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Stellar properties do not greatly depend
on initial conditions

® Little evidence for variation of the Galactic IMF

® Bastian, Covey & Meyer (2010)

® Little evidence for systematic variations of multiplicity properties
® Multiplicity of wide systems tends to be

® |ower at old ages and/or in dense clusters (Duchene & Kraus (2013) and references therein)
® Not obviously dependent on stellar density - Taurus exception (King et al. 2012a)

® Separation distributions

® Evidence for truncation in dense clusters (e.g. Scally, Clarke & McCaughrean 1999; Reipurth et
al.2007)

® But indistinguishable over at most separations in different regions (King et al. 2012b)
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® Tend to predict that the IMF depends on
Mean Jeans mass (i.e. density and temperature)

Turbulent Mach number (more turbulent produces broader range of stellar masses)

Padoan & Nordlund (2002,2004); Hennebelle & Chabrier (2008, 2009,201 3);
Hopkins (2012)

Hennebelle & Chabrier (2008, 2009)
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Numerical simulations =

® Simplest hydrodynamical simulations also predict an IMF with a
characteristic stellar mass than scales with the typical Jeans mass

® Include gravity, hydrodynamics and a simple equation of state
® Klessen, Burkert & Bate (1998); Bate & Bonnell (2005); Bate (2005, 2009c)

® Jappsen et al. (2005); Bonnell, Clarke & Bate (2006)

Typical molecular cloud (Bate et al.2003) Denser cloud (Bate & Bonnell 2005) Cumulative IMFs
Jeans mass | Mo, Opacity limit 3 M, P(k)<k* Jeans mass 1/3 Mo
Bate & Bonnell (2005)
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Competitive accretion the IMF

Competition between accretion and ejection (Bate & Bonnell 2005)

Jeans Mass

Ejection
= Reipurth &
— Clarke (2001)
—Bate et al. (2002)

CompetitivejAccretion
Bonnell et al. (#997,2001)
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Why do observed stellar properties not

seem to depend on initial conditions?

® FEither initial conditions do not vary much, or compensate each other

® Elmegreen, Klessen & Wilson (2008) - actual typical Jeans masses depend weakly on
environment

Hennebelle & Chabrier (2008, 2009) - appealing to Larson’s laws, when Jeans mass
increases, Mach number increases so may offset each other

Hennebelle (2012) - more detailed compensation between density, velocity
dispersion and temperature

® Or star formation process may be self-regulating

® Physics is must be more complicated than just gravity + hydrodynamics + simple
equation of state

® e.g. Protostellar/stellar feedback, Magnetic fields
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Self-regulation via protostellar interactions

cohstellation

Gravitational fragmentation of structured molecular gas to form stellar
groups

® Exactly how the structure arises may not be so important (Bonnell et al. 1997-2001;
Klessen et al. 1998-2001; Bate 2009¢)

Dissipative dynamical interactions between accreting protostars

® Gives an IMF-like mass distribution (competitive accretion), but depends on global Jeans
mass (Bate & Bonnell 2005; Jappsen et al. 2005, Bonnell et al. 2006)

® |eads to observed multiplicity fractions & properties of multiple systems (Bate 2009a,2012)

Radiative interactions (feedback) between accreting protostars

® Enables the production of an (almost) invariant IMF (Bate 2009b)

All three together can reproduce observed stellar properties
e Bate (2012)
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When does competitive accretion operate!

Protostellar seeds in a (uniform) gas reservoir

® Bonnell et al. (1997,2001)

Nonlinearly structured gas (no initial velocities)

® Klessen et al. (1998); Klessen & Burkert (2000, 2001)

Strong turbulence (both decaying and large-scale
driven turbulence)

® Klessen 2001; Bate et al. (2003-2005);
Bonnell et al. (2003-2010); Bate (2009-2012)

What doesn’t work ?

® No structure or turbulence (e.g. uniform sphere) Klessen, Burke::cg; Bate (1998)

® Small-scale turbulent driving (Klessen 2001)

® Centrally-condensed initial conditions resist fragmentation (Girichidis et al. 201 1),
especially with radiative feedback (Krumholz et al. 201 I)
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Bate 2009a: 500 Mg cloﬂvﬂth dec?g turbulence, 35 million SPH particles
d

Follows binaries to | AU, discs to ~10 AU
Forms 1253 stars and brown dwarfs - best statistics to date from a single calculation
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Multiplicity as a Function of Primary Mass =

® Dissipative N-body interactions naturally produce a multiplicity that
increases with primary mass

® In binary-single or multiple-multiple encounters, low-mass objects tend to loose
companions and high-mass objects tend to retain or gain

® Multiplicity fraction = (B+T+Q) / (S+B+T+Q)

® Observations: Close et al. 2003; Basri & Reiners 2006; Fisher & Marcy 1992; Duquennoy &
Mayor 1991; Preibisch et al. 1999; Mason et al. 1998
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Stellar Mass Distribution

® Competitive accretion/ejection gives
® Salpeter-type slope at high-mass end

® |ow-mass turn over

® >6 times as many brown dwarfs as a typical star-forming region

® Not due to sink particle approximation - results almost identical for different sink parameters
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BBB2003: Typical molecular cloud

Jeans mass | Mg, Opacity limit 3 M), P(k)«k*

Dimensiona: 5158, AU Withoul Radialive Feediack  Timne: 214540, yr

Dimensions: 5158, AU
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B2009b (BBB2003, but with Radiative Transfer)

With Radistive Feedback Time: 214840, w»
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Radiative Feedback and the IMF ===

® Radiative feedback reduces the number of objects by factors of 3-5

® Radiative feedback brings the star to brown dwarf ratio in line with
observations

® Observations suggest a ratio of 5 + 2

® Chabrier 2003; Greissl et al. 2007; Luhman 2007; Thies & Kroupa 2007,2008; Andersen et al. 2008

® Small simulations: 25:5 ~ 5 Bate (2009b)
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® Furthermore, dependence of the IMF Without radiative
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® K-S test on the two IMFs with radiative

shows them to be indistinguishable
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The Apparent Invariance of the IMF e
® PBate 2009b

® In the absence of stellar feedback, cloud fragments into objects separated by Jeans length

Jeans length and Jeans mass smaller for denser clouds

But, heating of the gas surrounding a newly-formed protostar inhibits nearby fragmentation

Effectively increases the effective Jeans length and Jeans mass
Effective Jeans length and Jeans mass increases by a larger fraction in denser clouds

This greater fractional increase largely offsets the natural decrease in Jeans mass in denser clouds

Bate (2009b) show that this effective Jeans mass depends very weakly on cloud density

Low-density Cloud Higher-density Cloud




Bate 2012: 500 M@ cloud with éymg turbulence

Includes radative feedback and a realistic equation of state
Produces 183 stars and brown dwarfs, following all binaries, plus discs to ~1 AU
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First Large-Scale Calculation Consistent with =
Wide Range of Observed Stellar Properties

Mass ratios

® Mass function consistent with Chabrier (2005) - G&K primaries |

® Stars to brown dwarf ratio: N(1.0-0.08)/N(0.03-0.08) =
117/31 = 3.8

5 \ \\\‘
® Multiplicity consistent with field

0.2 0.

® Binary mass ratios consistent with field . M-dwarfs
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Sicilia-Aguilar et al. (2012)
Corona Australis
Temperature Map

Dec (J2000)
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Dependence of Stellar Properties on Metallicity: Opacity

® Bate (2014) repeated Bate (2012), but with opacities for 3 different
‘metallicities’

® Use opacities corresponding to metallicities Z=0.01 Z5 0.1 Zo,Zo ,and 3 Zo

® Does NOT take into account all of the effects of reduced metallicities
® Assumes dust cooling still dominates
® Breaks down as gas and dust temperatures decouple
Gas opacities from Ferguson et al. (2005)
Each calculation produces 170 - 200 stars (733 total)

® Look for variation of stellar properties

—_
o

Opacity [cm?/g]
o

100 1000 10000
Temperature, T [K]







UNIVERSITY OF

EXETER

Dependence of Stellar Properties on Opacity

® No significant dependence of any stellar property

® Despite varying opacity by a factor of 300

® |MFs consistent with Chabrier (2005)

® Multiplicity is a strong function of primary mass

® In good agreement with observational surveys
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Stellar Properties and Opacity

If IMF is so dependent on radiative feedback, why are stellar
properties so independent of opacity?

Temperature of dust around a protostar (optically thin)
T o LY/ 4p—2/(4+8)
® where B depends on absorption properties of dust (e.g. Ivezic & Elitzur 1997)
If gas is
® Thermally coupled to the dust (as assumed in Bate 2014), and

® Infrared radiation is optically thin (valid or marginally valid for Bate 2014)

Then, gas temperature around protostars does not depend on
magnitude of opacity

® j.e. Effects of radiative feedback should be similar
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Long-term Evolution!?
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® Hydrodynamical evolution only followed for ~3x10° yr

® How does the cluster evolve on 10 Myr timescales!?
® Does gas dispersal unbind the cluster (only 15-38% of mass in stars)?
® Destruction or formation of binary and multiple systems?

e Kroupa (1995a,1995b): N-body simulations beginning with 100% binaries found many
binaries were quickly destroyed

® s it possible to form very wide binaries in the halo of ejected stars!?

® Moeckel & Bate (2010) used N-bodyé code to evolve end state of
Bate (20092)‘s hydrodynamical simulation to an age of 10 Myr

® Four cases:
® Instantaneous gas removal
® Gas decreases to 10% after 0.3 Myr
® Gas decreases to 10% after | Myr

No gas removal




Evolution over 10 Myr

Instantaneous Gas Removal (Moeckel & Bate 2010)
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The Evolution of Cluster Structure ==
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® Hydrodynamical evolution
® Stars form along filaments in sub-clusters

® Sub-clusters merge to form one massive cluster surrounded by a halo of ejected stars

® N-body evolution
® Cluster expands by a factor of ~20 (from 0.05 pc to 2 pc - comparable to ONC)
® More stars ejected

® FEjected stars continue to expand

® Quantify using Q parameter
® Cartwright & Whitworth (2004)
® (Q<0.8:Sub-structure / fractal
® (Q=0.8:No structure

® (Q>0.8: Density gradient or cluster/halo 0.5

0.15 0.20 0.30 050 0.70 1.00 1.50
Time [Myr]
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Lagrangian Radii o

® Remnant cluster
® Contains 30-40% of stellar mass

® Expands from 0.05 pc to -2 pc over 4-10 Myr
except in the case without gas removal

® Halo

® Freely expands to >100 pc in <10 Myr o L

1
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Stellar Multiplicity 2

® End of hydrodynamical calculation
e Multiplicity (= B+T+Q / [S+B+T+Q)] ) is an increasing function of primary mass

® Evolution over 10 Myr has little impact on multiplicities

® Primordial multiple systems formed in a cluster are naturally resistant to disruption

® Cannot separate star formation from multiple system formation

0. 3 Myr End of Hydrodynamical Calculation 10 Myr, Instant Gas Removal at 0.3 Myr
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Separation Distributions 2L

® Decay of high-order (quadruple) systems

® All cases, except no gas removal, form a significant number of very wide (>10* AU) systems
(see also Kouwenhoven et al.2010)

® Little evolution of VLM systems, except that wide (>60 AU) systems broken up
No gas removal

Hydrodynamical Instant gas removal
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Conclusions

® |Invariance of stellar properties:

® Interstellar conspiracy or self-regulation ?

® Protostellar interactions may provide self-regulation and stellar properties

® Gravitational fragmentation of structured molecular gas to form stellar groups

® Dissipative dynamical interactions between accreting protostars

® Gives an IMF-like mass distribution (competitive accretion), but depends on global Jeans mass
® | eads to observed multiplicity fractions & properties of multiple systems

Radiative feedback (interactions) from accreting protostars

® Enables the production of an (almost) invariant IMF

® All three together can reproduce observed stellar properties (Bate 2012, 2014)

® (Cluster evolution
® Star clusters may begin very dense (e.g. half-mass radii < 0.] pc) and expand at |-2 Myr

® Wide binaries may form during cluster dissolution (Moeckel & Bate 2010; Kouwenhoven et
al.2010)




