## **Discussion session F:**

what do globular clusters tell us about the formation of massive clusters and about their early evolution

> The early life of stellar clusters, Copenhagen, 7th of November 2014

Pavel Kroupa Helmholtz-Institut fuer Strahlen und Kernphysik (HISKP) Helmholtz Institute for Radiation and Nuclear Physics c/o Argelander-Institut für Astronomie University of Bonn

Freitag, 7. November 14



Pavel Kroupa: University of Bonn

1



| Consistent<br>with<br>M/LA GC forms<br>==> v<br>it would<br>constraints                                                           | mass segregated and suffers residual-gas expulsion<br>very different to its present-day appearance :<br>have been <1pc and >10 times more massive.                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Observed:</b> metal-richer (redder) of<br>have lower M/Lv ratios,<br>in contradiction to expectations for<br>population models | GCs<br>Strader et al. (2009)<br>from                                                                                                                                                                    |
| Theor<br>Metal-richer you<br>=                                                                                                    | y based on residual-gas expulsion :<br>ing GCs stronger coupling of gas to feedback<br>=> more violent gas expulsion<br>=> more loss of low-mass stars<br>=> lower M/Lv ratios<br>Marks & Kroupa (2010) |
| Freitag, 7. November 14                                                                                                           | 5 Pavel Kroupa: University of Bonn                                                                                                                                                                      |
|                                                                                                                                   |                                                                                                                                                                                                         |
| Consistent<br>withA GC forms<br>==> v<br>it would<br>constraints                                                                  | mass segregated and suffers residual-gas expulsion<br>very different to its present-day appearance :<br>have been <1pc and >10 times more massive.                                                      |
| Very young GCs must have been >10 times more massive for these scenarios to work :                                                | Slow mass loss in disks from fast rotating massive stars<br>Decressin Charbonnel et al. (2007)                                                                                                          |
|                                                                                                                                   | Winds from fast rotating binary massive stars<br>de Mink et al. (2009)                                                                                                                                  |
|                                                                                                                                   | Winds / ejecta from AGB stars                                                                                                                                                                           |
|                                                                                                                                   | D'Antonna, Vesperini,                                                                                                                                                                                   |
| ==> this needs much la population ratios : possible th                                                                            | rger loss of 1st generation stars to make the observed<br>arough gas expulsion and more concentrated 2nd generation.<br><b>But questions remain</b>                                                     |
| One important aspect : top-ho                                                                                                     | eavy IMF (Marks et al. 2012; Prantzos & Charbonnell 2006)                                                                                                                                               |
|                                                                                                                                   |                                                                                                                                                                                                         |

Possible alternative : element anti-correlations (e.g. Na-O) and multiple populations stem from merged binaries

Jiang, Han & Li (2014, ApJ).



SS

0.0

-1.5

SS BP ([O/Fe]<-0.169) BP ([O/Fe]>-0.169&[Na/Fe]>0.463) BP (0.213<[Na/Fe]<0.463) BP ([Na/Fe]<0.213)

-0.5

[O/Fe]

0.0

0.5

-1.0

8

Pavel Kroupa: University of Bonn













Gas-expulsionThe work of Sambaran Banerjee<br/>on NGC3603 and R136, together with previous work on<br/>the ONC and the Pleiades<br/>suggests thatSFE = 0.33,  $\tau_{delay} = 0.6$  Myr;  $t_{gas} = \frac{r_h}{10 \text{ km/s}}$ <br/>are astonishingly universal<br/>(some variation for extreme star-burst clusters (Marks & Kroupa 2010) $^{16}$ <br/>Prev Kroups Linearity of Emerge<br/>Prev Kroups 10