Observational constraints on GC formation scenarios

Søren Larsen Radboud University, Nijmegen

N. Bastian, H. Baumgardt, J. Brodie, D. Forbes, F. Grundahl, J. Strader

Multiple populations in GCs - key points:

- Ubiquitous; Na/O anti-correlation is present in all old GCs observed to date (though Mg/AI and large He spreads only in some).
- Most GCs show no, or only very small (≤0.05 dex), spreads in Ca, Fe
- Fraction of "anomalous" stars is *large*; 50% or more.

The Mass Budget Problem

- Enriched wind material (whether from AGB or MS stars) is insufficient to form a 2nd generation that is as massive as the 1st gen.
- Initial masses of GCs predicted to have been 10-20 x higher than currently observed

(Decressin et al. 2007; D'Ercole et al. 2008; Vesperini et al. 2010; Bekki 2011; Valcarce & Catelan 2011; Conroy 2012)

- More than 50% of the Galactic halo might consist of "lost" GC stars (e.g. Martell et al. 2011; Gratton et al. 2012).
- "Early disc accretion" scenario:
 - polluted material is swept up by discs around "1st gen" low-mass stars.
 - Massive interacting binaries provide enough ejecta to avoid mass-budget problem (Bastian et al. 2013).

The Na/O anticorrelation

Only found in old GCs so far. But YMCs with comparable masses are rare and far away.

ESO 338-IG04 - Cluster 23 $t = 6^{+4}$ -2 Myr $A_v = 0$ $M \sim I \times 10^7$ Msun $R_{bubble} \sim I20-200$ pc $Z = 0.2 Z_{sun}$

- Bubble began expanding I-3 Myr after formation
- Efficiently removed any pristine material out to hundreds of parsecs (still expanding at 40 km/s)
 Metallicity below that of Galactic globular clusters that show anomalies

Östlin et al. 2007

Courtesy N. Bastian

Bastian, Hollyhead, & Cabrera-Ziri 2014

GCs in dwarf galaxies

Some dwarf galaxies have extremely rich GC systems for their sizes

The Fornax dSph

(image from Letarte et al. 2006)

5 GCs, M_V ~ -13.1 (Hodge 1961; Mateo 1998)

Total stellar mass $M^* \sim 6 \times 10^7 M_{\odot}$ (Coleman & de Jong 2008).

Mass of GCs ~ 10⁶ M $_{\odot}$ (~1.7% of M*)

4.2.1. Fornax

The Fornax dwarf provides probably the clearest case of a dwarf whose stellar component has *not* been disturbed by Galactic tides. Not only is the tidal radius clearly well outside the luminous radius, but also there is no evidence for distensions in the outer profile that may be ascribed to the past effect of tides. A $c_k = 4$ King model fits the surface density profile of Fornax extremely well, down to the last measured point.

Peñarrubia et al. 2009

The Fornax GCs

HST WFPC2+WFC3 F343N/F555W/F814W

~24 pc

Metallicities from high-dispersion spectroscopy

	[Fe/H]	[Ca/Fe]	$v_r ({\rm km}{\rm s}^{-1})$	Source	
Fornax 1	-2.5 ± 0.1	$+0.15 \pm 0.04$	59 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 2	-2.1 ± 0.1	$+0.20 \pm 0.03$	64 ± 1	Letarte et al. 2006	Indiv. stars
Fornax 3	-2.3 ± 0.1	$+0.25 \pm 0.08$	60.4 ± 0.2	This work	Integr. light
Fornax 4	-1.4 ± 0.1	$+0.13 \pm 0.07$	47.2 ± 0.1	This work	Integr. light
Fornax 5	-2.1 ± 0.1	$+0.27 \pm 0.09$	60.6 ± 0.2	This work	Integr. light

- Fornax 1, 2, 3, 5 all have [Fe/H] < -2
- Field star metallicities peak near [Fe/H] = -1 (Battaglia et al. 2006; Kirby et al. 2011).

Larsen et al. (2012)

GCs and field stars in Fornax

Field stars: Battaglia et al. (2006), Ca II triplet spectroscopy. GCs: Letarte et al. (2006); Larsen et al. (2012)

Field stars and GCs in Fornax: Metallicity distributions

Larsen et al. (2012, A&A 544, L14) Field stars: Battaglia et al. (2006), corrected for spatial coverage.

GCs: Letarte et al. (2006), Larsen et al. (2012)

For [Fe/H] < -2: Mass in field stars ~ $3 \times 10^{6} M_{\odot}$ Mass in GCs ~ $1 \times 10^{6} M_{\odot}$

About 1/5-1/4 of all metal-poor stars in Fornax dSph belong to F1+F2+F3+F5.

Clusters could at most have been ~4-5 times more massive initially!

This assumes no other clusters or field stars formed with similar metallicity, no "infant mortality".

The WLM dlrr

D(WLM-Milky Way)~925 kpc D(WLM-M31) ~ 950 kpc Near edge of Local Group $M_V \sim -14.5$

1 old GC: $M_V\text{=-}9.0,~M\text{~}6\text{\times}10^5~M_\odot$

(Humason et al. 1956; Ables & Ables 1977; Sandage & Carlson 1985; Larsen et al. 2014a)

WLM: field stars vs GC

Field stars:

Stellar mass M* ~ $1.6 \times 10^7 M_{\odot}$ (Zhang et al. 2012)

<[Fe/H]> = -1.28

(Leaman et al. 2013, Ca II IR triplet spectroscopy of RGB stars)

Globular cluster:

 $M \thicksim 6 \times 10^5 \ M_{\odot}$

Metal-poor ([Fe/H]~-2.0)

GC accounts for 17%-31% of metal-poor stars

(Larsen et al. 2014a)

Tho IKN dSph

DSS image: brightest GC marked (IKN dSph itself practically invisible)

-0.5

IKN-5 300 IKN 1 200 100 100 100

-1.5

[Fe/H]

-2

0

-2.5

 $L_{\rm GC}/L_{\rm tot} \approx 13\%$

Field star metallicities from photometry of AGB (Lianou et al. 2010) 1 GC (IKN-5) has [Fe/H] ~ -2.0 Field:GC ratio about 1:1 at [Fe/H] = -2

(Larsen et al. 2014a)

Light elements in Fornax GCs: Individual stars

Letarte et al. 2006

Fig. 2. The finding charts for our observations of the Fornax GCs, from 1 (*left*) to 3 (*right*) $2N\delta$ rth is up and East 4s feft, as indicated. Note that star Cl3-B59 is outside of the cluster 3 HST field, to the west. [Fe/H]

*

Constraining abundances with photometry

N spreads in Fornax GCs

Synthetic colours based on ATLAS12/SYNTHE model spectra.

Larsen et al. (2014b)

Bottom line:

The GCs in the Fornax dSph (and probably other dwarfs) are similar to their Milky Way counterparts in terms of multiple stellar populations.

GC formation models must account for both "internal" (large number of polluted stars) and

"*external*" (high ratio of GC/field stars in dwarf galaxies) mass budget problems.

Radial distributions

- All scenarios: enriched population should be more centrally concentrated
 - AGB: Formation from cooling flow
 - Massive stars: enriched population forms near mass-segregated massive stars
 - Early disc accretion: Accretion most effective in central regions, where density is high.

Radial distributions of sub-populations

SDSS data, $r > 0.5 r_h$:

Enriched stars generally the most centrally concentrated.

Expected in all scenarios

- AGB scenario (cooling flow)
- Massive stars (mass segr.)
- Disc accretion (most efficient near centre)

Lardo et al. (2011)

Radial distributions in M15

Group A ("pristine") stars most centrally concentrated.

K-S test for radial distr. of A vs (B,C): $P = 3 \times 10^{-5}$.

Combining HST and SDSS data

"U"-shaped trend of normal vs. "enriched" stars.

Enriched stars are preferentially located near the half-mass radius.

Not expected in any of the current scenarios.

Larsen et al., ApJ, subm.

Mass segregation?

- If enriched stars are strongly He-enriched (Y~0.40), then M_{TO} ~0.6 M_{\odot} instead of 0.8 M_{\odot} at 13 Gyr
- Mass segregation might then "push" enriched RGB stars outwards from the centre
- In outer regions, primordial trends would be preserved because of long relaxation time.
- Does this work?

N-body simulations

NBODY6 simulations for stars of

- different masses
- same initial distrib.

Evolved to 11.5 Gyr

(Lützgendorf et al. 2013; McNamara et al. 2012)

```
It might just work!
But...
```

Effect of Y on isochrones

 $\Delta_{F606W-F814W} \sim 0.03 \text{ mag}$ for Y=0.25 vs Y=0.40

Measurable.

Dartmouth isochrones (Dotter et al. 2007)

No colour difference!

Summary

- Young massive clusters are very gas-poor very early on.
- High ratio of metal-poor GCs to field stars in dwarf galaxies is a challenge to AGB and FRMS scenarios.
- Radial distribution of subpopulations in M15 is a challenge to all scenarios.