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Motivation

Find hidden structures in superstring scattering amplitudes
Results so far suggest that the pure spinor formalism is a good
tool to use
Clean up existing computations and express them in pure spinor
superspace (only one computation for all external states related
by supersymmetry)
More recent motivation: Obtain/check the BCJ relations in a
supersymmetric framework
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Computation of superstring scattering amplitudes:
4-pt @ 2-loop (Berkovits,C.M.)
4-pt @ 1-loop (Berkovits,C.M.)
4-pt: tree-level, 1-loop and 2-loop are proportional (C.M.)
Anomaly, minimal↔ non-minimal (Berkovits,C.M.)
5-pt @ 1-loop (C.M., C. Stahn)
5-pt @ tree-level

Derivation of 5-pt BCJ relations (work in progress)
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Some highlights

Pure spinor superspace representation of kinematic factors
4-pt at tree-level:

K0 =
1
2

km
1 kn

2 〈(λA1)(λA2)(λA3)F4
mn〉−(k1·k3)〈A1

n(λA2)(λA3)(λγnW 4)〉+(1↔ 2)

4-pt at 1-loop:

K1 = 〈(λA1)(λγmW 2)(λγnW 3)F4
mn〉

4-pt at 2-loops:

K2 = 〈(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4)〉

Anomaly (gauge variation of 6-pt 1-loop)

〈(λγmW )(λγnW )(λγpW )(WγmnpW )〉
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Some hightlights

5-pt @ 1-loop:

L12 = −
〈[

(λA1)(k1 · A2) + A1
p(λγpW 2)

]
(λγmW 5)(λγnW 3)F4

mn

〉
K25 = −

〈
(λA1)

[
(λγmW 2)(k2·A5)−1

4
(λγmγrsW 5)F2

rs

]
(λγnW 3)F4

mn

〉
−(2↔ 5)

Superspace Identities
Explicit proof in pure spinor superspace that the massless 4-point
amplitudes at tree-level, one-loop and two-loops are all proportional to
each other (up to Mandelstam variables).
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Pure Spinor Formalism, Berkovits 2000

Action (Minimal Pure Spinor Formalism)

S =

∫
d2z

(
1
2
∂X m∂Xm + pα∂θα − wα∂λ

α

)

Bosonic Pure Spinor

(λγmλ) = 0
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Pure Spinor Formalism

Some important definitions for amplitude computations:

Lorentz current
Nmn =

α′
4

(wγmnλ)

Supersymmetric momentum

Πm = ∂X m +
1
2

(θγm∂θ)

Supersymmetric derivative

Dα =
∂

∂θα
+

1
2

(θγm)α∂m
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Pure Spinor Formalism

Supersymmetric Green-Schwarz constraint

dα =
α′

2
pα −

1
2

(γmθ)α∂Xm −
1
8

(γmθ)α(θγm∂θ)

The b-ghost is a composite operator. . .

bnon−min = . . .+ (λγmnpr)(dγmnpd) + . . .

b = . . .+ d4δ′(N) + . . .
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Pure Spinor Formalism

Relevant OPE’s

X m(z, z)X n(w ,w) −→ −1
2
ηmn ln |z − w |2

Nmn(z)λα(y) −→ α′
4

(γmnλ)α

z − y

dα(z)V (y , θ) −→ DαV (y , θ)

z − y

Πm(z)V (y , θ) −→ ∂mV (y , θ)

z − y
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Issues of RNS and GS not present

Space-time SUSY
The pure spinor formalism has manifest space-time supersymmetry

Scattering amplitudes will result in superspace expressions
Only one computation for all multiplet states

Covariant BRST Quantization

QBRST =

∮
λαdα
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Prescription for Scattering Amplitudes

Massless On-shell Vertex Operators:
Unintegrated

V = λαAα(X , θ), QV = 0

Integrated

U =

∫
dz
(
∂θαAα + AmΠm + dαW α +

1
2

NmnFmn

)
, QU = ∂V

Where Aα(x , θ),Am(x , θ),Wα(x , θ) and Fmn(x , θ) are the SYM
superfields

DαAβ + DβAα = γm
αβAm, DαAm = (γmW )α + kmAα

DαW β =
1
4

(γmn) β
α Fmn, DαFmn = 2k[m(γn]W )α
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θ’s all over the place

SYM Superfields θ-Expansion

Aα(x , θ) =
1
2

am(γmθ)α −
1
3

(ξγmθ)(γmθ)α −
1

32
Fmn(γpθ)α(θγmnpθ) + . . .

Am(x , θ) = am − (ξγmθ)− 1
8

(θγmγ
pqθ)Fpq +

1
12

(θγmγ
pqθ)(∂pξγqθ) + . . .

Wα(x , θ) = ξα − 1
4

(γmnθ)αFmn +
1
4

(γmnθ)α(∂mξγnθ)

+
1
48

(γmnθ)α(θγnγ
pqθ)∂mFpq + . . .

Fmn(x , θ) = Fmn − 2(∂[mξγn]θ) +
1
4

(θγ[mγ
pqθ)∂n]Fpq + . . .,
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Tree-level Amplitudes

The prescription for tree-level amplitudes is given by

Tree-level N-point

AN = 〈V1(z1)V2(z2)V3(z3)

∫
dz4U4(z4). . .

∫
dzNUN(zN)〉

Computation proceeds as usual in a CFT
Use OPE’s to integrate out conformal weight 1 variables
Then integrate out zero-modes of λα and θα

λ3θ5 prescription

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1
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Pure Spinor Superspace

The computation of scattering amplitudes gives rise to pure spinor
superspace (PSS) expressions:

1 3 pure spinors λα and superfields such that 〈λ3θ5〉 = 1
2 Manifestly Lorentz covariant
3 Supersymmetric

Component expansions can be computed
Use FORM to do the boring stuff
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What makes PSS interesting?

There is a close relation between QBRST = λαDα and the EOM

DαAβ + DβAα = γm
αβAm

DαAm = (γmW )α + kmAα, DαFmn = 2k[m(γn]W )α

Kinematic factors are on-shell, so EOM and BRST integrations by
parts can be used to find non-trivial relations. Example from 4-pt
at tree-level

〈Dα(λA1)(λA2)(λA3)Wα
4 〉 = −〈(λDA1

α)(λA2)(λA3)Wα
4 〉

+〈A1
m(λA2)(λA3)(λγmW 4)〉

As BRST-exact terms decouple,

〈(λDA1
α)(λA2)(λA3)Wα

4 〉 =
1
4
〈(λγmnA1)(λA2)(λA3)F4

mn〉

C.R. Mafra (AEI) Pure Spinor Superspace 14 Aug 2009 16 / 41



Four gravitons at tree-level

Example

A = 〈V 1(z1, z1)V 2(z2, z2)V 3(z3, z3)

∫
C

d2zU4(z, z)〉

where V i(z, z) = V i(z)⊗ Ṽ i(z)eik ·X and U(z, z) = U(z)⊗ Ũ(z)eik ·X
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Tree-level 4-graviton computation

Sidenote
Previous computation (Policastro, Tsimpis 2006) was done in a way
that hid the simplicity of the result. Cancellations were overlooked and
no simple pure spinor expression was written down for the kinematical
factor.

We have to compute

〈(λA1)(z1)(λA2)(z2)(λA3)(z3)

∫
d2z(ΠmA4

m + (dW 4) +
1
2

NmnFmn)〉

⊗(right-moving part)
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Tree-level 4-graviton computation

Delay as long as possible explicit evaluation of pure spinor
integrals!

OPE identity

〈(λA1)(λA2)(λA3)((dW 4) +
1
2

NmnFmn)〉 =

+
α′

2(z1 − z4)
〈A1

m(λA2)(λA3)(λγmW 4)〉 − (1↔ 2) + (1↔ 3)

Proof: Instead of using OPEs of pα and ∂X m individually in

dα =
α′

2
pα −

1
2

(γmθ)α∂Xm −
1
8

(γmθ)α(θγm∂θ)

use OPE of dα, SYM EOM and BRST cohomology,

dα(λA)→ Dα(λA) = −(λD)Aα + (λγm)αAm
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Tree-level 4-graviton computation

The amplitude becomes

A = const
∫

d2z4

(
F1

z1 − z4
+

F2

z2 − z4

)
⊗

(
F̃1

z1 − z4
+

F̃2

z2 − z4

)

·|z4|−α
′t/2|1− z4|−α

′u/2

where

F1 = ik1
m〈(λA1)(λA2)(λA3)A4

m〉+ 〈A1
m(λA2)(λA3)(λγmW 4)〉

F2 = ik2
m〈(λA1)(λA2)(λA3)A4

m〉 − 〈(λA1)A2
m(λA3)(λγmW 4)〉
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Tree-level 4-graviton computation

Using the general formula∫
d2zzA(1−z)BzÃ(1−z)B̃ = 2π

Γ(1 + A)Γ(1 + B)

Γ(2 + A + B)
· Γ(−1− Ã− B̃)

Γ(−Ã)Γ(−B̃)

one can pull some Mandelstam invariants from the Gamma
functions to obtain

A = K0K̃0
Γ(−α′t/4)Γ(−α′u/4)Γ(−α′s/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)

where
K0 = uF1 − tF2

is given by
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Tree-level 4-graviton result

K0 = 〈∂n(λA1)∂m(λA2)(λA3)F4
mn〉

+〈(∂pA1
m)(λA2)∂p(λA3)(λγmW 4)〉

+〈(λA1)(∂pA2
m)∂p(λA3)(λγmW 4)〉

Simplify it even more..(CM 2008)

K0 = −〈(λA1)(λγmW 2)(λγnW 3)F4
mn〉
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Massless 4-point one-loop amplitude

Prescription

AN = 〈N
(∫

µ · b
)

V1(z1)

∫
U2

∫
U3

∫
U4〉
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Massless 4-point one-loop amplitude

This amplitude was computed with the minimal pure spinor
formalism (Berkovits 2004)

K1 =

∫
d16θ(εT−1)

((αβγ))
[ρ1...ρ11]

θρ1 . . .θρ11(γmnpqr )βγ×[
A1α(θ)(W2(θ)γmnpW 3(θ))Fqr

4 (θ)
]

and shown to agree with the RNS and GS results (C.M. 2005)

K1 = 〈(λA)(λγmW )(λγnW )Fmn〉 = t8F 4 + . . .

Computed also in the non-minimal pure spinor formalism
(Berkovits 2005, Berkovits & C.M. 2006)
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How to get it (Non-minimal)

One can compute it quickly by using symmetry alone
Recall the regulator (schematically)

N = exp (−(λλ)− (rθ)− (ww) + (sd))

Zero modes:
sα has 11 zero-modes
dα has 16 zero-modes

There is only one way to get a non-vanishing result
N contributes 11 s and 11 d , the b-ghost 2 d and the external
vertices 3 d ’s.
Therefore one gets (λA) and (dW )3 from the external vertices and
(λγmnpr)(dγmnpd) from the b-ghost

Unique contraction
There is only one Lorentz invariant contraction for these fields

〈(λγmnpD)(λA)(λγmW )(λγnW )(λγpW )〉
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Equivalence with MPS

The (old) PS result was

K1 = 〈(λA)(λγmW )(λγnW )Fmn〉

The NMPS answer was argued to be proportional to MPS
(Berkovits, 2005), and shown using U(5)-covariant notations
(Berkovits, C.M., 2006)
Covariant proof later (C.M., 2008)

〈(λγmnpD)(λA)(λγmW )(λγnW )(λγpW )〉

= 40〈(λλ)(λA)(λγmW )(λγnW )Fmn〉
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Massless 4-point two-loop amplitude

Prescription

AN = 〈N1N2

(∫
µ · b

)(∫
µ · b

)(∫
µ · b

)∫
U1

∫
U2

∫
U3

∫
U4〉

C.R. Mafra (AEI) Pure Spinor Superspace 14 Aug 2009 27 / 41



Massless 4-point two-loop amplitude

Can be computed quickly using zero-mode saturation (Berkovits,
2005)
(λγmnpD)3 from b-ghosts and W 4 from external vertices
Using DW = F one gets K =< FFFW >, which has a unique
Lorentz invariant contraction

K2 = 〈(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4)〉
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Relating tree-level, one-loop and two-loops

Beautiful pure spinor superspace expressions for the kinematical
factors at tree-level, one- and two-loops
Direct comparison with RNS through component expansions
PS survived the (non-trivial) tests
Can one exploit the PS superspace a bit more?
Yes. There are superspace identities linking the 4-pt amplitudes
(C.M. 2008)

Massless four-point identities

K0 = −〈(λA1)(λγnW 2)(λγmW 3)F4
mn〉 = −K1

K2 = 〈(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4)〉 =

−16(k1 · k2)〈(λA2)(λγr W 1)(λγsW 4)F3
rs〉 = −16(k1 · k2)K1
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Quick look at the 2-loop proof

One begins by noticing that

(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4) =

−4Q
[
(λγrγmnW 2)(λγsW 4)F1

mnF3
rs

]
−8k1

m(λγnW 1)(λγrγmnW 2)(λγsW 4)F3
rs,

Pure spinor constraint and EOM k1
m(γmW 1)α = 0 imply

k1
m(λγnW 1)(λγrγmnW 2) = −2k1

m(λγr W 1)(λγmW 2)

Using (λγmW 2) = QA2
m − ik2

m(λA2) and
〈(λγr W 1)Q(Am

2 )(λγsW 4)F3
rs〉 = 0 one gets the desired result

〈(λγmnpqrλ)F1
mnF2

pqF3
rs(λγsW 4)〉

= −16(k1 · k2)〈(λA2)(λγr W 1)(λγsW 4)F3
rs〉
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Tree-level. . .

The proof that

K0 = 〈∂n(λA1)∂m(λA2)(λA3)F4
mn〉

+〈(∂pA1
m)(λA2)∂p(λA3)(λγmW 4)〉

+〈(λA1)(∂pA2
m)∂p(λA3)(λγmW 4)〉

is equal to

K0 = −〈(λA1)(λγmW 2)(λγnW 3)F 4
mn〉 = −1

3
K1,

is not so straightforward and requires many BRST integrations by
parts of carefully chosen terms etc. But it can be done (C.M. 2008)
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Massless amplitudes for 5-pts

Are things “simple” for 5-pts?
The 5-pt at 1-loop was computed with the NMPS and a nice
answer was obtained (C.M., C. Stahn, 2009)
However, not so straigthforward

∑
top

∫
dt
〈
N (y)

(∫
d2wµ(w)b(w)

)
V 1(0)

5∏
I=2

∫
dzIU I(zI)

〉
Zero-mode saturation is not unique. . .
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Massless amplitudes for 5-pts

There are 4 ways to saturate dα zero modes:

1
2

〈Πm(z0)

(λλ)
(λγmd)(λA1)(dW 2)(dW 3)(dW 4)(dW 5)

〉

− 1
16

〈(rγmnpr)

(λλ)3
(λγmd)Nnp(z0)(λA1)(dW 2)(dW 3)(dW 4)(dW 5)

〉
1

96

〈(λγmnpr)

(λλ)2
(dγmnpd̂(z0))(λA1)(dW 2)(dW 3)(dW 4)(dW 5)

〉
1

192

〈(λγmnpr)

(λλ)2
(dγmnpd)(λA1)(dW 2)(dW 3)(dW 4)

×
(
A5

qΠq + (d̂W 5) +
1
2

NmnF5
mn
)〉

+ cycl(2345)
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5-pt at 1-loop

One can show that the OPE’s involving the b-ghost are total
derivatives and vanish
The non-vanishing contribution is similar to the 4-pt

(λγmnpD)(λA1)(λγmW 2)(λγnW 3)(λγpW 4)×

×
(
A5

qΠq + (d̂W 5) +
1
2

NmnF5
mn
)

After computing the OPE’s and acting with the derivative Dα and
using lots of manipulations (BRST-exact, PS constraint, gamma
matrix ids, EOM of SYM etc) and dropping total derivative terms
one realizes that. . .
The computation is the same as

〈(λA)(λγmW )(λγnW )Fmn

∫
U〉

Simple answer (notice how λ is gone!)
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5-pts at tree-level

The RNS computation of the tree-level 5-pt amplitude is messy
(Medina et al., 2002, 2005)
Can one streamline it using pure spinors?
Yes, the supersymmetric answer is simple

A5 = T AYM(θ) + K3AF 4

where T and K3 have known momenta expansions and

AYM =
L̃2131

α12α45
− L̃3424

α34α51
− L̃2334

α23α51
− L̃2331

α23α45
− L2134

α12α34
− L23

α23
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AF 4(θ) =

+L2331

(
α12

α45
+
α51

α23

)
+ L2334

(
α34

α51
+
α45

α23

)
+ L2134

(
α45

α12
+
α51

α34

)
+L3424

(
α12

α34
+
α23

α51

)
− L2131

(
α34

α12
+
α23

α45

)
,

+L2431 − L2331 − L2334 − L2134

+
L23

α23
(α13α24 − α12α34 − α23α34 − α12α23) + L23

(
α12α13

α45
+
α34α24

α51

)
can be simplified to

AF 4(θ) =
L12

α12
+

K23

α23
+

K34

α34
+

K45

α45
+

L51

α51

where L1j and Kij are the 5-pt one-loop kinematic structures
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Supersymmetric BCJ relations

The tree-level 5-pt amplitude prescription requires the
computation of

〈V 1(z1)V 4(z4)V 5(z5)U2(z2)U3(z3)〉,

where V I and U I are the unintegrated and integrated vertices
The Bern-Carrasco-Johansson 5-pt kinematic relations follow from
the fact that it doesn’t matter the order in which the OPE’s are
computed (work in progress with Vanhove)
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Supersymmetric BCJ relations

Eliminating first z2 followed by z3 one gets

L2131

z21z31
+

L2134

z21z34
− L2434

z24z34
− L2431

z24z31
+

L2331

z23z31
− L2334

z23z34
+

L2314

z2
23

while in reverse order,

L3121

z31z21
+

L3124

z31z24
− L3424

z34z24
− L3421

z34z21
+

L3221

z32z21
− L3224

z32z24
+

L3214

z2
32

As U I is bosonic, they must be equal. Using

1
z23z31

+
1

z32z21
=

1
z21z31

and L3221 = −L2331 one gets
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Supersymmetric BCJ relations

L2131 − L3121 + L2331 = 0, L2434 − L3424 + L2334 = 0,

(L2134 = −L3421, L2431 = −L3124)

Comparing the BCJ definition of nj and the PS result for AYM one
realizes that they correspond to

n4 − n1 + n15 = 0, n5 − n2 + n11 = 0

and
n8 − n6 + n9 = 0

follows from the first one by 2↔ 4
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Supersymmetric BCJ relations

Using PSS manipulations one can check them explicitly

L2331 = A1
mF2

mn(λγnW 3)(λA4)(λA5)−1
2

(λγmW 1)(W 2γmW 3)(λA4)(λA5)

+
[
A1

m(λγmW 3) + (λA1)(k1 · A3)
]
(k3 · A2)(λA4)(λA5)〉 − (2↔ 3)

L2131 = +
[
A1

m(λγmW 2) + (λA1)(k1 ·A2)
]
(λA4)(λA5)((k1 + k2) ·A3)

+
[
A1

m(λγmW 3)(k1·A2)−A1 m(λγnW 3)F2
mn−(λγmW 3)(W 1γmW 2)

]
(λA4)(λA5)

and L3121 is obtained from the above by 2↔ 3 (total derivative
terms were omitted)
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Supersymmetric BCJ relations

Everything in the PS formalism is supersymmetric, so we have
obtained supersymmetric BCJ relations (work in progress)
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