Binarity of Young Stars: Final Conditions for Star Formation, Initial Conditions for Cluster Evolution

Adam L. Kraus The University of Texas at Austin

(Including collaborative results with Gaspard Duchene, Michael Ireland, Lynne Hillenbrand)

Multiplicity is a Final Boundary Condition for Star Formation

- Frequency (Implications for the IMF, Ubiquity of Sun-like (Single) Star Formation, Impact on Planet Formation)
- Separations (Sizes of Protostellar Cores, Dynamical Evolutionary History)
- Mass Ratios (Accretion History)
- Mass Dependence (Formation Processes for Stars with Mass <<M_{Jeans})

Multiplicity is an Initial + Final Boundary Condition for Cluster Evolution

- Frequency (Dynamical Disruption of Binary Systems)
- Separations (Impact Parameters of Dynamical Interactions, Binary Hardening, Kozai-Type Orbital Evolution)
- Mass Ratios (Binary Disruption, Post-Main Sequence Mass Transfer)
- Mass Dependence (Mass Segregation and Tidal Evaporation of Singletons vs Binaries)

Cluster Dynamics

Galactic

Potential

IPAC/Spitzer; STScI/DSS; JPL/GALEX

Gas +

Radiation

GATZER

Gas + Radiation

Boundary Conditions

Cluster Dynamics

Galactic Potential

IPAC/Spitzer; STScI/DSS; JPL/GALEX

Gas + Radiation

Boundary Conditions

Cluster Dynamics

Galactic Potential

IPAC/Spitzer; STScI/DSS; JPL/GALEX

Field Population: Frequencies

Field Population: Semimajor Axes

Figure from Duquennoy & Mayor (1991). Strongly mass dependent: The mean separation for G dwarfs is 30 AU (blue arrow), while for L/T dwarfs the mean separation is 4 AU (red arrow). The binary separation distribution appears to be unimodal and log-normal.

Field Population: Mass Ratios

Figure from Raghavan et al. (2010).

G dwarf distribution is linear-flat (slope = 0), while L/T dwarf distribution has a clear maximum at q~1 (slope = -4). The mass ratio distributions are power laws with massdependent exponents.

Field Population: Mass Ratios

Field Population: Wide Binaries

Gas + Radiation

Boundary Conditions

Cluster Dynamics

Galactic Potential

IPAC/Spitzer; STScI/DSS; JPL/GALEX

Nearby, Isolated Star Formation

Turning a drawback into a bonus: We don't have any nearby young clusters to observe, but we have plenty of examples of binary formation with minimal dynamics.

Sparse Regions are Dynamically Primordial (pc) 0.01 0.1 10 (stars deg⁻² Kraus & Hillenbrand (2008) $\Sigma \propto \theta^{-1.53}$ 000 Φ Φ $\Sigma \propto \theta^{-0.95}$ companions $\Sigma \propto \theta^{+0.12}$ Taurus ···ə. ···ə. 0.001 0.01 0.1 $\theta(\text{deg})$

Populations are unmixed on scales of >0.2 pc (>10⁵ AU).

The Long Tale of Binarity in Taurus

Leinert et al. 1993; Ghez et al. 1993; Richichi et al. 1994; Simon et al. 1995; Kohler et al. 1998; Duchene et al. 1999; White & Ghez 2001; Kraus et al. 2005; Konopacky et al. 2007; Kraus et al. 2011; Kraus & Hillenbrand 2012...

For high-mass stars, must go elsewhere: Kouwenhoven et al. 2005, 2007; Sana et al. 2012, etc.

Observing Taurus, 1: Adaptive Optics

Adaptive optics

"Adaptive Optics: How It Works @ CfAO" (Source: Center for Adaptive Optics) http://cfao.ucolick.org/images/speckle8ao.mpg

Correct the turbulence introduced by the atmosphere, and hence concentrate the light of the primary star away from the planet.

Observing Taurus, 2: Interferometry

Nonredundant Mask Interferometry (NRM): Place an aperture mask in the pupil plane, turning the single mirror into a sparse array. Fourier analysis techniques (i.e. closure phases) filter almost all remaining noise from turbulence and AO errors. (It's called SAM on the VLT.)

The Binary Population of Taurus-Auriga

From Kraus et al. (2012)

Red: New companions Blue: Previously known Dashed: Detection Limits

Sample: ~90% of the known Class II/III Taurus members with M > 0.25 Msun

The Binary Population of Taurus-Auriga

The Binary Population of Taurus-Auriga

Wide Binary Systems

Few wide (500-5000 AU) low-mass binaries, but plenty (too many) for solar-type stars as compared to the field. Most high-mass field stars must lose their wide companions in dynamical interactions, but low-mass stars never had them. From Kraus & Hillenbrand (2009).

Wide Binary Systems

Bayesian Analysis

Histograms are not ideal. Since data is rarely uniform, you end up either using dubious completeness corrections or degrading the most sensitive limits.

The answer is Bayes' theorem:

 $P(model | data) \propto P(data | model)P(model)$

Bayesian Analysis

Model the binary population in terms of four parameters:

- The total binary frequency F
- A power-law mass ratio distribution with exponent γ
- A log-normal separation distribution with mean log(μ) and standard deviation $\sigma_{log(s)}$

$$N(q,s) \propto F \times q^{\gamma} \times \exp\left(\frac{\left(\log(s) - \log(\mu)\right)^2}{2\sigma_{\log(s)}^2}\right)$$

The result isn't a PDF for the population, but rather a PDF for the parameters that *describe* the population.

For more math: Allen (2007), Kraus (2009), Kraus et al. (2011).

The Binary Population of Taurus-Auriga

Solar-Type: Log-flat, Opik's Law? (wide σ, uncertain ρ) M Dwarfs: Strongly peaked at a few 10s of AU

The Binary Population of Taurus-Auriga

Mass ratio distribution is linear-flat for solar-type stars, becoming steeper for lower-mass stars.

All these trends continue into the VLM regime – see Kraus & Hillenbrand (2012).

Chronology of Binary Evolution Gas + Add a little

Gas + Radiation

SPITZER

Galactic Potential

dynamics?

lics

IPAC/Spitzer; STScI/DSS; JPL/GALEX

Toward Dynamics: The ONC Core

From Reipurth et al. (2007), where symbols show binaries in three separation ranges.

Across all binary separations, frequency suppressed compared to Taurus (dynamics or initial conditions?).

At >200 AU, frequency profoundly suppressed in core, even versus halo (probably dynamics).

Consistent with Kohler et al. (2006).

Intermediate-Age Clusters

Similar results in intermediate-age clusters. Per Brander & Kohler (1998) and Patience et al. (2002), the field can be modeled as an admixture of sparse associations and clusters.

Trends with Age/Environment

From Duchene & Kraus (2013). Blue: Solar-mass stars. Red: Low-mass stars. Orange: Overall. Gray: Individual surveys. It is unclear if the cluster/association dichotomy results from initial conditions (gas density/temperature) or early dynamical evolution.

Field Population: Mass Ratios

Implications for Formation/Evolution

- Field mass dependence of features is primordial, not dynamical. Lower mass => lower frequencies, smaller separations. *Indicates core size at fragmentation, not preferential dissolution of low-mass systems.*
- Wide binaries are less common in the field and (young) clusters. Preferential dissolution of widest systems, with threshold set by cluster density?
- All companion masses are equally probable down to M_{prim}~0.3 M_{sun}, but then equal masses become increasingly probable. *Fragmentation occurs later, while less mass is still in the envelope?*
- Properties are continuous with mass. Stars/BDs form in a similar manner; no special formation process?

Future Directions

- Surveys at younger ages (with ALMA) for initial conditions and accretion/gas driven evolution (e.g., Tobin et al. 2014)
- Close (5-50 AU) binaries to provide a more dynamically pristine environment tracer in clusters (e.g., Kohler et al. 2006; Reipurth et al. 2007; Robberto et al. 2013)
- Updated surveys of nearby old clusters, using new member lists: Pleiades, Hyades, Praesepe
- What happens inside 5 AU?