Non-Planar $\mathcal{N}=4$ SYM at Four Loops and Supersum Structures

NBIA workshop Aug 12, 2009 Henrik Johansson UCLA & IPhT Saclay

0903.5348[hep-th]: Z.Bern, J.J.Carrasco, H.Ita, HJ, R.Roiban

> to appear: Z.Bern, J.J.Carrasco, L.Dixon, HJ, R.Roiban

Outline

- Motivation & introduction
- Selection of the se
 - Unitarity & maximal cuts
 - Special cuts ↔ heuristic rules
 - Supersum structure in cuts
 - **4**-loop non-planar $\mathcal{N}=4$
- 1,2,3,4-loop UV divergences
 Full color structure of divergences
- Conclusions

Motivation - hidden structures

- Maximal SUSY theories are remarkably rich in hidden structures
 - Solution N = 4 SYM AdS/CFT, dual conformal symmetry (Yangian), integrability, BDS resummation, twistors
 - $\mathcal{N}=8$ SUGRA UV finite, $E_{7(7)}$, simplest theory ?
- $\mathcal{N} = 4$ SYM input to $\mathcal{N} = 8$ SUGRA ampl. through KLT & unitarity ⇒ talks by Carrasco, Roiban
- Goal: study the less-well-understood non-planar sector of \mathcal{N} = 4 SYM

\mathcal{N} = 4 super-Yang-Mills

$${\cal L}_{
m YM}=-rac{1}{4g^2}F^a_{\mu
u}F^{a\ \mu
u}$$

Maximal SUSY extension of YM

1

#

g⁺

1

1

On-shell spectrum: g^{-} f^{-} s f^{+} helicity -1 -1/2 0 1/2

4

Particles in adjoint group G, usually $SU(N_c)$

6

NBIA Aug 12 2009 H. Johansson

4

Calculation Strategy

Ansatz:
$$A_4^{4-\text{loop}} = g^{10} st A_4^{\text{tree}} \sum_{\substack{i=1 \\ \text{leg perms}} S_4} \sum_{i=1}^{\text{\#topologies}} c_i \mathcal{I}_i$$

Separate color from kinematics:

$$\mathcal{I}_i = C_i I_i$$

$$C_i = f^{abc} f^{cde} \cdots f^{xyz}$$

Integrals:
$$I_{i} = \int d^{D}l_{1}d^{D}l_{2}d^{D}l_{3}d^{D}l_{4} \frac{N_{i}(l_{j},k_{j})}{l_{1}^{2}l_{2}^{2}l_{3}^{2}l_{4}^{2}l_{5}^{2}l_{6}^{2}l_{7}^{2}l_{8}^{2}l_{9}^{2}l_{10}^{2}l_{11}^{2}l_{12}^{2}l_{13}^{2}}$$

Find all integral topologies & numerators !

Integral topologies

- We choose to work with only trivalent (cubic) diagram topologies
- Contact terms are absorbed into the numerator N

....gives 50 diagram topologies or integrals

 \Rightarrow talk by Carrasco

Bern, Carrasco, Dixon, HJ, Roiban [to appear]

Fix Numerators with Maximal Cuts

Bern, Carrasco, HJ and Kosower (2007)

• put maximum number of propagator on-shell → simplifies calculation

• systematically release cut conditions → great control of missing terms

Reconstructs the amplitude piece by piece !

$\mathcal{N}=4$ bag of tricks!

- Rules & assumptions for N_i can used at intermediate steps
- Correctness of amplitude established at the end (complete set of cuts)

Power counting & singlet maximal cuts

- Power counting $D_c = 4 + rac{6}{L}$ can constrain numerators Bern, Dixon, Dunbar, Rozowsky, Perelstein; Howe, Stelle
- Worst case 4 loops: 2 inverse propagators $N \sim s l_1^2 l_2^2$
- Such terms fixed by maximal cuts with two collapsed cut lines
- Remarkably all needed maximal cuts have corners in phase space where only gluon states propagate in loops: susy invariant "singlet cuts" <u>Heuristic rules for numerators \leftrightarrow special cuts (that iterate)</u>
- rung rule
 - ↔ two-particle cut
- box substitution rule ↔ box cut
- diagram twist rule 🛛 👄 (BCJ) Jacobi-like numerator & amplitude relations valid in D dimensions

Two-particle cut ↔ Rung Rule

A simple property of the 2-particle cuts at one loop

Lead to easy rules for computing iterated 2-particle cuts in multiloop ampls

Inspired "rung rule" for easily finding numerator factors

• rung rule is less useful for non-planar diagrams

• better use the 2-particle cut directly

Box cut

A box cut may not involve a box subdiagram

• Isolating any 4-point $\mathcal{N}=4$ SYM loop-amplitude will do it

- 44 (out of 50) of the cubic topologies have box subdiagrams or other 4-pt subdiagrams
- But, many contact terms cannot be determined by the box cut

A diagram "twist rule"

We can use the Jacobi-like numerator identity of 0805.3993 [hep-ph]

Bern, Carrasco, HJ

Numerators of diagrams entering a cut are not independent

Possible to relate non-planar topologies to planar ones
In general, the N_i are constrained by a large linear eqn system

NBIA Aug 12 2009 H. Johansson

Some Results from Box Cuts

numerator structure more complicated, but still quite modest...

The most complicated numerators

NBIA Aug 12 2009 H. Johansson

Proof of amplitude

• To do:

- Find missing contact terms not given by heuristic rules
 ☑ automate (singlet) maximal cuts
- Check correctness of cuts in D = 4 using a complete set of cuts
 ☑ automate general cuts, and

 \square include full $\mathcal{N}=4$ supersum \Rightarrow talk by Roiban

• Check correctness of amplitude using *D*-dimensional cuts

automate *D*-dim cuts and superspace
 partial checks done: two-particle cuts, box cuts

Note: for 1,2,3 loops, 4-dim cuts capture the full 4pt amplitude 3

Supersum Structure

Convenient to use "index diagrams" to visualize the supersum structure

Tracking the R charge index

Helicity $(2|5|4]^{4} + 4 (2|5|4]^{6} (2|6|4] + 6 (2|5|4]^{2} (2|6|4]^{2} + ...$ dependent part of cut $= [(2|5|4] + (2|6|4]]^{4}$

General structure of cuts $(A + B + C + ...)^{\mathcal{N}}$, $\mathcal{N} = 4$ "single R index contribution" $\mathbf{J} \Rightarrow \mathsf{talk} \mathsf{ by Roiban}$

Automate Supersums

 After the supersum structure is understood, automating calculations is straightforward

Bern, Carrasco, Ita, HJ, Roiban

• Exploit similarity of N=4 SYM and pure Yang Mills (QCD)

$$\begin{split} A &= \langle l_4 \, l_5 \rangle \left[l_4 \, l_5 \right] \left[l_2 \, l_7 \right] \left[l_1 \, l_3 \right] \,, \quad B = \langle l_4 \, l_5 \rangle \left[l_4 \, l_5 \right] \left[l_7 \, l_1 \right] \left[l_2 \, l_3 \right] \,, \quad C = \langle l_4 \, l_6 \rangle \left[l_4 \, l_7 \right] \left[l_2 \, l_6 \right] \left[l_1 \, l_3 \right] \,, \\ D &= \langle l_4 \, l_6 \rangle \left[l_4 \, l_7 \right] \left[l_6 \, l_1 \right] \left[l_2 \, l_3 \right] \,, \quad E = \langle l_5 \, l_6 \rangle \left[l_5 \, l_7 \right] \left[l_2 \, l_6 \right] \left[l_1 \, l_3 \right] \,, \quad F = \langle l_5 \, l_6 \rangle \left[l_5 \, l_7 \right] \left[l_6 \, l_1 \right] \left[l_2 \, l_3 \right] \,, \\ G &= \langle l_4 \, l_6 \rangle \left[l_2 \, l_1 \right] \left[l_3 \, l_4 \right] \left[l_6 \, l_7 \right] \,, \quad H = \langle l_5 \, l_6 \rangle \left[l_2 \, l_1 \right] \left[l_3 \, l_5 \right] \left[l_6 \, l_7 \right] \,. \end{split}$$

$$\left[A + B + C + D + E + F + G + H\right]^{4} = \left[s \left[l_{1} l_{2}\right] \left[l_{7} l_{3}\right]\right]^{4}$$

 $8^4 = 4096$ contributions from individual states re-summed

UV properties

UV properties

● N=4 SYM UV properties are interesting due to recent studies of potential counterterms Bossard, Howe, Stelle, 0901.4661 ⇒talk by Howe

Planar amplitudes have established divergences in critical dimensions:

$$D_{c} = 8$$
 $L = 1$
 $D_{c} = 4 + 6/L$ $L = 2, 3, 4$

Solution Set with the determine the full color dependence of the UV divergences

 \square In gauge group SU(N_c), using color structures:

$$\begin{aligned} \mathsf{Tr}_{ijkl} &\equiv \mathsf{Tr}(T^{a_i}T^{a_j}T^{a_k}T^{a_l}) \\ \mathsf{Tr}_{ij} &\equiv \mathsf{Tr}(T^{a_i}T^{a_j}) = \delta^{a_i a_j} \end{aligned}$$

Helicity containing prefactor: $\mathcal{K} = stA_4^{\text{tree}}$

Color factors: dress each diagram with $f^{abc} = Tr(T^a[T^b, T^c])$

1,2-Loop UV Divergences

1 loop: $D_{c} = 8 - 2\varepsilon$

$$\begin{aligned} \mathcal{A}_{4}^{(1)}(1,2,3,4)|_{\text{pole}} &= -\frac{g^{4} \mathcal{K}}{6 (4\pi)^{4} \epsilon} \Big[N_{c} (\operatorname{Tr}_{1324} + \operatorname{Tr}_{1423} + \operatorname{Tr}_{1243} \\ &+ \operatorname{Tr}_{1342} + \operatorname{Tr}_{1234} + \operatorname{Tr}_{1432}) \\ &+ 6 (\operatorname{Tr}_{12} \operatorname{Tr}_{34} + \operatorname{Tr}_{14} \operatorname{Tr}_{23} + \operatorname{Tr}_{13} \operatorname{Tr}_{24}) \Big] \end{aligned}$$
Counterterms ~ Tr F⁴

2 loops: $D_c = 7 - 2\varepsilon$

$$\mathcal{A}_{4}^{(2)}(1,2,3,4)|_{\text{pole}} = \frac{g^{6} \pi \mathcal{K}}{20 (4\pi)^{7} \epsilon} \Big[(N_{c}^{2} + 20)(s_{12} (\operatorname{Tr}_{1324} + \operatorname{Tr}_{1423}) + s_{13} (\operatorname{Tr}_{1234} + \operatorname{Tr}_{1432})) + s_{23} (\operatorname{Tr}_{1243} + \operatorname{Tr}_{1342}) + s_{13} (\operatorname{Tr}_{1234} + \operatorname{Tr}_{1432})) - 20 N_{c} (s_{12} \operatorname{Tr}_{12} \operatorname{Tr}_{34} + s_{23} \operatorname{Tr}_{14} \operatorname{Tr}_{23} + s_{13} \operatorname{Tr}_{13} \operatorname{Tr}_{24}) \Big]$$
Counterterms ~ $\partial^{2} \operatorname{Tr} F^{4}$ $\partial^{2} [\operatorname{Tr} F^{2}]^{2}$

As expected, both single and double trace terms appears

3-Loop UV Divergence

Bern, Carrasco, Dixon, HJ, Roiban [to appear]

3 loops: $D_c = 6 - 2\varepsilon$

 $\mathcal{A}_{4}^{(3)}(1,2,3,4)|_{\text{pole}} = -\frac{g^{8}\mathcal{K}}{3(4\pi)^{9}\epsilon} (N_{c}^{3} + 36\zeta(3)N_{c}) \left[s_{12}(\text{Tr}_{1324} + \text{Tr}_{1423})\right]$ $+ s_{23} (Tr_{1243} + Tr_{1342}) + s_{13} (Tr_{1234} + Tr_{1432})$

Counterterms ~ $\partial^2 \operatorname{Tr} F^4$

Remarkably the double-trace contributions are finite in D=6

4-loop UV vacuum integrals

(before cancellations between different topologies)

UV integral evaluation

• Vacuum integrals factorize into product of 1-loop integral with UV pole and a finite 3-loop propagator (2pt) integral

• Finite 3-loop integrals reduce to master integrals using integration by parts (IBP), a la MINCER. Chetyrkin, Tkachov (1981)

• Most nontrivial integral is nonplanar master integral, for which we only have numerical results (obtained using Gegenbauer polynomial xspace technique) Chetyrkin, Tkachov (1981); Bekavac, hep-ph/0505174

$$V_{1} = \frac{1}{(4\pi)^{11} \epsilon} \left[\frac{512}{5} \Gamma^{4}(\frac{3}{4}) - \frac{2048}{105} \Gamma^{3}(\frac{3}{4}) \Gamma(\frac{1}{2}) \Gamma(\frac{1}{4}) \right] + \mathcal{O}(1)$$

$$V_{2} = \frac{1}{(4\pi)^{11} \epsilon} \left[-\frac{4352}{105} \Gamma^{4}(\frac{3}{4}) + \frac{832}{105} \Gamma^{3}(\frac{3}{4}) \Gamma(\frac{1}{2}) \Gamma(\frac{1}{4}) \right] + \mathcal{O}(1)$$

$$V_{8} = \frac{1}{(4\pi)^{11}} \frac{4}{21} \frac{1}{\Gamma(\frac{3}{4})} \frac{V_{8}^{\text{fin}}}{\epsilon} V_{8}^{\text{fin}} = 1.428452926283(3)$$

Evaluated in critical dimension $D_c = 4 + 6/4 = 11/2$ ³⁰

4-Loop UV Divergence

- Again the double-trace contributions are finite in $D_c = 11/2$
- Also $(N_c)^0$ term is finite
- Absence of double-trace and $(N_c)^0$ terms at 3 and 4 loops calls out for explanation.
- Related to better UV behavior of colorless theories?

 \Rightarrow talk by Vanhove

Conclusions

- Full color 4-point 4-loop amplitude has been computed in $\mathcal{N}=4$ super-Yang-Mills theory
- Tools: rung rule, box cut, twist rules, maximal cuts, and generalized cuts with full susy multiplet
- "Index diagrams" introduced to clarify supersum structure in cuts, paving the way for automated calculations
- L = 4 UV divergence have been extracted, and compared with results for L = 1,2,3
- Double-trace and $(N_c)^0$ terms drop out after L = 2
- Future studies of the IR information is possible ... once technology is developed for doing non-planar 4-point integrals (even numerically) in $D = 4 2\epsilon$ at L = 3,4