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A journey through three maximally 
supersymmetric theories



N=4

N=8

N=2   QED



• N=4 super Yang-Mills

‣ Dual conformal symmetry & equations for one-loop 
supercoefficients

• N=8 supergravity

‣ New expressions for one-loop supercoefficients 

• N=2 super QED                

‣ Four-point photon amplitude at one and two loops and 
approximate iterative relations



N=4  super Yang-Mills



‣ Scattering amplitudes in N=4 are conveniently described 
in terms of on-shell superspace variables

‣ Super wave-function:     (Nair)

                                          

‣                           fermionic variables,  A is an SU(4) index 

‣ particle content is that of N=4 super Yang-Mills

‣ similar to Mandelstam’s LC superfield

Amplitudes in N=4 SYM

Φ(p, η) = A+(p) + ηAψA(p) +
1
2
ηAηBφAB(p) +

1
3!

ηAηBηCεABCD ψ̄D(p)

+
1
4!

ηAηBηCηDεABCDA−(p)

ηA , A = 1, . . . , 4

h = +1 h = +1/2 h = 0 h = −1/2

h = −1



‣ Package all amplitudes with a fixed external helicity 
assignment into a single superamplitude:    (Nair; Witten)

‣                       susy manifest, 

‣                          imposes restrictions on A

‣ η-expansion:  p powers of     correspond to                      
helicity                          

ηi

hi = 1− p/2

momentum supermomentum

qA
α =

∑

i

λi;αηA
i

q̄A,α̇ =
∑

i

λ̃i;α̇
∂

∂ηA
i

A({λi, λ̃i, ηi}) = δ(4)
( ∑

i

λiλ̃i

)
δ(8)

( ∑

i

ηiλi

)
A({λi, λ̃i, ηi})



‣ All-plus & single minus amplitudes:  automatically zero  

- Too few powers of η’s:  fermionic delta function cannot be 
satisfied

- All-minus and single-plus vanish by parity

    

‣ MHV superamplitude:          

‣ gluons                get factor of i−, j− : (ηi)4(ηj)4 〈i j〉4

AMHV =
1

〈1 2〉〈2 3〉 · · · 〈n 1〉

A = δ(4)
( ∑

i

λiλ̃i

)
δ(8)

( ∑

i

ηiλi

)
A

Examples: 

(Parke & Taylor)Agluons
MHV (1+, . . . , i−, . . . , j−, . . . n+) =

〈ij〉4

〈12〉〈23〉 · · · 〈n1〉



‣ Tree-level super MHV diagrams (Georgiou, Khoze + Glover, 2004)  

    

‣ One-loop super MHV diagrams (Brandhuber, Spence, GT, 2004)   

- very efficient way to perform internal supersums,                     
e.g. one-loop MHV superamplitude:

Early applications: 

Roiban’s seminar



• Conjecture:    dual (super)conformal symmetry is   
a symmetry of the planar S-matrix of N=4 SYM

‣ planarity, maximal supersymmetry, on-shellness  

‣ originates from Wilson loops

- MHV amplitude/Wilson loop duality

Dual Conformal Symmetry                       
(Drummond, Henn, Korchemsky, Sokatchev)



• Dual conformal symmetry:  (DHKS)

‣ is the standard conformal symmetry acting on dual momenta  x’s

‣ symmetry is anomalous 

- ultraviolet divergences from cusps in the contour  

- UV for the Wilson loop = IR for the amplitude

‣ Since K=IPI , enough to look at conformal inversions I

- under a conformal inversion xµ
i → xµ

i /x2
i

pi = xi − xi+1

xn+1 = x1

xi xi+1

pi

Korchemsky’s seminar



• Extending  Dual Conformal Symmetry  from 
Wilson loops to all (non-MHV) amplitudes is 
very nontrivial !  



Trees



• Idea:  look for a computational method which 
respects the symmetry of the problem at the 
diagrammatic level.      Is there one ? 

• YES!   N=4  supersymmetric recursion relations

‣ supersymmetric version of the BCFW on-shell recursion 
relations (Britto, Cachazo, Feng + Witten)

‣ MHV diagrams more problematic

Covariance of tree-level S-matrix
(Brandhuber, Heslop, GT)



• Look at split-helicity gluon amplitudes:

‣ calculated in closed form by Britto, Feng, Roiban, Spradlin, 
Volovich solving the BCF recursion relation

‣  each recursive diagram is manifestly covariant !

‣ E.g.: 

Why do we think it will work? 

1−g 2−g . . . p−g (p + 1)+g (p + 2)+g . . . n+
g

Spinor brackets above involve cyclically adjacent gluons 

Spradlin’s talk



• On-shell recursion relations (Britto, Cachazo, Feng)

‣ based on singularity structure of tree-level amplitudes: 

- Factorisation on multiparticle poles (simple poles, tree level),      
bilinear structure

A =
∑

j,h

 h = internal 
particles 
helicities 

Pij := pi + · · · + pj



• supersymmetric deformations of amplitudes: 

Susy recursion relations                                                          

(Brandhuber, Heslop, GT;  Arkani-Hamed, Cachazo, Kaplan)

xj

x̂2 := x2 − zλ1
ˆ̃λ2

η̂1 := η1 + zη2

η̂2 := η2

Hence, by supersymmetry:

p̂1 := λ1
ˆ̃λ1 = λ1(λ̃1 + zλ̃2) := x1 − x̂2

p̂2 := λ̂2λ̃2 = (λ2 − zλ1)λ̃2 := x̂2 − x3

θ̂2 := θ2 − zλ1η2

➡ Amplitudes with different external states 
mix under the supersymmetric shifts 

x̂2



• Generic superamplitude expressed as:  

‣ sum over internal species becomes a fermionic integral

‣ proof of DSC symmetry obtained by induction

- three-point superamplitudes are the input

- propagator + fermionic integration 

• Symmetry maintained at the diagrammatic level  

‣ explicit solution of recursion relations (Drummond, Henn)

A =
∑

P

∫
d4ηP̂ AL(zP )

i

P 2
AR(zP )

Drummond’s talk



                                                       

• Important difference with standard BCF shifts 

‣                  

‣                                                

• Large  z  behaviour

‣                    ,                         as            

‣ proof uses maximal supersymmetry (Arkani-Hamed, Cachazo, Kaplan)

ABCF(z) = A(λ1,
ˆ̃λ1(z), η1; λ̂2(z), λ̃2, η2)

ASUSY(z) = A(λ1,
ˆ̃λ1(z), η̂1(z); λ̂2(z), λ̃2, η2)

ASUSY(z) ∼ 1/z z →∞

☝

ASUGRA(z) ∼ 1/z2



Loops 



‣ One loop:  amplitudes in maximally supersymmetric theories are 
sums of box functions                          

- N=4 super Yang-Mills (Bern, Dixon, Dunbar, Kosower)

- N=8 supergravity (no-triangle property) (Bern, Bjerrum-Bohr, Dixon, Dunbar, Dunbar, Ita, 
Perelstein, Perkins, Risager, Rozowsky; Bjerrum-Bohr + Vanhove; Arkani-Hamed, Cachazo, Kaplan)

- n-photon amplitudes in QED,  n≥8   (Badger, Bjerrum-Bohr, Vanhove)

‣ Infrared divergences:

- Work in  D = 4 - 2ϵ

Simplicity of loop amplitudes 

A =
∑

i,j,k,l

C(i, j, k, l)



• Generic amplitudes are anomalous under DCS: 

- only two-particle invariants appears (similarly to infrared divergent terms) 

‣ conjectured by DHKS from Wilson loops

- caveat:   Wilson loops/amplitudes duality only applies to MHV amplitudes

- important evidence from NMHV superamplitude at one loop (DHKS)

xii+2 := pi + pi+1

Dual conformal anomaly at one loop

rΓ :=
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

KµA1−loop
n = −4 rΓAtree

n

n∑

i=1

xµ
i+1

(−x2
ii+2)−ε

ε



I.  prove the dual conformal anomaly equation

II.  prove covariance of the one-loop coefficients    

III.  derive new relations of one-loop coefficients             
(loops without loops...)  

Next goals: 



• Idea: calculate discontinuities of the anomaly

‣ multi-particle channel discontinuities:  ( j > i+1 )

‣ integral is finite X ϵ, hence multi-particle disc’s vanish

‣ anomaly independent of multi-particle invariants

I. Proof of Dual Conformal Anomaly           
(Brandhuber, Heslop, GT)

l1 l2

ε

discx2
i j+1

[
KµA1−loop

n

]
= 4 ε

∫
dDy δ(+)

(
(y − xi)2

)
δ(+)

(
(xj+1 − y)2

) [
yµ 〈l1l2〉4Atree

L Atree
R

]



‣ Two-particle channel discontinuities:

‣ integral is       divergent. Divergences arise from a region 
of integration where                               hence

‣ Pick (leading) divergence:  discontinuity factorises

y ∼ xi+1l1 ∼ pi , l2 ∼ pi+1 ,

1/ε2

ε

Emergence of tree-level amplitude        !Atree
n

xi+1



‣ Lift cut integral, to get expected dual conformal anomaly:

• Comments:  

‣ Analysis exposes intimate link of anomaly to IR divergences

- singular channel cut-integral lifted to full loop integral (Kosower)

‣ Subleading divergences absent due to maximal susy

‣ Absence of holomorphic anomaly crucial:                    , 
with no delta-function supported terms on the RHS     
(Bargheer, Beisert, Galleas, Loebbert, McLoughlin;  Korchemsky, Sokatchev)

KµAtree = 0

KµA1−loop
n = −4 rΓAtree

n

n∑

i=1

xµ
i+1

(−x2
ii+2)−ε

ε



• Same idea as for tree-level recursion:  

‣ look for a computational method which respects the 
symmetry of the problem at the diagrammatic level                      

• Quadruple cuts (Britto, Cachazo, Feng)

‣ calculate one by one coefficients of one-loop boxes

‣ appropriate N=4 supersymmetric generalisation       
(Drummond, Henn, Korchemsky, Sokatchev)                    

II. Covariance of one-loop coefficients 



• Coefficient of each box function obtained by 
gluing four tree-level superamplitudes 

‣ quadruple cut diagram inherits symmetry properties 
from tree-level superamplitudes entering the cut                 

• One-loop coefficients are covariant           
(Brandhuber, Heslop, GT)

C(i, j, k, l) =



• One-loop amplitudes: 

A1−loop =
∑

i,j,k,l

C(i, j, k, l)

III. New relations for one-loop coefficients
(Brandhuber, Heslop, GT)

F = −i(4π)D/2

∫
dDx5

(2π)D

√
R

x2
5ix

2
5jx

2
5kx2

5l

xi

xj

xk

xlx5

√
R = x2

ikx2
jl − x2

jkx2
li

D = 4− 2ε

1m 2me 2mh 3m

Boxes:



• One-loop amplitudes: 

A1−loop =
∑

i,j,k,l

C(i, j, k, l)

III. New relations for one-loop coefficients
(Brandhuber, Heslop, GT)

F = −i(4π)D/2

∫
dDx5

(2π)D

√
R

x2
5ix

2
5jx

2
5kx2

5l

xi

xj

xk

xlx5

√
R = x2

ikx2
jl − x2

jkx2
li

D = 4− 2ε

1m 2me 2mh 3m

Boxes:

4m



• Supercoefficients C (i, j, k, l) are covariant ⇒

• Under a special conformal transformation   

• Anomaly appears because of IR divergences  

• Standard Passarino-Veltman reduction to 
calculate the integral above

‣ result expressed in terms of scalar boxes and triangles                    

KµF ∼ ε

∫
d4−2εx5

(2π)4−2ε

√
R

x2
5ix

2
5jx

2
5kx2

5l

xµ
5

KµA1−loop =
∑

i,j,k,l

C(i, j, k, l) KµFijkl



Box functions and their anomalies

J(a, b) :=
rΓ

ε2
(−a)−ε − (−b)−ε

(−a)− (−b)
J(a) :=

rΓ

ε2
(−a)−ε

(−a)

1m 2me 2mh 3m

1m triangle 
(        )

2m triangle
(      )1/ε2 1/ε



• Summarising:

  

• Last line can be written as: 

where

=
∑

i,j,k,l

C(i, j, k, l) KµFijkl

E(i, k) :=
i+n−2∑

j=k+1

C(i, k, j, i− 1)−
k−1∑

j=i+1

C(i, j, k, i− 1)

anomaly eq, proved earlier...

from covariance of coeff ’s...

2m triangle     
(finite)

1m triangle

KµA1−loop
n = 4 εAtree

n

n∑

i=1

xµ
i+1

[
x2

ii+2J(x2
ii+2)]

+2 ε
n∑

i=1

i+n−2∑

k=i+2

xµ
i−1

[
x2

ii−2 J(x2
ii−2)

] i+n−3∑

j=i+1

C(i, j, i− 2, i− 1)
1/ε(      )

−2 ε
n∑

i=1

i+n−3∑

k=i+2

E(i, k)
[
xµ

i−1 x2
ik − xµ

i x2
i−1 k

]
J(x2

ik, x2
i−1 k)



• Next, we require these two results to be identical

• 1m triangle coeff ’t:  special combination of 2mh 
and 1m box coefficients,   ~         (Roiban, Spradlin, Volovich)

  

‣  main inspiration for the BCF recursion relation

• This gives precisely the anomaly 

i+n−3∑

j=i+1

C(i, j, i− 2, i− 1) =
i+n−3∑

j=i+1

= 2Atree
n

for i =1, ... , n

Atree



• 2m triangle:  n(n-4) new relations among coefficients

  

• These are new predictions obtained from dual 
conformal invariance 

• Determine 1m, 2me, and half of the 2mh coeff ’s

E(i, k) :=
i+n−2∑

j=k+1

C(i, k, j, i− 1)−
k−1∑

j=i+1

C(i, j, k, i− 1)

n n(n-5)/2 (1/2) n(n-5)

E(i, k) = 0 , i = 1 . . . n , k = i + 2, . . . , i + n− 3

Loops without loops !



• Compare to standard IR consistency conditions 

  

‣ n [2-particle] + n(n-5)/2 [multi-particle]  =  n(n-3)/2 relations  

• Can be used to predict all (all but one) 1m and 
2me box coefficients for n odd (n even)                              
(Bern, Dixon, Kosower) 

• Conformal equations predict  n(n-5)/2  further 
coefficients

‣ 1/2 of 2mh box coefficients

A1−loop
n |IR ∼ −Atree

n

n∑

i=1

(−x2
ii+2)−ε

ε2

Comment  



• Two kind of contributions: IR and holomorphic

‣ multi-particle channel discontinuity of the IR piece:  

‣ IR contribution is finite X ϵ   →  0 

‣ holomorphic anomaly contribution is non-universal        
(Korchemsky, Sokatchev)

Dual Q-bar anomaly

ε

Korchemsky’s seminar



‣ Two-particle channels discontinuities:

‣ analysis similar to dual conformal case.  Get 

‣ “...”  stand for a single holomorphic anomaly contribution

‣                     identically (no contact terms)               
(Bargheer, Beisert, Galleas, Loebbert, McLoughlin)

ε

Q̄A
α̇ A1−loop

n ∼ Atree
n

n∑

i=1

(−x2
ii+2)−ε

ε

ηA
i λ̃i+1 α̇ − ηA

i+1λ̃iα̇

[ii + 1]
+ · · ·

Q̄A
α̇ Atree

4 = 0

universal



N=8  Supergravity



• On-shell recursion relations for tree-level        
gravity amplitudes  (Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek)

‣    large-z behaviour  (Arkani-Hamed, Kaplan;   Benincasa, Boucher-Veronneau, Cachazo) 

• Amplitudes’ calculation vastly simplified

‣                                                  , 

‣    EH Lagrangian (and its Feynman rules) not needed 

AGR(1+2+3−) = [AYM(1+2+3−)]2 AGR(1−2−3+) = [AYM(1−2−3+)]2



← 3-point vertex: 171 terms

← 4-point vertex: 2850 terms

☜

Bryce S. DeWitt , Phys. Rev. 162:1239-1256,1967

Gravity (and YM) amplitudes 
are much simpler than what 

one would expect from 
Feynman rules !



• New expression for MHV amplitudes (Elvang, Freedman)

‣ intriguing sum of squares of YM amplitudes

• N=8 recursion relation solved (Drummond, Spradlin, Volovich, Wen) 

• Solution parallels that for N=4 SYM ! (Drummond, Henn) 

Recent developments

MMHV
n =

∑

P(2,...,n−1)

[AMHV
n (1, . . . , n)]2 GMHV(1, . . . , n)

G = bosonic “dressing function”,   R = dual superconformal invariant  
  

AN=4
n (1, . . . , n) = AMHV

n (1, . . . , n)
∑

{α}

Rα(λi, λ̃i; ηi)

Mn =
∑

P(2,...,n−1)

[AMHV
n (1, . . . , n)]2

∑

{α}

[Rα(λi, λ̃i; ηi)]2 Gα(λi, λ̃i)
No η’s here

Spradlin’s talk



‣ Derive one-loop box coefficients of N=8 superamplitudes 

- use quadruple cuts

- input:  tree-level superamplitudes obtained by solving the N=8 
supersymmetric recursion relation 

- remarkable simplicity of the tree-level R-functions feeds loops

C(i, j, k, l) =



• Main result:  pattern echoes tree level 

‣         superconformal invariant;               bosonic

• Checks:  

‣ MHV amplitudes (Bern, Dixon, Perelstein, Rozowsky), up to 22 legs

‣ six-point NMHV amplitudes (Bern,Bjerrum-Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita)

One-loop box coefficients 
(Hall; Katsaroumpas, Spence, GT)

G̃R̃

CN=8
n =

∑

P(2,...,n−1)

[CN=4
MHV;n(1, . . . , n)]2

∑

{α}

[R̃α(λi, λ̃i; ηi)]2 G̃α(λi, λ̃i)



• Summarising: 

‣ Tree-level amplitudes in N=8 supergravity expressed as 
sums of squares of amplitudes in N=4 SYM...

‣ ...Similar properties for the coefficients of one-loop 
amplitudes

• Various incarnations of the idea that 

                        Gravity = (Yang-Mills) 

• Intriguing appearance of dual superconformal 
expressions 

2



N=2  super QED

A quick swim to 



• Because (we think) it’s simple...

‣ ...but it took 50 years to calculate two-loop amplitudes...

‣ multi-photon amplitudes are free of divergences

• Because it’s similar to (other) theories we like  

‣ No-triangle property for n > 6 one-loop n-photon amplitudes   
(Badger, Bjerrum-Bohr, Vanhove)

‣ N=2 SQED four-photon amplitude at one and two loops 
are maximally transcendental... (Binoth, Glover, Marquard, Van der Bij)

‣ ...and can be obtained from N<2 amplitudes by 
suppressing non maximally transcendental terms 

Why QED ? 



• Tree level:     zero

• One loop:                                         (Karplus & Neuman, 1950)

‣ x=-s/t , y = -u/t = 1-x

• Two loops:  (Binoth, Glover, Marquard, van der Bij, 2002; Bern, De Freitas, Dixon, 
Ghinculov, Wong, 2001)

Four-photon amplitudes

M(1)
4 = −4

[
(log(x)− log(y))2 + π2

]

Re
[
M(2)

4

]
= −16 Li4(y)− 16 Li4(x) + 8(log(x) + log(y))

(
Li3(x) + Li3(y)

)

+4 log2(x)2 log2(y)− 4
3

log(x) log(y)π2

− 1
24

[
M(1)

4

]2
− π2

3
M(1)

4 +
2
45

π4



• Try 

‣ determine b, c, d in some appropriate way (e.g. least squares)

•

Approximate iterative structures                         
(Brandhuber, Vincon, GT)

[M(2)
4 ]ansatz = b

[
M(1)

4

]2 + cM(1)
4 + d

Ansatz & two-loop amplitude “Remainder” function 

R4(y) := Re
[
M(2)

4

]
−

(
b
[
M(1)

4

]2 + cM(1)
4 + d

)

y



• Comments:  

‣ An attempt at approximating the two-loop four-photon 
amplitude in N=1 super QED with an ansatz  similar to 
that used earlier in N=2 is much more crude 

‣ maximally supersymmetric QED amplitudes are special !  



“...something deeper than what we know 
underlies quantum field theory...”

Conclusions



‣ How many one-loop coefficients can be determined from 
symmetry considerations alone?  Yangians?

‣ Derive the anomaly & conformal equations at higher 
loops

‣ Derive anomaly equations for other generators of dual 
superconformal group, specifically  

‣ Origin of dual superconformal symmetry in field theory?

‣ Understand the implications of the structure found for 
N=8 supergravity amplitudes and one-loop coefficients

Open questions

and many more...

Q̄




