Stellar encounters and protoplanetary disc evolution

Giovanni Rosotti (IoA Cambridge, MPE Munich) with:
James Dale, Barbara Ercolano, David Hubber (USM, Excellent cluster)
Maria de Juan Ovelar (Leiden, Liverpool)
Diederik Kruijssen (MPA)
Stefanie Walch (Cologne)
Carlo Manara (ESO/ESA)
PROTOPLANETARY DISCS DISPERAL

\[f_{\text{disk}} = \exp\left(-\frac{t}{\tau_{\text{disk}}}\right) \]
\[\tau_{\text{disk}} = 2.5 \ \text{Myr} \]

Giovanni Rosotti, The early life of stellar clusters
5 November 2014

Mamajek 09
Dispersal mechanisms

- Viscous evolution (accretion onto the star)
 (Lynden-Bell & Pringle 74, Hartmann 98)

- Photoevaporation
 - Internal
 - External

- Planet formation itself
 (Armitage & Hansen 1999; Rice 2003+; Zhu 2010+)

- Encounters with stars
 (Scally & Clarke 2001, Olczak & Pfalzner 2005, ...)

- (Winds, outflows, supernovae, ...)

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
Dispersal mechanisms

- Viscous evolution (accretion onto the star)
 (Lynden-Bell & Pringle 74, Hartmann 98)

- Photoevaporation
 - Internal
 - External

- Planet formation itself
 (Armitage & Hansen 1999; Rice 2003+; Zhu 2010+)

- Encounters with stars
 (Scally & Clarke 2001, Olczak & Pfalzner 2005, ...)

- (Winds, outflows, supernovae, ...)

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
N-body/SPH approach

Previous studies: N-body simulations + post-processing using simulations of single disc-star encounters
see also poster P7, Vincke
N-body/SPH approach

Previous studies: N-body simulations + post-processing using simulations of single disc-star encounters
see also poster P7, Vincke

We simulate the **viscous evolution** and the **encounters**

Hybrid SPH/N-body Simulation (Hubber+ 2012)
Combine SPH with N-body collisional dynamics

- 100 stars, Plummer sphere, r=0.1 pc
- Stars have same mass: 1 M☉
- 50 discs around them, m=5% star mass
- Evolve for t=0.5 Myr

The discs will viscously expand (not included in previous studies) and feel the gravitational interaction of the nearby stars

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
Evolution

Giovanni Rosotti, The early life of stellar clusters

5 November 2014
Evolution

Rosotti+14

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
Interaction example

![Graph and Image]

Giovanni Rosotti, The early life of stellar clusters
Effects on disc mass...

Some disc dramatically affected but overall little effect
and on disc size

Much more affected

Median

Disc in isolation

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
How close do stars get?

Distance from the center of mass [au]

Distance of closest encounter [au]

How close do stars get?
Effet of initial disc size

Median vs disc in isolation

Giovanni Rosotti, The early life of stellar clusters

5 November 2014
Effet of initial disc size

Median vs disc in isolation

Equilibrium reached

Giovanni Rosotti, The early life of stellar clusters
5 November 2014
A semi-analytical model

- Fit disc evolution in isolation (evolution described by):

\[
R_{\text{disc}}(t, R_0, t_\nu, 0) = \left(1 + \frac{t}{t_\nu, 0}\right)^{1/(2-\gamma)} R_0
\]

<table>
<thead>
<tr>
<th>Run</th>
<th>(R_{\text{out}}[\text{au}])</th>
<th>(\gamma)</th>
<th>(t_\nu[\text{yr}])</th>
<th>(\alpha_{\text{SS}})</th>
<th>(t_{\text{spread}}[\text{yr}])</th>
<th>(\alpha_{\text{SS,local}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>R10</td>
<td>10</td>
<td>1.11</td>
<td>18891</td>
<td>0.045</td>
<td>16800</td>
<td>0.1</td>
</tr>
<tr>
<td>R30</td>
<td>30</td>
<td>0.44</td>
<td>23218</td>
<td>0.062</td>
<td>36220</td>
<td>0.45</td>
</tr>
<tr>
<td>R100</td>
<td>100</td>
<td>-1.69</td>
<td>11762</td>
<td>0.133</td>
<td>43400</td>
<td>5.4</td>
</tr>
<tr>
<td>R300</td>
<td>300</td>
<td>-3.19</td>
<td>25432</td>
<td>0.161</td>
<td>132000</td>
<td>13</td>
</tr>
</tbody>
</table>

- Look at close encounters
- Assume encounters truncate the disc at \(r/3\) (e.g. Breslau 2014; remember here stars equal masses)
- If disc was truncated, reset disc size and grow again
A semi-analytical model (2)

Run R10

Run R300

Simulation
Model
A semi-analytical model (2)

Effect of distant encounters?

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
Comparison with observations

SIMULATIONS

OBSERVATIONS

de Juan Ovelar+, 12

Giovanni Rosotti, The early life of stellar clusters 5 November 2014
Other hints from observations

• Sicilia-Aguilar+ 2013: Coronet cluster (50 stars, 0.15 pc) discs seem much more evolved than clusters of same age (and even of some older ones)
• Stolte+ 2010: disc fraction increases with distance from the center
CONCLUSIONS

- Evolution of discs in a clustered environment
- Encounter-driven mass loss:
 - can be dramatic
 - but do not expect the majority of disks to go through it
- Encounter-driven size reduction:
 - encounters truncate the disc
 - turnover in disc size seems consistent with observations (threshold at ~2-3 x 10^3 pc^-2)

FUTURE WORK

- Simulate more realistic clusters
- Include massive stars and external photo-evaporation
- Compare spatial distribution of discs with observations