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® N=4 super Yang-Mills

» Dual conformal symmetry & equations for one-loop
supercoefficients

® N=8 supergravity

» New expressions for one-loop supercoefficients

® N=2 super QED

» Four-point photon amplitude at one and two loops and
approximate iterative relations




N=4 super Yang-Mills




Amplitudes in N=4 SYM

» Scattering amplitudes in N=4 are conveniently described
in terms of on-shell superspace variables

» Super wave-function:  (Nair)

h=+1  h=+1/2 h=0 h=—1/2

1

®(p,n) = AT(p)+n"Yalp) + 577’4773 dap(p) + %UAUB n“eapcp ¥ (p)

1 B
+ EUAUBUCUDEABCDA (p)

h=—1

» n?, A=1,...,4 fermionic variables, A is an SU(4) index
» particle content is that of N=4 super Yang-Mills

» similar to Mandelstam’s LC superfield




» Package all amplitudes with a fixed external helicity
assighment into a single superamplitude:  (Nair;witcen)

AN, Aiymi}) = 5(4>(Z)\z‘5\z‘) 5<8)(Zm>\i) A({Ni, Aiymi})

d N

» g2 =) N susy manifest,

_ - 0 . ..
y Gae = ZM;@%—_A imposes restrictions on A

» 1-expansion: p powers of 7; correspond to
helicity h; =1 —p/2




Examples:

A = DY xN) (D niNi) A

» All-plus & single minus amplitudes: automatically zero

- Too few powers of 1’s: fermionic delta function cannot be
satisfied

- All-minus and single-plus vanish by parity

1
(12)(23)---(n1)

» MHYV superamplitude:  Aunv =

» gluons i~ j~: get factor of (m:)*(n;)* (i )"

o o 4
uons . . Zj
'Ai;/l[HV (1+, C c . +) — <12> <2<3>> - <n1> (Parke & Taylor)




Early applications:

» Tree-level super MHV diagrams (Georgiou, Khoze + Glover, 2004)

» One-loop super MHV diagrams (grandhuber, Spence, GT, 2004)

- very efficient way to perform internal supersums,
e.g. one-loop MHYV superamplitude:

Roiban’s seminar




Dual Conformal Symmetry

(Drummond, Henn, Korchemsky, Sokatchev)

dual (super)conformal symmetry is
a symmetry of the planar S-matrix of N=4 SYM

» planarity, maximal supersymmetry, on-shellness

» originates from Wilson loops

- MHV amplitude/Wilson loop duality




(DHKS)

» is the standard conformal symmetry acting on dual momenta x’s

A
Pi = Ly — Xj+1

LIn4+1 — T1

» symmetry is anomalous
- ultraviolet divergences from cusps in the contour

- UV for the Wilson loop = IR for the amplitude

» Since K=IPI, enough to look at conformal inversions /

. . 2
- under a conformal inversion =} — ! /x:




® Extending Dual Conformal Symmetry from
Wilson loops to all (non-MHV) amplitudes is

very nontrivial !




Trees



Covariance of tree-level S-matrix

(Brandhuber, Heslop, GT)

look for a computational method which
respects the symmetry of the problem at the
diagrammatic level.

N=4 supersymmetric recursion relations

» supersymmetric version of the BCFWV on-shell recursion
relations (Britto, Cachazo, Feng + Witten)

» MHYV diagrams more problematic




Why do we think it will work?

® | ook at split-helicity gluon amplitudes:
1720 ..o, (p+ 1) (p+2)F...nf

» calculated in closed form by Britto, Feng, Roiban, Spradlin,
Volovich solving the BCF recursion relation

» each recursive diagram is manifestly covariant !

» E.g.: A(1-,27,37,4,57,67,77) =
(12 + 3/4)°
t:(5 6)(6 7)(7 1)[2 3][3 4](5|4 + 3/2]

B 1 (3|(4+5)(6 + 7)|1)3 L @2+ 1|7?
(34)(45)(6]7+1|2] \ ¢t (6 (7 1) (5|14 + 3J2] (6 5)[7 1)[1 2]

Spinor brackets above involve




® On-shell recursion relations erito, cachazo, Feng

» based on singularity structure of tree-level amplitudes:

h = internal
particles
helicities

Pij == pi+---+pj

- Factorisation on multiparticle poles (simple poles, tree level),
bilinear structure




Susy recursion relations

(Brandhuber, Heslop, GT; Arkani-Hamed, Cachazo, Kaplan)

® supersymmetric deformations of amplitudes:

)\15\1 = )\1(5\1 + 25\2) =X — Io
5\25\2 ()\2 — Z)\l)j\g = i’g — X3

A

@2 =T — Z)\l)\g

Hence, by supersymmetry:

92 = 92 — Z)\1772

Amplitudes with different external states
mix under the supersymmetric shifts




® Generic superamplitude expressed as:

A= Y [dp Auer) gy An(er)
P

» sum over internal species becomes a fermionic integral

» proof of DSC symmetry obtained by induction

- three-point superamplitudes are the input

- propagator + fermionic integration

® Symmetry maintained at the diagrammatic level

» explicit solution of recursion relations (prummond, Henn)




® Important difference with standard BCF shifts

ABCF(Z) = A(>\1,5\1(Z)>771; 5\2(27)75\27”'72)

A

Agusy (2) = A()\1,§\1(2),771(2)§ A2 (2), A2, 12)

b

® Large z behaviour
»  Agusvy(z) ~1/z, Asucra(z)~1/2> as z— oo

4 PI’OOf uses maximal supersymmetry (Arkani-Hamed, Cachazo, Kaplan)




Loops



Simplicity of loop amplitudes

» One loop: amplitudes in maximally supersymmetric theories are
sums of box functions

A=) C(ijkl)

i?j7k7l

N=4 super Yang-MiIIs (Bern, Dixon, Dunbar, Kosower)

N=8 supergravity (no-triangle property) (Bern, Bjerrum-Bohr, Dixon, Dunbar, Dunbar, Ita,
Perelstein, Perkins, Risager, Rozowsky; Bjerrum-Bohr + Vanhove; Arkani-Hamed, Cachazo, Kaplan)

n-photon amplitudes in QED, n>8 (Badger, Bjerrum-Bohr,Vanhove)

» Infrared divergences:

- Workin D=4 -2€




Dual conformal anomaly at one loop

® Generic amplitudes are anomalous under DCS:

Zn (=27, 0) "
K,qulz—loop _ _47°F A’?clree xéb_i_l 11+

) €
1=1

L1+ e)T2(1 — ¢)
Tii+2 = Pi + Pit1 T T 20

- only two-particle invariants appears (similarly to infrared divergent terms)

» conjectured by DHKS from Wilson loops

- caveat: Wilson loops/amplitudes duality only applies to MHV amplitudes

- important evidence from NMHV superamplitude at one loop (DHKSY)




Next goals:

prove the dual conformal anomaly equation

Il. prove covariance of the one-loop coefficients

lll. derive new relations of one-loop coefficients
(loops without loops...)




. Proof of Dual Conformal Anomaly

(Brandhuber, Heslop, GT)

® |dea: calculate discontinuities of the anomaly

» multi-particle channel discontinuities: (j > i+1)

» integral is finite X €, hence multi-particle disc’s vanish

» anomaly independent of multi-particle invariants




Two-particle channel discontinuities:

integral is 1/¢* divergent. Divergences arise from a region
of integration where |, ~ p;, o ~p;.1. hence v ~ w1y

Pick (leading) divergence: discontinuity factorises

Emergence of tree-level amplitude A4;;*° !




<

<

Lift cut integral, to get expected dual conformal anomaly:

(_xz%i—l—2)_€
€

n
1-1 t
KFALTOP = —app AT Y k|
1=1

Analysis exposes intimate link of anomaly to IR divergences

- singular channel cut-integral lifted to full loop integral (Kosower)
Subleading divergences absent due to maximal susy

Absence of holomorphic anomaly crucial: £"A™ =0,

with no delta-function supported terms on the RHS
(Bargheer, Beisert, Galleas, Loebbert, McLoughlin; Korchemsky, Sokatchev)



ll. Covariance of one-loop coefficients

® Same idea as for tree-level recursion:

» look for a computational method which respects the
symmetry of the problem at the diagrammatic level

(Britto, Cachazo, Feng)
calculate one by one coefficients of one-loop boxes

appropriate N=4 supersymmetric generalisation

(Drummond, Henn, Korchemsky, Sokatchev)




® Coefficient of each box function obtained by
gluing four tree-level superamplitudes

» quadruple cut diagram inherits symmetry properties
from tree-level superamplitudes entering the cut

® One-loop coefficients are covariant
(Brandhuber, Heslop, GT)




lll. New relations for one-loop coefficients

(Brandhuber, Heslop, GT)

® One-loop amplitudes:

j

Ao = S e k)

@,5,k,1

i

D 2.2 .2 2
(2) L5; L5 L5, T5

D
F = —i(47r)D/2/d = Vi




lll. New relations for one-loop coefficients

(Brandhuber, Heslop, GT)

® One-loop amplitudes:

j

AlTIoor =N C(i, 4, k, )

i?j7k:7l

i

D 2.2 .2 2
(2) L5; L5 L5, T5

D
F = —i(47r)D/2/d = Vi




Supercoefficients C (i, j, k, [) are covariant =

KFAITIOP =y C(i g,k 1) KV Fjg

/i’?j7k:7l

Under a special conformal transformation

4—2¢ 2 .2 4.2 2
(27) L5 L5;L5ELs5)

d4—2e R
KHE ~ e/ 5 VR Tk

Anomaly appears because of IR divergences

Standard Passarino-Veltman reduction to
calculate the integral above

» result expressed in terms of scalar boxes and triangles




Box functions and their anomalies

KPF™ = 2 [(ar + 5oy (a3) + (o2 + a0 ey J(a3)]
KrF™ = —2¢ { —ah wyy J (x5, 07,) + oh [Lilj(#‘?%@ T3) — w%3J(iC%3)]

+ I3 [541J(~513a~541) ~U24J(~U24)] iy (1513’1331)} ;
KMF™ = —2¢ {~'5l1‘ [ — a3, J (a3, 25 + 15%3«](13%3@23)] + Ty [ — 213 J (213, 233) + a7y J (235, 154211)]

+ af [ — a5, J (a3, 233) + a3y J (275, le)] + [ — oty (215, 2%y) + 2330 (235, 1’753)] } ;
KAFE™ = —3¢ {~dtad I )

+ Ty [wglJ(wgm w11) — @iy (a1s) + 23 (a3, £§4)]
whwiy I (23, '~5§4)] } ;

—2e {ﬂll [4533‘](1”%3’ 1’3?3) - 4534](1’334’ wil)] + b ["34211J($<211a 1’334) - 55%3](4’5?3, 1’33)] } .

I m triangle ab) - 2m triangle

(1/€2) - (1/e€)




® Summarising:

KH A;LL_ loop

= 4e A fogﬂrl [z 127 (5;,2)] anomaly eq, proved earlier...
1=1

Z C(Zu?? kv l) KuF@'ijl
1,9,k,l

from covariance of coeff’s...

® |ast line can be written as:

n 1+n—2

+2e> Y at

1=1 k=142

n 1+n—3

—2e) Y E(ik) [

1=1 k=142

where

E(i k)= Y  Cli,k,j,i—

1+n—3
Lji—2 J mzzi—2)} Z C(Z,],Z - 271 o 1)

j=i+1

I m triangle

(1/€)

2m triangle

— at xi 4 k}J(ﬂ??ka-”L'?A k) ~
(finite)

1+n—2

k—1
)= > Cli,jki—1)

1+1

J=k+1 J




® Next, we require these two results to be identical

® |m triangle coeff’t: special combination of 2mh
and Im bOX COefﬁCIentS, ~ Atree (Roiban, Spradlin,Volovich)

X
J

1+n—3

Z 6(27]7@_2,2—1) = Z _ C . — QA::%ree «

j=i+1

X fori=I,...,n

»  main inspiration for the BCF recursion relation

® This gives precisely the anomaly




® )m triangle: new relations among coefficients

E(i, k) =0, i=1...n, k=i+2,...,i+n—3

1+n—2

k—1
EGik) = Y Clikji—1)— Y C(i,jki—1)

® These are new predictions obtained from dual
conformal invariance

® Determine I m, 2me, and half of the 2mh coeff’s

n nn-5)/"72 (1/2) n(n-5)




® Compare to standard IR consistency conditions

n 2 )—e

i §- (e
A711 loop‘IR N _A%ree 114

: €2
=1

» 1 [2-particle] + 1(n-5)/2 [multi-particle] = n(n-3)/2 relations

® Can be used to predict all (all but one) Im and
2me box coefficients for (n even)

(Bern, Dixon, Kosower)

® Conformal equations predict n(n-5)/2 further
coefficients

» 1/2 of 2mh box coefficients




Dual Q-bar anomaly

® Two kind of contributions: IR and holomorphic

>

>

>

multi-particle channel discontinuity of the IR piece:

IR contribution is finite Xe€ — 0

holomorphic anomaly contribution is non-universal
(Korchemsky, Sokatchev)

Korchemsky’s seminar



» Two-particle channels discontinuities:

» analysis similar to dual conformal case. Get.

n —e A A
QA Al—loop N Atree Z (_xzzi+2> 1; )‘i-l-ld — ni+1)‘io}
oo " € i3 + 1]

» .. stand for a single holomorphic anomaly contribution

Qi Ay = 0 identically (no contact terms)
(Bargheer, Beisert, Galleas, Loebbert, McLoughlin)




N=8 Supergravity




® On-shell recursion relations for tree-level
graVIt)’ am P I ItU d es (Bedford, Brandhuber, Spence, GT; Cachazo, Svrcek)

4 Iarge-z behaviour (Arkani-Hamed, Kaplan; Benincasa, Boucher-Veronneau, Cachazo)

® Amplitudes’ calculation vastly simplified

> Aer(172737) = [Aym(172737)2 + Agr(17273%) =[4ym(17273%))?

»  EH Lagrangian (and its Feynman rules) not needed
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corrections. For the Yang-Mills field it takes the form
V(av”'")ﬁ’ - '—icaﬁvp"= '-icavﬁ(P""P”’) . (2.3)

The propagators for the normal and fictitious quanta
are, respectively,

2.4)
(2.5)

with p? being understood to have the usual small
negative imaginary part.
The corresponding quantities for the gravitational

G— v,/ 1%,
G— 'Yqﬂ/ P2 3

S
——————
5(0#’6‘90'7’5(0;:” Y

QUANTUM THEORY OF GRAVITY.

IT1 1241
field are much more complicated. In this case we shall
employ the momentum-index combinations puv, p'e’7/,
e\, p""V""k'"". The vertices must not only be sym-
metric in each index pair but must also remain un-
changed under arbitrary permutations of the momen-
tum-index triplets. At least 171 separate terms are
required in the complete expression for S; in order to
exhibit this full symmetry, and for S the number is
2850. However, these numbers can be greatly reduced
by counting only the combinatorially distinct terms?
and leaving it understood that the appropriate sym-
metrizations are to be carried out. In this way Ss is
reduced to 11 terms and Si to 28 terms, as follows:

Sym[— % Ps(P . p’,,nr,,cr,,px) —1Ps (P'P’ﬂ“"ﬂ”)‘)'l'% Ps (1; . p’nuunnnpx)_l_% Ps (P . P'nuu,,ap,,’rx)_i_ P (Purp)\nlmnﬂ’)
—3Ps(p7p 0P +5Ps (07 M0t ™) +3Pa(prp n w)+ Po(pop *nmene)+ Py (pp k0 en™)

84S

N
8QusdPar 0@\ 8@urrryrsr

—Pu(p-p'wenmn™)], (2.6)

Sym[—§Ps(p- p"n* 1" 0" 0*) —§ Pra(p*p 00 n*) — 1 Ps (b0 0’ P 0*)+-§ Po (b~ 0" 0" "0 *n*)
+1Ps(p- o' 00" 0P ) +1P1a(p b 0 0P ) +3Ps (pp e 0 n ) — 1 Po(p+ p 0t 0" P n™)
+1Pau(p- om0 o0 )+ Pas(p7p 0 on )+ Pra(pop My 0 )+ Pos (70 o0 )
—5Pua(p-p'n 0 o0 0 ) —§Pra(p7p 0 M)+ 5 Pra(p7prn ™ e n ) — § Pas(p- p'n* o0 )
—Pua(popmn nn™) — Pra(pop M n*n™) — Paa(pop” ™0 en™) — Pra(p2p 0 n ™9™
+Ps(p-p' o0 0™ n™) — Pra(popPunn) — 3 Pra(p- p'nton 070 ™) — Pra(ppPn g n™)

—Po(prp’ n nton) = Pau(pp on s n) — Pra(pp'vn o0 n®)+2Ps(p- p'n'on "> n*)].

The “Sym” standing in front of these expressions indi-
cates that a symmetrization is to be performed on each
index pair pv, o7, etc. The symbol P indicates that a
summation is to be carried out over all distinct permu-
tations of the momentum-index triplets, and the sub-
script gives the number of permutations required in
each case.

Expressions (2.6) and (2.7) can be obtained in a
straightforward manner by repeated functional differ-
entiation of the Einstein action. This procedure, how-
ever, is exceedingly laborious. A more efficient (but
still lengthy) method is to make use of the hierarchy
of identities (II, 17.31). It is a remarkable fact that
once Sy is known all the higher vertex functions, and
hence the complete action functional itself, are de-
termined by the general coordinate invariance of the
theory. It is convenient, in the actual computation of
the vertices via (II, 17.31), to invent diagrammatic
schemes for displaying the combinatorics of indices.
Since each reader will devise the scheme which suits

@.7)

him best we shall not shackle him by describing one
here. We also make no attempt to display Ss or any
higher vertices.

The vertex V(s has the following form for the
gravitational field :

V" =
3Sym[2p”,p'%8,"— 9"t i1
+ (@' 0 )07+ p8u0,7],  (2.8)
where the momentum-index combinations are pu, p'v/,
#""a"'7"’, and the symmetrization is to be performed on

the index pair o7. The propagators for the normal and
fictitious quanta are given by

G— (muﬂln‘{'"htr"7m_'"7447’7")/P2 ) (2-9)
G—n»/p2. (2.10)

2The choice of terms is not completely unique since momentum
conservation may be used to replace a given term by other terms.
We give here what we believe (but have not proved) to be the
expressions containing the smallest number of terms.

Bryce S. DeWitt , Phys. Rev. 162:1239-1256,1967

« 3-point vertex: | 7| terms

+ 4-point vertex: 2850 terms

>




Recent developments

® New expression for MHV amplitudes ang Freedman)

AMBV( )2 GMEV (L, L. n)

» intriguing sum of squares of YM amplitudes

Spradlin’s talk

® N=8 reCUI’SIOH I"e|atI0n SOIVEd (Drummond, Spradlin,Volovich, Wen)

)Y [Ra (s A )] Ga (i, A) ‘
{a}

® SO|UtIOn Pal’a”els that fOI" N=4 SYM ! (Drummond, Henn)

AJT)/’:LL(L <o 7n> — AnMHv(la ¢ .. 7n> Z Roz()‘ia S\i; 77@)
{a}
G = bosonic “dressing function”, R = dual superconformal invariant




» Derive one-loop box coefficients of N=8 superamplitudes

- use quadruple cuts

C(i,7,k, 1) =

- input: tree-level superamplitudes obtained by solving the N=8
supersymmetric recursion relation

- remarkable simplicity of the tree-level R-functions feeds loops




One-loop box coefficients

(Hall; Katsaroumpas, Spence, GT)

pattern echoes tree level

. 7n)]2 Z [EQ(AH 5\27 77%)]2 éa(A’ia 5\Z)
{a}

~

R superconformal invariant; G bosonic

® Checks:

» MHV amplitudes (Bern, Dixon, Perelstein, Rozowsky), Up tO 22 Iegs

»  six-point NMHV amplitudes (Bern,Bjerrum-Bohr, Dunbar; Bjerrum-Bohr, Dunbar, Ita)




» Tree-level amplitudes in N=8 supergravity expressed as
sums of squares of amplitudes in N=4 SYM...

» ..Similar properties for the coefficients of one-loop
amplitudes

® Various incarnations of the idea that

® Intriguing appearance of dual superconformal
expressions




A quick swim to

N=2 super QED




Why QED ?

® Because (we think) it’s simple...
» ..but it took 50 years to calculate two-loop amplitudes...

»  multi-photon amplitudes are free of divergences

® Because it’s similar to (other) theories we like

» No-triangle property for n > 6 one-loop n-photon amplitudes

(Badger, Bjerrum-Bohr,Vanhove)

N=2 SQED four-photon amplitude at one and two loops
are maximally transcendental... @inoth, Glover, Marquard,Van der Bij)

...and can be obtained from N<2 amplitudes by
suppressing non maximally transcendental terms




Four-photon amplitudes

® Treelevel: zero

® One |OOpI MY = —4[(log(z) —log(y))” + 7] (Karplus & Neuman, 1950)
»ox=-s/t,y=-ult=1-x

® Jwo |OOpSZ (Binoth, Glover, Marquard, van der Bij, 2002; Bern, De Freitas, Dixon,

Ghinculov,Wong, 2001)

Re {Mﬁf)} = —16Lis(y) — 16 Lis(z) + 8(log(x) + log(y)) (Lis(x) + Liz(y))

4
+4log™(x)* log”(y) — 5 log(x) log(y)*

1
24

N2 T a 2




Approximate iterative structures

(Brandhuber,Vincon, GT)

® TI")’ [Mf)]ansatz =b [Mil)}2 + C./\/ll(ll) +d

» determine b, ¢, d in some appropriate way (e.g. least squares)

Ansatz & two-loop amplitude “Remainder” function

Raly) == Re [Mf)} - <b MPT? +emP + d)




An attempt at approximating the two-loop four-photon
amplitude in N=1 super QED with an ansatz similar to
that used earlier in N=2 is much more crude

maximally supersymmetric QED amplitudes are special !




Conclusions

“...something deeper than what we know

underlies quantum field theory...”




Open questions

How many one-loop coefficients can be determined from
symmetry considerations alone! Yangians’

Derive the anomaly & conformal equations at higher
loops

Derive anomaly equations for other generators of dual
superconformal group, specifically ¢

Origin of dual superconformal symmetry in field theory!?

Understand the implications of the structure found for
N=8 supergravity amplitudes and one-loop coefficients

and many more...







