et al. 1976, A&A 48, 63

 $\ell = 151^{\circ}$ $d \sim 3.5 \text{ kpc}$

Image by Peter Jackson and Rena Smith/Adam Block/NOAO/AURA/NSF

NGC 1491

H II region Sh2-206

 $\ell = 151^{\circ}$ $d \sim 3.5 \text{ kpc}$

Image by Peter Jackson and Rena Smith/Adam Block/NOAO/AURA/NSF

H II region Sh2-206

 $\ell = 151^{\circ}$ $d \sim 3.5 \text{ kpc}$

WISE three-colour image (W1, W2, W3)

Similar case Sh2-212

O-type supergiant + some Btypes Triggered formation on the rim Deharveng et al. 2008, A&A 482, 585

 $\ell = 155^{\circ}$ $d \sim 6 \text{ kpc}$

WISE three-colour image (W1, W2, W3)

Sh2-321

$$\ell = 243^{\circ}$$
$$d \sim 6 \text{ kpc}$$

 $\ell = 243^{\circ}$ $d \sim 6 \text{ kpc}$

 $\ell = 243^{\circ}$ $d \sim 6 \text{ kpc}$

(VRR)

HST image NASA, ESA and Orsola De Marco (Macquarie University)

 $\ell = 243^{\circ}$ $d \sim 6 \text{ kpc}$

 $\ell = 243^{\circ}$ $d \sim 6 \text{ kpc}$

Haffner 18

Two clusters, one at 11 kpc!! Vazquez et al. 2010, A&A 511, A38 $d \sim 6$ kpc Munari et al. 1998, MNRAS 297, 867 FitzGerald & Moffat 1976, A&A 50, 44

Spitzer analysis Single star forming region Sneider et al. 2009, ApJ 700, 506

embedded cluster

- Classified as O6 Vnn, but SB2 (Solivella & Niemela 1986, RmxAA 12, 188)
- Now given as O5.5 Vz+O7 V (Sota et al. 2014, ApJS 211, 10)
- Resolved by interferometry into 2 (Mason et al 2009, AJ 137, 3358; Aldoretta et al. 2014, AJ, in press) or 3 (Tokovinin et al. 2010, AJ 139, 743) visual components
- Comprehensive spectroscopic campaign with FEROS (R = 48 000) during 2006+
- There are at least 2 SB2 systems in HD 64315, an EB with P_{orb}=1.0 d and another system with P_{orb}=2.7 d (Lorenzo et al. 2010, ASPC 435, 409; Lorenzo et al., in prep.)
- Is such a system an excellent ejector (cf. Pflamm-Altenburg & Kroupa, 2006, MNRAS 373, 259) or does it form in isolation?

Small cluster at ~4 kpc

(Negueruela & Marco 2008, A&A 492, 441)

 $\ell = 146^{\circ}$ $d \approx 4 \text{ kpc}$

- Four OB stars
- Only a handful of B3-8 stars

False colour image from NOT/ALFOSC images

- Four OB stars
- Only a handful of B3-8 stars

False colour image from NOT/ALFOSC images

Alicante 1

Small cluster at ~4 kpc

(Negueruela & Marco 2008, A&A 492, 441)

 $\ell = 146^{\circ}$ $d \approx 4 \text{ kpc}$

- Four OB stars
- Only a handful of B3-8 stars

(W1, W2, W4)

Small cluster at ~4 kpc (Negueruela & Marco 2008, A&A 492, 441)

 $\ell = 146^{\circ}$ $d \approx 4 \text{ kpc}$

- Four OB stars
- Only a handful of B3-8 stars

False colour image from NOT/ALFOSC images

$BD + 56^{\circ}864 = MY Cam$

- Classified as O6 Vnn
- Eclipsing binary
- Observed with the 2.2 m at Calar Alto + FOCES plus photometry with small telescopes.

$BD + 56^{\circ}864 = MY Cam$

Lorenzo et al. 2014, A&A, in press

- Orbital period 1.2 d
- Masses $32 M_{\odot}$ and $38 M_{\odot}$, compact stars
 - ZAMS
 - homogeneous evolution
- Parameters permit merger on the ZAMS (Wellstein et al. 2001; A&A 369, 939)
- Prime example of merger to form very massive star (cf. Banerjee et al. 2012; MNRAS 426, 1461)

Dispersed group of early-type stars (Moffat & Vogt 1975, A&AS 20, 85) No obvious cluster sequence

Bochum 1

(Fitzsimmons 1993, A&AS 99, 15)

$$\ell = 192^{\circ}$$

 $d \sim 4 \text{ kpc}$

False colour image from DSS2 images

Borderline between a young star cluster and a small stellar association (Bica et al. 2008, A&A 489, 1129)

Two small (minimal) clusters

Age ~ 9 Myr *d* ~ 4 kpc (*DM* =13.1)

Summary

- High-mass star formation in the outer Milky Way is characterised by dispersed clusters and small groups of stars.
- Evidence for sequential (triggered?) star formation is widespread.
- There is a very high incidence of the earliest spectral types, sometimes found in very small clusters: observational bias? (cf. Weidner et al. 2010, MNRAS 401, 275; Popescu & Hanson 2014, ApJ 780, 27)
- Excellent ground to test our knowledge, but spectroscopy always necessary.

HIGH-MASS STAR FORMATION IN THE OUTER MILKY WAY

Ignacio Negueruela

Copenhaguen November 2014

Universitat d'Alacant Universidad de Alicante

Dept. de Física, Enginyeria de Sistemes i Teoria del Senyal Dpto. de Física, Ingeniería de Sistemas y Teoría de la Señal