

Pure Spinor Superspace and Superstring Scattering Amplitudes

Carlos R. Mafra

Max Planck Institut für Gravitationsphysik
Albert Einstein Institut

Outline

1 Introduction

2 Brief Review of the Pure Spinor Formalism

3 Scattering Amplitudes with Pure Spinors

- Four gravitons at tree-level
- Four gravitons at one-loop
- Four gravitons at two-loops
- Relating massless 4-pt amplitudes
- 5-pt at 1-loop

4 5-pts at tree-level

- Supersymmetric BCJ relations

- Find hidden structures in superstring scattering amplitudes
- Results so far suggest that the pure spinor formalism is a good tool to use
- Clean up existing computations and express them in pure spinor superspace (only one computation for all external states related by supersymmetry)
- More recent motivation: Obtain/check the BCJ relations in a supersymmetric framework

- Find hidden structures in superstring scattering amplitudes
- Results so far suggest that the pure spinor formalism is a good tool to use
- Clean up existing computations and express them in pure spinor superspace (only one computation for all external states related by supersymmetry)
- More recent motivation: Obtain/check the BCJ relations in a supersymmetric framework

- Find hidden structures in superstring scattering amplitudes
- Results so far suggest that the pure spinor formalism is a good tool to use
- Clean up existing computations and express them in pure spinor superspace (only one computation for all external states related by supersymmetry)
- More recent motivation: Obtain/check the BCJ relations in a supersymmetric framework

- Find hidden structures in superstring scattering amplitudes
- Results so far suggest that the pure spinor formalism is a good tool to use
- Clean up existing computations and express them in pure spinor superspace (only one computation for all external states related by supersymmetry)
- More recent motivation: Obtain/check the BCJ relations in a supersymmetric framework

Computation of superstring scattering amplitudes:

- 4-pt @ 2-loop (Berkovits,C.M.)
- 4-pt @ 1-loop (Berkovits,C.M.)
- 4-pt: tree-level, 1-loop and 2-loop are proportional (C.M.)
- Anomaly, minimal \leftrightarrow non-minimal (Berkovits,C.M.)
- 5-pt @ 1-loop (C.M., C. Stahn)
- 5-pt @ tree-level
 - Derivation of 5-pt BCJ relations (work in progress)

Some highlights

Pure spinor superspace representation of kinematic factors

- 4-pt at tree-level:

$$K_0 = \frac{1}{2} k_1^m k_2^n \langle (\lambda A^1)(\lambda A^2)(\lambda A^3) \mathcal{F}_{mn}^4 \rangle - (k^1 \cdot k^3) \langle A_n^1 (\lambda A^2)(\lambda A^3)(\lambda \gamma^n W^4) \rangle$$

- 4-pt at 1-loop:

$$K_1 = \langle (\lambda A^1)(\lambda \gamma^m W^2)(\lambda \gamma^n W^3) \mathcal{F}_{mn}^4 \rangle$$

- 4-pt at 2-loops:

$$K_2 = \langle (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) \rangle$$

- Anomaly (gauge variation of 6-pt 1-loop)

$$\langle (\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W)(W \gamma_{mnp} W) \rangle$$

Some highlights

- 5-pt @ 1-loop:

$$L_{12} = -\left\langle \left[(\lambda A^1)(k^1 \cdot A^2) + A_p^1(\lambda \gamma^\rho W^2) \right] (\lambda \gamma^m W^5) (\lambda \gamma^n W^3) \mathcal{F}_{mn}^4 \right\rangle$$

$$K_{25} = -\left\langle (\lambda A^1) \left[(\lambda \gamma^m W^2)(k^2 \cdot A^5) - \frac{1}{4} (\lambda \gamma^m \gamma^{rs} W^5) \mathcal{F}_{rs}^2 \right] (\lambda \gamma^n W^3) \mathcal{F}_{mn}^4 \right\rangle -$$

Superspace Identities

Explicit proof in pure spinor superspace that the massless 4-point amplitudes at tree-level, one-loop and two-loops are all proportional to each other (up to Mandelstam variables).

Action (Minimal Pure Spinor Formalism)

$$S = \int d^2z \left(\frac{1}{2} \partial X^m \bar{\partial} X_m + p_\alpha \bar{\partial} \theta^\alpha - w_\alpha \bar{\partial} \lambda^\alpha \right)$$

Bosonic Pure Spinor

$$(\lambda \gamma^m \lambda) = 0$$

Pure Spinor Formalism

Some important definitions for amplitude computations:

- Lorentz current

$$N^{mn} = \frac{\alpha'}{4} (w \gamma^{mn} \lambda)$$

- Supersymmetric momentum

$$\Pi^m = \partial X^m + \frac{1}{2} (\theta \gamma^m \partial \theta)$$

- Supersymmetric derivative

$$D_\alpha = \frac{\partial}{\partial \theta^\alpha} + \frac{1}{2} (\theta \gamma^m)_\alpha \partial_m$$

- Supersymmetric Green-Schwarz constraint

$$d_\alpha = \frac{\alpha'}{2} p_\alpha - \frac{1}{2} (\gamma^m \theta)_\alpha \partial X_m - \frac{1}{8} (\gamma^m \theta)_\alpha (\theta \gamma_m \partial \theta)$$

- The b-ghost is a composite operator...

$$b_{\text{non-min}} = \dots + (\bar{\lambda} \gamma^{mnp} r) (d \gamma_{mnp} d) + \dots$$

$$b = \dots + d^4 \delta'(N) + \dots$$

Relevant OPE's

$$X^m(z, \bar{z}) X^n(w, \bar{w}) \longrightarrow -\frac{1}{2} \eta^{mn} \ln |z - w|^2$$

$$N^{mn}(z) \lambda^\alpha(y) \longrightarrow \frac{\alpha!}{4} \frac{(\gamma^{mn} \lambda)^\alpha}{z - y}$$

$$d_\alpha(z) V(y, \theta) \longrightarrow \frac{D_\alpha V(y, \theta)}{z - y}$$

$$\Pi^m(z) V(y, \theta) \longrightarrow \frac{\partial^m V(y, \theta)}{z - y}$$

Space-time SUSY

The pure spinor formalism has manifest space-time supersymmetry

- Scattering amplitudes will result in superspace expressions
- Only one computation for all multiplet states

Covariant BRST Quantization

$$Q_{\text{BRST}} = \oint \lambda^\alpha d_\alpha$$

Prescription for Scattering Amplitudes

- Massless On-shell Vertex Operators:

- Unintegrated

$$V = \lambda^\alpha A_\alpha(X, \theta), \quad QV = 0$$

- Integrated

$$U = \int dz \left(\partial\theta^\alpha A_\alpha + A_m \Pi^m + d_\alpha W^\alpha + \frac{1}{2} N^{mn} \mathcal{F}_{mn} \right), \quad QU = \partial V$$

- Where $A_\alpha(x, \theta)$, $A_m(x, \theta)$, $W^\alpha(x, \theta)$ and $\mathcal{F}_{mn}(x, \theta)$ are the SYM superfields

$$D_\alpha A_\beta + D_\beta A_\alpha = \gamma_{\alpha\beta}^m A_m, \quad D_\alpha A_m = (\gamma_m W)_\alpha + k_m A_\alpha$$

$$D_\alpha W^\beta = \frac{1}{4} (\gamma^{mn})_\alpha^\beta \mathcal{F}_{mn}, \quad D_\alpha \mathcal{F}_{mn} = 2k_{[m} (\gamma_{n]} W)_\alpha$$

SYM Superfields θ -Expansion

$$A_\alpha(x, \theta) = \frac{1}{2} a_m (\gamma^m \theta)_\alpha - \frac{1}{3} (\xi \gamma_m \theta) (\gamma^m \theta)_\alpha - \frac{1}{32} F_{mn} (\gamma_p \theta)_\alpha (\theta \gamma^{mnp} \theta) + \dots$$

$$A_m(x, \theta) = a_m - (\xi \gamma_m \theta) - \frac{1}{8} (\theta \gamma_m \gamma^{pq} \theta) F_{pq} + \frac{1}{12} (\theta \gamma_m \gamma^{pq} \theta) (\partial_p \xi \gamma_q \theta) + \dots$$

$$W^\alpha(x, \theta) = \xi^\alpha - \frac{1}{4} (\gamma^{mn} \theta)^\alpha F_{mn} + \frac{1}{4} (\gamma^{mn} \theta)^\alpha (\partial_m \xi \gamma_n \theta) + \frac{1}{48} (\gamma^{mn} \theta)^\alpha (\theta \gamma_n \gamma^{pq} \theta) \partial_m F_{pq} + \dots$$

$$\mathcal{F}_{mn}(x, \theta) = F_{mn} - 2 (\partial_{[m} \xi \gamma_{n]} \theta) + \frac{1}{4} (\theta \gamma_{[m} \gamma^{pq} \theta) \partial_{n]} F_{pq} + \dots,$$

Tree-level Amplitudes

- The prescription for tree-level amplitudes is given by

Tree-level N-point

$$\mathcal{A}_N = \langle V_1(z_1) V_2(z_2) V_3(z_3) \int dz_4 U_4(z_4) \dots \int dz_N U_N(z_N) \rangle$$

- Computation proceeds as usual in a CFT
- Use OPE's to integrate out conformal weight 1 variables
- Then integrate out zero-modes of λ^α and θ^α

$\lambda^3\theta^5$ prescription

$$\langle (\lambda\gamma^m\theta)(\lambda\gamma^n\theta)(\lambda\gamma^p\theta)(\theta\gamma_{mnp}\theta) \rangle = 1$$

The computation of scattering amplitudes gives rise to **pure spinor superspace** (PSS) expressions:

- ① 3 pure spinors λ^α and superfields such that $\langle \lambda^3 \theta^5 \rangle = 1$
- ② Manifestly Lorentz covariant
- ③ Supersymmetric

- Component expansions can be computed
- Use FORM to do the boring stuff

The computation of scattering amplitudes gives rise to **pure spinor superspace** (PSS) expressions:

- ① 3 pure spinors λ^α and superfields such that $\langle \lambda^3 \theta^5 \rangle = 1$
- ② Manifestly Lorentz covariant
- ③ Supersymmetric
- Component expansions can be computed
- Use FORM to do the boring stuff

What makes PSS interesting?

- There is a close relation between $Q_{BRST} = \lambda^\alpha D_\alpha$ and the EOM

$$D_\alpha A_\beta + D_\beta A_\alpha = \gamma_{\alpha\beta}^m A_m$$

$$D_\alpha A_m = (\gamma_m W)_\alpha + k_m A_\alpha, \quad D_\alpha \mathcal{F}_{mn} = 2k_{[m}(\gamma_{n]} W)_\alpha$$

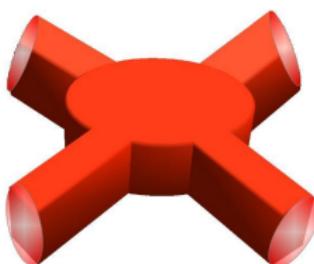
- Kinematic factors are on-shell, so EOM and BRST integrations by parts can be used to find non-trivial relations. Example from 4-pt at tree-level

$$\begin{aligned} \langle D_\alpha(\lambda A^1)(\lambda A^2)(\lambda A^3) W_4^\alpha \rangle &= -\langle (\lambda D A_\alpha^1)(\lambda A^2)(\lambda A^3) W_4^\alpha \rangle \\ &\quad + \langle A_m^1(\lambda A^2)(\lambda A^3)(\lambda \gamma^m W^4) \rangle \end{aligned}$$

As BRST-exact terms decouple,

$$\langle (\lambda D A_\alpha^1)(\lambda A^2)(\lambda A^3) W_4^\alpha \rangle = \frac{1}{4} \langle (\lambda \gamma^{mn} A^1)(\lambda A^2)(\lambda A^3) \mathcal{F}_{mn}^4 \rangle$$

Four gravitons at tree-level



Example

$$\mathcal{A} = \langle V^1(z_1, \bar{z}_1) V^2(z_2, \bar{z}_2) V^3(z_3, \bar{z}_3) \int_{\mathbb{C}} d^2 z U^4(z, \bar{z}) \rangle$$

where $V^i(z, \bar{z}) = V^i(z) \otimes \tilde{V}^i(\bar{z}) e^{ik \cdot X}$ and $U(z, \bar{z}) = U(z) \otimes \tilde{U}(\bar{z}) e^{ik \cdot X}$

Sidenote

Previous computation ([Policastro, Tsimpis 2006](#)) was done in a way that hid the simplicity of the result. Cancellations were overlooked and no simple pure spinor expression was written down for the kinematical factor.

- We have to compute

$$\langle (\lambda A^1)(z_1)(\lambda A^2)(z_2)(\lambda A^3)(z_3) \int d^2 z (\Pi^m A_m^4 + (dW^4) + \frac{1}{2} N^{mn} \mathcal{F}_{mn}) \rangle$$

\otimes (right-moving part)

Tree-level 4-graviton computation

- Delay as long as possible explicit evaluation of pure spinor integrals!

OPE identity

$$\begin{aligned} & \langle (\lambda A^1)(\lambda A^2)(\lambda A^3)((dW^4) + \frac{1}{2}N^{mn}\mathcal{F}_{mn}) \rangle = \\ & + \frac{\alpha'}{2(z_1 - z_4)} \langle A_m^1(\lambda A^2)(\lambda A^3)(\lambda \gamma^m W^4) \rangle - (1 \leftrightarrow 2) + (1 \leftrightarrow 3) \end{aligned}$$

Proof: Instead of using OPEs of p_α and ∂X^m individually in

$$d_\alpha = \frac{\alpha'}{2} p_\alpha - \frac{1}{2} (\gamma^m \theta)_\alpha \partial X_m - \frac{1}{8} (\gamma^m \theta)_\alpha (\theta \gamma_m \partial \theta)$$

use OPE of d_α , SYM EOM and BRST cohomology,

$$d_\alpha(\lambda A) \rightarrow D_\alpha(\lambda A) = -(\lambda D)A_\alpha + (\lambda \gamma^m)_\alpha A_m$$

Tree-level 4-graviton computation

- The amplitude becomes

$$\mathcal{A} = \text{const} \int d^2 z_4 \left(\frac{F_1}{z_1 - z_4} + \frac{F_2}{z_2 - z_4} \right) \otimes \left(\frac{\tilde{F}_1}{\bar{z}_1 - \bar{z}_4} + \frac{\tilde{F}_2}{\bar{z}_2 - \bar{z}_4} \right) \cdot |z_4|^{-\alpha' t/2} |1 - z_4|^{-\alpha' u/2}$$

where

$$F_1 = ik_m^1 \langle (\lambda A^1)(\lambda A^2)(\lambda A^3) A_m^4 \rangle + \langle A_m^1 (\lambda A^2)(\lambda A^3)(\lambda \gamma^m W^4) \rangle$$

$$F_2 = ik_m^2 \langle (\lambda A^1)(\lambda A^2)(\lambda A^3) A_m^4 \rangle - \langle (\lambda A^1) A_m^2 (\lambda A^3)(\lambda \gamma^m W^4) \rangle$$

Tree-level 4-graviton computation

- Using the general formula

$$\int d^2 z z^A (1-z)^B \bar{z}^{\tilde{A}} (1-\bar{z})^{\tilde{B}} = 2\pi \frac{\Gamma(1+A)\Gamma(1+B)}{\Gamma(2+A+B)} \cdot \frac{\Gamma(-1-\tilde{A}-\tilde{B})}{\Gamma(-\tilde{A})\Gamma(-\tilde{B})}$$

one can pull some Mandelstam invariants from the Gamma functions to obtain

$$\mathcal{A} = K_0 \tilde{K}_0 \frac{\Gamma(-\alpha' t/4)\Gamma(-\alpha' u/4)\Gamma(-\alpha' s/4)}{\Gamma(1+\alpha' s/4)\Gamma(1+\alpha' t/4)\Gamma(1+\alpha' u/4)}$$

where

$$K_0 = uF_1 - tF_2$$

is given by

Tree-level 4-graviton result

$$\begin{aligned} K_0 = & \langle \partial^n(\lambda A^1) \partial^m(\lambda A^2) (\lambda A^3) \mathcal{F}_{mn}^4 \rangle \\ & + \langle (\partial_p A_m^1) (\lambda A^2) \partial^p (\lambda A^3) (\lambda \gamma^m W^4) \rangle \\ & + \langle (\lambda A^1) (\partial_p A_m^2) \partial^p (\lambda A^3) (\lambda \gamma^m W^4) \rangle \end{aligned}$$

- Simplify it even more..(CM 2008)

$$K_0 = - \langle (\lambda A^1) (\lambda \gamma^m W^2) (\lambda \gamma^n W^3) \mathcal{F}_{mn}^4 \rangle$$

Massless 4-point one-loop amplitude

Prescription

$$\mathcal{A}_N = \langle \mathcal{N} \left(\int \mu \cdot b \right) V_1(z_1) \int U_2 \int U_3 \int U_4 \rangle$$

Massless 4-point one-loop amplitude

- This amplitude was computed with the minimal pure spinor formalism (Berkovits 2004)

$$K_1 = \int d^{16} \theta (\epsilon T^{-1})_{[\rho_1 \dots \rho_{11}]}^{((\alpha \beta \gamma))} \theta^{\rho_1} \dots \theta^{\rho_{11}} (\gamma_{mnpqr})_{\beta \gamma} \times \\ [A_{1\alpha}(\theta) (W_2(\theta) \gamma^{mnp} W^3(\theta)) \mathcal{F}_4^{qr}(\theta)]$$

and shown to agree with the RNS and GS results (C.M. 2005)

$$K_1 = \langle (\lambda A) (\lambda \gamma^m W) (\lambda \gamma^n W) \mathcal{F}_{mn} \rangle = t_8 F^4 + \dots$$

- Computed also in the non-minimal pure spinor formalism (Berkovits 2005, Berkovits & C.M. 2006)

How to get it (Non-minimal)

- One can compute it quickly by using symmetry alone
- Recall the regulator (schematically)

$$N = \exp(-(\lambda \bar{\lambda}) - (r\theta) - (w\bar{w}) + (sd))$$

- Zero modes:
 - s^α has 11 zero-modes
 - d_α has 16 zero-modes
- There is only one way to get a non-vanishing result
- N contributes 11 s and 11 d , the b-ghost 2 d and the external vertices 3 d 's.
- Therefore one gets (λA) and $(dW)^3$ from the external vertices and $(\bar{\lambda} \gamma^{mnp} r)(d\gamma_{mnp} d)$ from the b-ghost

Unique contraction

There is only one Lorentz invariant contraction for these fields

$$\langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle$$

How to get it (Non-minimal)

- One can compute it quickly by using symmetry alone
- Recall the regulator (schematically)

$$N = \exp(-(\lambda \bar{\lambda}) - (r\theta) - (w\bar{w}) + (sd))$$

- Zero modes:
 - s^α has 11 zero-modes
 - d_α has 16 zero-modes
- There is only one way to get a non-vanishing result
 - N contributes 11 s and 11 d , the b-ghost 2 d and the external vertices 3 d 's.
 - Therefore one gets (λA) and $(dW)^3$ from the external vertices and $(\bar{\lambda} \gamma^{mnp} r)(d\gamma_{mnp} d)$ from the b-ghost

Unique contraction

There is only one Lorentz invariant contraction for these fields

$$\langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle$$

How to get it (Non-minimal)

- One can compute it quickly by using symmetry alone
- Recall the regulator (schematically)

$$N = \exp(-(\lambda \bar{\lambda}) - (r\theta) - (w\bar{w}) + (sd))$$

- Zero modes:
 - s^α has 11 zero-modes
 - d_α has 16 zero-modes
- There is only one way to get a non-vanishing result
- N contributes 11 s and 11 d , the b-ghost 2 d and the external vertices 3 d 's.
- Therefore one gets (λA) and $(dW)^3$ from the external vertices and $(\bar{\lambda} \gamma^{mnp} r)(d\gamma_{mnp} d)$ from the b-ghost

Unique contraction

There is only one Lorentz invariant contraction for these fields

$$\langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle$$

How to get it (Non-minimal)

- One can compute it quickly by using symmetry alone
- Recall the regulator (schematically)

$$N = \exp(-(\lambda \bar{\lambda}) - (r\theta) - (w\bar{w}) + (sd))$$

- Zero modes:
 - s^α has 11 zero-modes
 - d_α has 16 zero-modes
- There is only one way to get a non-vanishing result
- N contributes 11 s and 11 d , the b-ghost 2 d and the external vertices 3 d 's.
- Therefore one gets (λA) and $(dW)^3$ from the external vertices and $(\bar{\lambda} \gamma^{mnp} r)(d\gamma_{mnp} d)$ from the b-ghost

Unique contraction

There is only one Lorentz invariant contraction for these fields

$$\langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle$$

Equivalence with MPS

- The (old) PS result was

$$K_1 = \langle (\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \rangle$$

- The NMPS answer was argued to be proportional to MPS (Berkovits, 2005), and shown using U(5)-covariant notations (Berkovits, C.M., 2006)
- Covariant proof later (C.M., 2008)

$$\begin{aligned} & \langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle \\ &= 40 \langle (\lambda \bar{\lambda})(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \rangle \end{aligned}$$

Equivalence with MPS

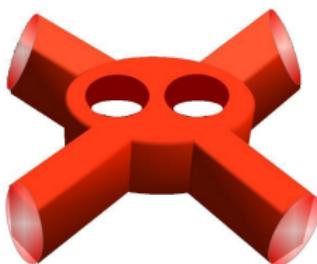
- The (old) PS result was

$$K_1 = \langle (\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \rangle$$

- The NMPS answer was argued to be proportional to MPS (Berkovits, 2005), and shown using U(5)-covariant notations (Berkovits, C.M., 2006)
- Covariant proof later (C.M., 2008)

$$\begin{aligned} & \langle (\bar{\lambda} \gamma_{mnp} D)(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W)(\lambda \gamma^p W) \rangle \\ &= 40 \langle (\lambda \bar{\lambda})(\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \rangle \end{aligned}$$

Massless 4-point two-loop amplitude



Prescription

$$\mathcal{A}_N = \langle \mathcal{N}_1 \mathcal{N}_2 \left(\int \mu \cdot b \right) \left(\int \mu \cdot b \right) \left(\int \mu \cdot b \right) \int U_1 \int U_2 \int U_3 \int U_4 \rangle$$

Massless 4-point two-loop amplitude

- Can be computed quickly using zero-mode saturation (Berkovits, 2005)
- $(\bar{\lambda}\gamma_{mnp}D)^3$ from b-ghosts and W^4 from external vertices
- Using $DW = F$ one gets $K = \langle FFFF \rangle$, which has a unique Lorentz invariant contraction

$$K_2 = \langle (\lambda\gamma^{mnpqr}\lambda)\mathcal{F}_{mn}^1\mathcal{F}_{pq}^2\mathcal{F}_{rs}^3(\lambda\gamma^s W^4) \rangle$$

Relating tree-level, one-loop and two-loops

- Beautiful pure spinor superspace expressions for the kinematical factors at tree-level, one- and two-loops
- Direct comparison with RNS through component expansions
- PS survived the (non-trivial) tests
 - Can one exploit the PS superspace a bit more?
 - Yes. There are superspace identities linking the 4-pt amplitudes (C.M. 2008)

Massless four-point identities

$$K_0 = -\langle (\lambda A^1)(\lambda \gamma^n W^2)(\lambda \gamma^m W^3) \mathcal{F}_{mn}^4 \rangle = -K_1$$

$$K_2 = \langle (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) \rangle =$$

$$-16(k^1 \cdot k^2) \langle (\lambda A^2)(\lambda \gamma^r W^1)(\lambda \gamma^s W^4) \mathcal{F}_{rs}^3 \rangle = -16(k^1 \cdot k^2) K_1$$

Relating tree-level, one-loop and two-loops

- Beautiful pure spinor superspace expressions for the kinematical factors at tree-level, one- and two-loops
- Direct comparison with RNS through component expansions
- PS survived the (non-trivial) tests
- Can one exploit the PS superspace a bit more?
- Yes. There are superspace identities linking the 4-pt amplitudes (C.M. 2008)

Massless four-point identities

$$K_0 = -\langle (\lambda A^1)(\lambda \gamma^n W^2)(\lambda \gamma^m W^3) \mathcal{F}_{mn}^4 \rangle = -K_1$$

$$K_2 = \langle (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) \rangle =$$

$$-16(k^1 \cdot k^2) \langle (\lambda A^2)(\lambda \gamma^r W^1)(\lambda \gamma^s W^4) \mathcal{F}_{rs}^3 \rangle = -16(k^1 \cdot k^2) K_1$$

Relating tree-level, one-loop and two-loops

- Beautiful pure spinor superspace expressions for the kinematical factors at tree-level, one- and two-loops
- Direct comparison with RNS through component expansions
- PS survived the (non-trivial) tests
- Can one exploit the PS superspace a bit more?
- Yes. There are superspace identities linking the 4-pt amplitudes (C.M. 2008)

Massless four-point identities

$$\begin{aligned} K_0 &= -\langle (\lambda A^1)(\lambda \gamma^n W^2)(\lambda \gamma^m W^3) \mathcal{F}_{mn}^4 \rangle = -K_1 \\ K_2 &= \langle (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) \rangle = \\ &-16(k^1 \cdot k^2) \langle (\lambda A^2)(\lambda \gamma^r W^1)(\lambda \gamma^s W^4) \mathcal{F}_{rs}^3 \rangle = -16(k^1 \cdot k^2) K_1 \end{aligned}$$

Quick look at the 2-loop proof

- One begins by noticing that

$$\begin{aligned} & (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) = \\ & -4Q \left[(\lambda \gamma^r \gamma^{mn} W^2) (\lambda \gamma^s W^4) \mathcal{F}_{mn}^1 \mathcal{F}_{rs}^3 \right] \\ & -8k_m^1 (\lambda \gamma_n W^1) (\lambda \gamma^r \gamma^{mn} W^2) (\lambda \gamma^s W^4) \mathcal{F}_{rs}^3, \end{aligned}$$

- Pure spinor constraint and EOM $k_m^1 (\gamma^m W^1)_\alpha = 0$ imply

$$k_m^1 (\lambda \gamma_n W^1) (\lambda \gamma^r \gamma^{mn} W^2) = -2k_m^1 (\lambda \gamma^r W^1) (\lambda \gamma^m W^2)$$

- Using $(\lambda \gamma_m W^2) = Q A_m^2 - i k_m^2 (\lambda A^2)$ and $\langle (\lambda \gamma^r W^1) Q(A_2^m) (\lambda \gamma^s W^4) \mathcal{F}_{rs}^3 \rangle = 0$ one gets the desired result

$$\begin{aligned} & \langle (\lambda \gamma^{mnpqr} \lambda) \mathcal{F}_{mn}^1 \mathcal{F}_{pq}^2 \mathcal{F}_{rs}^3 (\lambda \gamma^s W^4) \rangle \\ & = -16(k^1 \cdot k^2) \langle (\lambda A^2) (\lambda \gamma^r W^1) (\lambda \gamma^s W^4) \mathcal{F}_{rs}^3 \rangle \end{aligned}$$

- The proof that

$$\begin{aligned} K_0 = & \langle \partial^n(\lambda A^1) \partial^m(\lambda A^2) (\lambda A^3) \mathcal{F}_{mn}^4 \rangle \\ & + \langle (\partial_p A_m^1) (\lambda A^2) \partial^p (\lambda A^3) (\lambda \gamma^m W^4) \rangle \\ & + \langle (\lambda A^1) (\partial_p A_m^2) \partial^p (\lambda A^3) (\lambda \gamma^m W^4) \rangle \end{aligned}$$

is equal to

$$K_0 = -\langle (\lambda A^1) (\lambda \gamma^m W^2) (\lambda \gamma^n W^3) \mathcal{F}_{mn}^4 \rangle = -\frac{1}{3} K_1,$$

is not so straightforward and requires many BRST integrations by parts of carefully chosen terms etc. But it can be done (C.M. 2008)

Massless amplitudes for 5-pts

- Are things “simple” for 5-pts?
- The 5-pt at 1-loop was computed with the NMPS and a nice answer was obtained (C.M., C. Stahn, 2009)
- However, not so straightforward

$$\sum_{\text{top}} \int dt \left\langle \mathcal{N}(y) \left(\int d^2 w \mu(w) b(w) \right) V^1(0) \prod_{l=2}^5 \int dz_l U^l(z_l) \right\rangle$$

- Zero-mode saturation is not unique...

Massless amplitudes for 5-pts

- Are things “simple” for 5-pts?
- The 5-pt at 1-loop was computed with the NMPS and a nice answer was obtained (C.M., C. Stahn, 2009)
- However, not so straightforward

$$\sum_{\text{top}} \int dt \left\langle \mathcal{N}(y) \left(\int d^2 w \mu(w) b(w) \right) V^1(0) \prod_{l=2}^5 \int dz_l U^l(z_l) \right\rangle$$

- Zero-mode saturation is not unique...

Massless amplitudes for 5-pts

- There are 4 ways to saturate d_α zero modes:

$$\begin{aligned} & \frac{1}{2} \left\langle \frac{\Pi^m(z_0)}{(\lambda \bar{\lambda})} (\bar{\lambda} \gamma_m d) (\lambda A^1) (dW^2) (dW^3) (dW^4) (dW^5) \right\rangle \\ & - \frac{1}{16} \left\langle \frac{(r \gamma_{mnp} r)}{(\lambda \bar{\lambda})^3} (\bar{\lambda} \gamma^m d) N^{np}(z_0) (\lambda A^1) (dW^2) (dW^3) (dW^4) (dW^5) \right\rangle \\ & \frac{1}{96} \left\langle \frac{(\bar{\lambda} \gamma_{mnp} r)}{(\lambda \bar{\lambda})^2} (d \gamma^{mnp} \hat{d}(z_0)) (\lambda A^1) (dW^2) (dW^3) (dW^4) (dW^5) \right\rangle \\ & \frac{1}{192} \left\langle \frac{(\bar{\lambda} \gamma_{mnp} r)}{(\lambda \bar{\lambda})^2} (d \gamma^{mnp} d) (\lambda A^1) (dW^2) (dW^3) (dW^4) \right. \\ & \quad \left. \times (A_q^5 \Pi^q + (\hat{d} W^5) + \frac{1}{2} N^{mn} \mathcal{F}_{mn}^5) \right\rangle + \text{cycl}(2345) \end{aligned}$$

5-pt at 1-loop

- One can show that the OPE's involving the b-ghost are total derivatives and vanish
- The non-vanishing contribution is similar to the 4-pt

$$(\bar{\lambda} \gamma_{mnp} D)(\lambda A^1)(\lambda \gamma^m W^2)(\lambda \gamma^n W^3)(\lambda \gamma^p W^4) \times \\ \times (A_q^5 \Pi^q + (\hat{d} W^5) + \frac{1}{2} N^{mn} \mathcal{F}_{mn}^5)$$

- After computing the OPE's and acting with the derivative D_α and using lots of manipulations (BRST-exact, PS constraint, gamma matrix ids, EOM of SYM etc) and dropping total derivative terms one realizes that...
- The computation is the same as

$$\langle (\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \int U \rangle$$

- Simple answer (notice how $\bar{\lambda}$ is gone!)

5-pt at 1-loop

- One can show that the OPE's involving the b-ghost are total derivatives and vanish
- The non-vanishing contribution is similar to the 4-pt

$$(\bar{\lambda} \gamma_{mnp} D)(\lambda A^1)(\lambda \gamma^m W^2)(\lambda \gamma^n W^3)(\lambda \gamma^p W^4) \times \\ \times (A_q^5 \Pi^q + (\hat{d} W^5) + \frac{1}{2} N^{mn} \mathcal{F}_{mn}^5)$$

- After computing the OPE's and acting with the derivative D_α and using lots of manipulations (BRST-exact, PS constraint, gamma matrix ids, EOM of SYM etc) and dropping total derivative terms one realizes that...
- The computation is the same as

$$\langle (\lambda A)(\lambda \gamma^m W)(\lambda \gamma^n W) \mathcal{F}_{mn} \int U \rangle$$

- Simple answer (notice how $\bar{\lambda}$ is gone!)

5-pts at tree-level

- The RNS computation of the tree-level 5-pt amplitude is messy (Medina et al., 2002, 2005)
- Can one streamline it using pure spinors?
- Yes, the supersymmetric answer is simple

$$A_5 = T A_{YM}(\theta) + K_3 A_{F^4}$$

where T and K_3 have known momenta expansions and

$$A_{YM} = \frac{\tilde{L}_{2131}}{\alpha_{12}\alpha_{45}} - \frac{\tilde{L}_{3424}}{\alpha_{34}\alpha_{51}} - \frac{\tilde{L}_{2334}}{\alpha_{23}\alpha_{51}} - \frac{\tilde{L}_{2331}}{\alpha_{23}\alpha_{45}} - \frac{L_{2134}}{\alpha_{12}\alpha_{34}} - \frac{L_{23}}{\alpha_{23}}$$

$$\begin{aligned}
& A_{F^4}(\theta) = \\
& + L_{2331} \left(\frac{\alpha_{12}}{\alpha_{45}} + \frac{\alpha_{51}}{\alpha_{23}} \right) + L_{2334} \left(\frac{\alpha_{34}}{\alpha_{51}} + \frac{\alpha_{45}}{\alpha_{23}} \right) + L_{2134} \left(\frac{\alpha_{45}}{\alpha_{12}} + \frac{\alpha_{51}}{\alpha_{34}} \right) \\
& + L_{3424} \left(\frac{\alpha_{12}}{\alpha_{34}} + \frac{\alpha_{23}}{\alpha_{51}} \right) - L_{2131} \left(\frac{\alpha_{34}}{\alpha_{12}} + \frac{\alpha_{23}}{\alpha_{45}} \right), \\
& + L_{2431} - L_{2331} - L_{2334} - L_{2134} \\
& + \frac{L_{23}}{\alpha_{23}} (\alpha_{13}\alpha_{24} - \alpha_{12}\alpha_{34} - \alpha_{23}\alpha_{34} - \alpha_{12}\alpha_{23}) + L_{23} \left(\frac{\alpha_{12}\alpha_{13}}{\alpha_{45}} + \frac{\alpha_{34}\alpha_{24}}{\alpha_{51}} \right)
\end{aligned}$$

can be simplified to

$$A_{F^4}(\theta) = \frac{L_{12}}{\alpha_{12}} + \frac{K_{23}}{\alpha_{23}} + \frac{K_{34}}{\alpha_{34}} + \frac{K_{45}}{\alpha_{45}} + \frac{L_{51}}{\alpha_{51}}$$

where L_{ij} and K_{ij} are the 5-pt one-loop kinematic structures

Supersymmetric BCJ relations

- The tree-level 5-pt amplitude prescription requires the computation of

$$\langle V^1(z_1) V^4(z_4) V^5(z_5) U^2(z_2) U^3(z_3) \rangle,$$

where V^I and U^I are the unintegrated and integrated vertices

- The Bern-Carrasco-Johansson 5-pt kinematic relations follow from the fact that it doesn't matter the order in which the OPE's are computed (work in progress with Vanhove)

Supersymmetric BCJ relations

- Eliminating first z_2 followed by z_3 one gets

$$\frac{L_{2131}}{z_{21}z_{31}} + \frac{L_{2134}}{z_{21}z_{34}} - \frac{L_{2434}}{z_{24}z_{34}} - \frac{L_{2431}}{z_{24}z_{31}} + \frac{L_{2331}}{z_{23}z_{31}} - \frac{L_{2334}}{z_{23}z_{34}} + \frac{L_{2314}}{z_{23}^2}$$

while in reverse order,

$$\frac{L_{3121}}{z_{31}z_{21}} + \frac{L_{3124}}{z_{31}z_{24}} - \frac{L_{3424}}{z_{34}z_{24}} - \frac{L_{3421}}{z_{34}z_{21}} + \frac{L_{3221}}{z_{32}z_{21}} - \frac{L_{3224}}{z_{32}z_{24}} + \frac{L_{3214}}{z_{32}^2}$$

- As U' is bosonic, they must be equal. Using

$$\frac{1}{z_{23}z_{31}} + \frac{1}{z_{32}z_{21}} = \frac{1}{z_{21}z_{31}}$$

and $L_{3221} = -L_{2331}$ one gets

Supersymmetric BCJ relations

$$\begin{aligned} L_{2131} - L_{3121} + L_{2331} &= 0, & L_{2434} - L_{3424} + L_{2334} &= 0, \\ (L_{2134} &= -L_{3421}, & L_{2431} &= -L_{3124}) \end{aligned}$$

- Comparing the BCJ definition of n_j and the PS result for A_{YM} one realizes that they correspond to

$$n_4 - n_1 + n_{15} = 0, \quad n_5 - n_2 + n_{11} = 0$$

and

$$n_8 - n_6 + n_9 = 0$$

follows from the first one by $2 \leftrightarrow 4$

Supersymmetric BCJ relations

- Using PSS manipulations one can check them explicitly

$$L_{2331} = A_m^1 \mathcal{F}_{mn}^2 (\lambda \gamma^n W^3) (\lambda A^4) (\lambda A^5) - \frac{1}{2} (\lambda \gamma_m W^1) (W^2 \gamma^m W^3) (\lambda A^4) (\lambda A^5)$$

$$+ [A_m^1 (\lambda \gamma^m W^3) + (\lambda A^1) (k^1 \cdot A^3)] (k^3 \cdot A^2) (\lambda A^4) (\lambda A^5) - (2 \leftrightarrow 3)$$

$$L_{2131} = + [A_m^1 (\lambda \gamma^m W^2) + (\lambda A^1) (k^1 \cdot A^2)] (\lambda A^4) (\lambda A^5) ((k^1 + k^2) \cdot A^3)$$

$$+ [A_m^1 (\lambda \gamma^m W^3) (k^1 \cdot A^2) - A^1{}^m (\lambda \gamma^n W^3) \mathcal{F}_{mn}^2 - (\lambda \gamma^m W^3) (W^1 \gamma^m W^2)] (\lambda A^4) (\lambda A^5)$$

and L_{3121} is obtained from the above by $2 \leftrightarrow 3$ (total derivative terms were omitted)

Supersymmetric BCJ relations

- Everything in the PS formalism is supersymmetric, so we have obtained supersymmetric BCJ relations (**work in progress**)

Supersymmetric BCJ relations

- Everything in the PS formalism is supersymmetric, so we have obtained supersymmetric BCJ relations (**work in progress**)