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as the simulation progresses. For example, at the end of simulation
R10, only ∼ 10 per cent of the particles are left in the discs; when
combined with the disc spreading, the analytical relations predict
a degradation in the spatial resolution of a factor of 3. The actual
values extracted from the simulation are however still in the same
range as at the beginning of the simulation. We warn however that
this does not mean that the actual resolution is higher than what we
would expect; rather, it means that by definition it is not possible to
resolve in the simulation features that are smaller, within a factor
of order unity, than h. The interpretation of this result is thus that
at the end of our simulations the discs are, for numerical reasons,
thicker than what is expected from their temperatures.

It is possible to compute the resulting viscosity from the
chosen density and temperature profiles. According to Lodato &
Price (2010), in our simulations the Shakura-Sunyaev parameter is
αSS � 0.004, which is in line with the observational results (Ar-
mitage 2011). A possible concern is that the analytical relations do
not hold at the resolutions employed in this paper. For this reason,
in the next section we measure explicitly the value of the viscosity
by measuring the rate of spreading of the disc. Indeed, we find the
effective viscosity is higher than predicted by this estimate, yet still
marginally compatible with the values found in observations.

2.3 A semi-analytical model for the disc size

In this section we present a semi-analytical model that we will use
in section 4.1 to understand the results of the simulation in terms
of disc sizes. A class of widely used models for a disc in isolation
are the family of self-similar solutions derived by Lynden-Bell &
Pringle (1974). They describe the evolution of a disc whose viscos-
ity profile is a power-law. The radius time evolution is given by:

Rdisc(t, R0, tν,0) =

�
1 +

t

tν,0

�1/(2−γ)

R0, (6)

where R0 is the initial radius, tν,0 the viscous time at the initial
radius, and γ is the exponent of the viscosity with respect to ra-
dius. The viscous time can be related to the αSS (see Section 2.2.2)
parameter using the definition of viscous time (see equation 20 of
Hartmann et al. 1998) and standard relations:

αSS =
1
6π

�
tν,0

tdyn

�−1

(H/R)−2 1
(2− γ)2

, (7)

where tdyn is the orbital time scale at R0 and H/R is the aspect
ratio. For simplicity we will use H/R = 0.05 when evaluating this
relation numerically. We note that this is a worst-case scenario (that
is, a slightly overestimate of αSS ), as this is the value at the inner
radius and the aspect ratio is a midly growing function of radius. In
addition, if the disc is vertically under-resolved, the effective H will
be thicker than the one due to thermal pressure, therefore leading
to a higher H/R and therefore to a lower αSS than the estimate we
get.

The expansion law has the nice feature that, being self-similar,
one is always free to “reset” what we call initial radius, and start the
evolution again from there, without changing the results (provided
we also update the viscous time). In mathematical terms,

Rdisc(t
��
, R0, tν,0) = Rdisc(t

�� − t
�
, R1, tν,1), (8)

where R1 = Rdisc(t
�
, R0, tν,0) and tν,1 is the viscous time at R1.

We exploit this property in our simple semi-analytical model.
We let the disc increase in size at each timestep following Equation
6. In order to derive the parameters, we use numerical fits to the

results of the evolution of discs in isolation. At each timestep, we
look in the results of the simulation for the closest star at that time to
a given disc and record its distance d. We assume that the encounter
would have truncated the disc at d/3 (Adams 2010). If the radius is
larger than this value, we truncate the disc, otherwise we leave the
disc unperturbed. We then let the viscous evolution start again. To
summarise, we can compute the final disc radius assuming that:

(i) the radius evolution is always given by Equation 6, i.e. by the
Lynden-Bell & Pringle (1974) solution;

(ii) the encounter distances come from the results of the simula-
tions;

(iii) the encounters simply truncate the discs at d/3.

We do not expect such a simple model to be able to capture
the full results of the 3D hydro simulation, however it is useful to
assess if the encounters produce a simple truncation or have more
complicated effects. As we will show, the fact that there are cases
where the model is capable of correctly reproducing some of the
results shows that it is a useful tool. In particular, it highlights that
in these cases the assumptions that have been used to build it are
valid. On the contrary, when the model breaks down it shows that
these assumption must have broken down.

3 SIMULATIONS

We evolve the clusters for 10 dynamical time-scales, where the dy-
namical time is defined as:

tdyn =

�
r
3
cluster

GMcluster

�1/2

. (9)

Here, G is the universal gravitational constant, Mcluster is the total
mass of the cluster and rcluster is the scale length a of the Plummer
sphere (see Equation 3). For the scale length (0.1 pc) and mass
values (100 M∗) introduced in section 2.2, the dynamical time-
scale is � 47000 yr. Therefore, the simulations are evolved for
tend = 0.47 Myr. For example, after this time in simulation R10,
nearly 90% of the initial mass has accreted onto the stars.

Our cluster will evolve on the relaxation time, which is given
by:

trelax =
N

ln(0.4N)
tdyn � 27tdyn � 1.27 Myr. (10)

Given that this time is longer than the one we simulate, we do not
expect a significant evolution of the cluster during the simulation
due to pure N-body effects. The relaxation time is of the same order
as the lifetime of protoplanetary discs ( 3 Myr, Fedele et al. 2010).
This means that during the life of a protoplanetary disc there will be
some evolution of the cluster. This is important when interpreting
discs with large outer radii as discs which have already evolved due
to viscous spreading. In this case, the simulation is not fully self-
consistent since we do not simulate the early dynamical evolution
of the cluster but start from the same cluster initial conditions.

3.1 Extracting the discs from the simulation

To analyze the results of the simulations, we apply a procedure to
extract the discs. Each gas particle is assigned to the star that it is
most bound to. We also apply a cut off in eccentricity of 0.9, but
in practice we find that very few bound particles have such high
eccentricities. We define the ambient gas as particles that are not
bound to any star. Once we have identified a disc, in order to find its

c� 2013 RAS, MNRAS 000, 1–18
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Figure 2. Column density distribution at time t = 135400 yr, showing the
stripping of a disc shortly after the interaction of a star with a disc with a
second star. The two stars are represented by the white dots. The tidal tail
created during the interaction is clearly visible.

Run Rout[au] γ tν [yr] αSS tspread[yr] αSS,local

R10 10 1.11 18891 0.045 16800 0.1
R30 30 0.44 23218 0.062 36220 0.45
R100 100 -1.69 11762 0.133 43400 5.4
R300 300 -3.19 25432 0.161 132000 13

Table 1. For each simulation run, we show the parameters of the fit to the
radius-time relation with the analytical solution given by equation 6.

case). Typical values for αSS range from 10−2 to 10−4, so that
our discs are quite viscous. From the analytical relations, we would
expect a constant αSS , and therefore a constant viscosity, which
should translate to γ = 0. Since we get a different value, this means
at these resolutions the analytical formulae for SPH viscosity are
not valid. On the other hand, this is an effect that we can calibrate
for. Although we can not decide which viscosity law to apply, we
can still derive it a posteriori by looking at the evolution of a disc in
isolation. This also means however that care should be taken when
interpreting the value of αSS reported in the table. This value is to
be interpreted as a global, effective value that describes how fast
overall the disc is expanding. However, the local, that is, at Rout,
level of angular momentum transport is higher than this. This is im-
portant as it is this local level that determines the ability of the disc
to wash out local perturbations. For reference we report in the ta-
ble also the local values of αSS , that we compute from the formula
(e.g., Armitage 2011):

αSS,local =
1
2π

�
tν,0

tdyn

�−1

(H/R)−2
. (12)

We note that the different runs have quite different expansion
laws. In particular, it is the exponent in the relation that tends to
vary the most. Some of the discs show values of γ that are clearly
unphysical: for example, the value −3 for R300 implies a very
steep and increasing dependence of the temperature with radius,
which is not present in our model. Therefore, one should regard
the Lynden-Bell & Pringle (1974) similarity solution as a fitting
formula for the evolution of these discs, and not as a physical de-
scription of their evolution. For this reason, the local estimate of
αSS is a more accurate description of what is going on in these

simulations. Viscosity values are expected to be lower in real discs,
which implies that those encounters’ effects that in our simulations
could not be washed out by viscosity would be even stronger in real
discs. The variation of the exponent means that, despite the fact that
the viscous times are similar, run R10 is the one varying the fastest
(indeed, it even overtakes the other ones by the end of the simu-
lation), while the other ones expand more slowly. For this reason,
we stress that looking only at the viscous time might be mislead-
ing, since this value alone does not fully describe the evolution of
the disc. As another reference, we list in the table also the value of
tspread, which we define as:

tspread =
Rdisc

dR/dt
, (13)

that is, the timescale for a significant change in the disc radius. We
evaluate the denominator by computing analytically the derivative
of equation 6, and use the value of Rdisc at t = 0. It can be seen
that the disc R10 is the one that is varying the fastest. It is reassuring
that the disc in run R300, the one with the highest value of αSS , has
a very long tspread, so that its spreading is quite limited during the
course of the simulation (see also figure 7).

In order to quantify the effect of the limited resolution avail-
able on the viscosity, we run resolution tests of the discs in isola-
tion, that we report in the appendix.

The viscosity is also important after an encounter, as it allows
for the particle orbits to circularize. As Clarke & Pringle (1993)
pointed out, the exact form of the viscosity law probably does not
matter (in fact, some of the simulations in the literature have been
done only with pseudo-viscosity) for what the final surface density
distribution after an encounter is. Indeed, the final surface density
is given by the particle specific angular momentum, which sets the
final distance from the star once all the orbits have circularized.
This is true if there are no further encounters, but the exact vis-
cosity that one assumes decides the timescale over which the disc
finds a new equilibrium after an encounter. This is important in our
simulation, as the outcome of a second encounter will be different
depending on whether the disc had time to gain a new equilibrium
or not. However, since it is not clear from the physical point of view
what the viscosity after an encounter is going to be, we need to just
rely on the value that comes out of the SPH algorithm.

3.3 Simulation R10

We first comment in depth on the results from simulation R10, and
use this as a reference to compare to the other simulations. Figure 1
shows four column density snapshots from simulation R10. While
at the beginning of the simulation the discs are so small that they
are barely visible on the scale of the cluster, they expand signifi-
cantly due to viscous spreading. Due to this expansion, the discs
become large enough to be influenced by encounters. The interac-
tions between stars produce some unbound gas, which is visible as
a non-zero background density. The amount of gas that becomes
unbound is small, and at the end of the simulation, the mass of the
unbound gas is one order of magnitude less than the mass in all
discs at tend. Figure 2 shows the detail of a disc during an inter-
action. The two stars are represented by the white dots (note that
only one of them has a disc in this particular case). The tidal tail of
gas that has been ejected from the disc (Toomre & Toomre 1972;
Clarke & Pringle 1993) is clearly visible. We concentrate now on
how the encounters affect the disc properties.

Figure 3 shows the evolution of the discs in the cluster as a
function of time for simulation R10. The left panel shows the mass

c� 2013 RAS, MNRAS 000, 1–18
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