

Disc Formation and Feedback from YSOs

Robi Banerjee

University of Hamburg

Co-Worker:

Daniel Seifried (Cologne), Christoph Federrath (Canberra), Ralph Pudritz (McMaster), Christian Fendt (MPIA), Ralf Klessen (Heidelberg)

Star Formation: Early-type discs

Observations of protostellar discs

M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Magnetic Fields

galactic B-fields (e.g. R.Beck 2001) large scale component: $\sim 4 \mu G$ total field strength: $\sim 10 \mu G$

The ISM is permeated with magnetic fields

magnetic polarization measurements in the Pipe nebula F.O.Alves, Franco, Girart 2008

Turbulence

Larson relation: Turbulence in Molecular Clouds

- ⇒ supersonic high mass cores
- \Rightarrow sub-sonic low mass cores (R < 0.1 pc)

Magnetic Fields

→ mass-to-flux ratio for pre-stellar cores:

$$\mu = 2 ... 5$$

Star Formation: Early-type discs

Collapse of magnetised, rotating cloud cores

• **stronger** magnetic fields: μ < 5 in agreement with observations

(e.g. Crutcher et al. 2010)

Hennebelle & Teyssier 2008, ...

- ⇒ **too** efficient magnetic braking
- ⇒ **no** disc formation

Magnetic Braking Catastrophe

Solutions?

- flux loss by:
 - Ohmic resistivity (Dapp & Basu 2011, Krasnopolsky et al. 2010)
 - ambipolar Diffusion (Duffin & Pudritz 2008, Li et al. 2011)
 - turbulent reconnection (Lazarian & Vishniac 1999, Santos-Lima et al. 2012)
- Hall effect (Krasnopolsky et al. 2011)

Magnetic Braking Catastrophe

Non-ideal MHD and reconnection active only at small scales/high density

> not effective enough to reduce magnetic braking

⇒ Li, Krasnopolsky & Shang 2011:

"The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved"

Magnetic Braking Catastrophe

⇒ what about turbulence?

Collapse of Turbulent Cloud Cores

Seifried, et al. 2013

Run	$m_{\rm core}$ $({ m M}_{\bigodot})$	r _{core} (pc)	μ	Rotation	Ω (10 ⁻¹³ s ⁻¹)	$oldsymbol{eta}_{ ext{turb}}$	Turbulence seed	p	$M_{ m rms}$	t _{sim} (kyr)
2.6-NoRot-M2	2.6	0.0485	2.6	No	0	0.087	A	5/3	0.74	15
2.6-Rot-M2	2.6	0.0485	2.6	Yes	2.20	0.087	Α	5/3	0.74	15
2.6-NoRot-M100	100	0.125	2.6	No	0	0.084	Α	5/3	2.5	15
2.6-Rot-M100	100	0.125	2.6	Yes	3.16	0.084	Α	5/3	2.5	15
2.6-Rot-M100-B	100	0.125	2.6	Yes	3.16	0.084	В	5/3	2.5	15
2.6-Rot-M100-C	100	0.125	2.6	Yes	3.16	0.084	C	5/3	2.5	15
2.6-Rot-M100-p2	100	0.125	2.6	Yes	3.16	0.084	Α	2	2.5	15
2.6-NoRot-M300	300	0.125	2.6	No	0	0.12	Α	5/3	5.0	10
2.6-Rot-M1000	1000	0.375	2.6	Yes	1.90	0.081	A	5/3	5.4	10

- low + high mass cores
- strong magnetic field
- with/without global rotation
- sub-/supersonic turbulence

• resolution: 1.2 AU

Seifried, RB, Pudritz, Klessen 2012

⇒ discs "reappear"

Robi Banerjee, Stellar Clusters, Copenhagen, Nov 6 2014

velocity structure

⇒ no flux loss

accretion flow

Seifried, et al. 2014

Outflows & Jets

- Outflows & Jets are ultimately linked to the formation of stars
 - ⇒ what's their impact on star formation?

What drives Outflows & Jets?

outflows launched by magnetic fields

Jet Launching

Lorentz force:

(assume axi-symmetry, i.e. $\partial_{\Phi} \mathbf{B} = 0$)

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^2 + (\mathbf{B}_{\mathrm{p}} \cdot \nabla) \left(\mathbf{B}_{\mathrm{p}} + B_{\phi} \mathbf{e}_{\phi} \right) - \frac{B_{\phi}^2}{R} \mathbf{e}_R$$

hoop stress (jet collimation)

different force types:

- magnetic pressure: force along gradient
- tension: force along magnetic field lines
- hoop stress: force towards axis

Jet Launching

Lorentz force:

(assume axi-symmetry, i.e. $\partial_{\Phi} \mathbf{B} = 0$)

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^2 + (\mathbf{B}_{\mathrm{p}} \cdot \nabla) \left(\mathbf{B}_{\mathrm{p}} + B_{\phi} \mathbf{e}_{\phi} \right) - \underbrace{\frac{B_{\phi}^2}{R} \mathbf{e}_R}$$

"beads on a wire"
Blandford-Payne type acceleration

hoop stress (jet collimation)

magnetic pressure acceleration

courtesy Matsumoto & Shibata, 1999

Jet Launching

Collapse of Magnetised Cloud Cores

magnetically driven Jets / Outflow from YSOs

Outflows from Collapse of Magnetised Cores

• Jets are powerful:

$$L_{
m jet} = rac{\dot{M}_{
m jet} v_{
m jet}^2}{2} pprox 2.9 imes 10^{32} igg(rac{\dot{M}_{
m jet}}{10^{-8}~M_\odot~{
m yr}^{-1}} igg) \ imes igg(rac{v_{
m jet}}{300~{
m km~s}^{-1}} igg)^2 {
m ergs~s}^{-1} \qquad \sim 8\% L_\odot$$
 $E_{
m iet} = L_{
m iet} au_{
m iet} pprox 10^{44}~{
m ergs} \qquad {
m with}~ au_{
m jet} = 10^4~{
m yrs}$

$$\Longrightarrow$$
 cf. $E_{\text{turb}} \sim 10^{46} \text{ ergs}$

> Jets from a little stellar cluster could maintain the turbulence

⇒ But how efficient do they couple to the ISM?

- numerical experiments with single, high Mach number jets (momentum injection)
- detailed analysis with velocity PDFs

- turbulent motions are sub-sonic
- very little supersonic fluctuations
 - "supersonic desert"

- supersonic fluctuations decay quickly: E∝t⁻² (Mac Low et al. '98)
- supersonic fluctuations
 occupy only a small
 fraction of all fluctuations

Influence of Magnetic Fields

stabilize jet (aligned field)

Global simulation

 collapse of a turbulent
 cloud core (Li&Nakamura 2006; Carroll et al. 2008, Dale & Bonnell 2008, Wang et al. 2010, Federrath et al. 2014)

- influence on small scales
- self-regulated SF?
- large scale turbulence?

Wang et al. (2010): Collapse of a massive, turbulent cloud core $(M_{core} = 1600 M_{sol}) + feedback from jets & outflows$

Wang, Li, Abel & Nakamura 2010

→ Outflows & Jets do not stop star formation

Outflows during Cluster Formation

→ Outflows & Jets do not stop star formation

Summary

- It is easy to form discs
- Angular momentum is efficiently transported during disc formation by gravitational torques
 - protostellar discs allow efficient accretion
- Magnetic braking catastrophe only for unrealistic ICs
- Influence of Outflow feedback?
- ⇒ not conclusive:
 - might not be too important on cloud scales