

Symmetries of scattering amplitudes in $\mathcal{N} = 4$ SYM

Gregory Korchemsky

IPhT, Saclay

Based on work in collaboration with

James Drummond, Johannes Henn, Emery Sokatchev

Scattering amplitudes in $\mathcal{N} = 4$ super Yang-Mills theory

- ✓ Extended spectrum of asymptotic on-shell states

$$2 \text{ gluons with helicity } \pm 1, \quad 6 \text{ scalars with helicity } 0, \quad 8 \text{ gaugino with helicity } \pm \frac{1}{2}$$

all in the adjoint of the $SU(N_c)$ gauge group

- ✓ On-shell matrix elements of S -matrix:

- Nontrivial functions of Mandelstam variables $s_{i\dots j}$ and 't Hooft coupling $a = g_{\text{YM}}^2 N_c$
- Are independent on gauge choice
- Probe (hidden) symmetries of gauge theory

Three questions in this talk:

- ✓ Do tree amplitudes in $\mathcal{N} = 4$ SYM have hidden symmetries?
- ✓ How powerful are these symmetries to completely determine the scattering amplitudes?
- ✓ What happens to these symmetries at loop level?

Color-ordered planar MHV, NMHV,... amplitudes

- ✓ Color-ordered **planar** partial amplitudes:

$$A_n = \text{tr} [T^{a_1} T^{a_2} \dots T^{a_n}] \mathcal{A}_n^{h_1, h_2, \dots, h_n}(p_1, p_2, \dots, p_n) + [\text{Bose symmetry}]$$

- ✗ Quantum numbers: light-like momenta ($p_i^2 = 0$), helicity ($h_i = 0, \pm \frac{1}{2}, \pm 1$), color (a_i)
- ✗ Amplitudes suffer from IR divergences \mapsto require regularization (dim.reg. with $D = 4 - 2\epsilon$)
- ✓ The amplitudes are classified according to their total helicity

$$h_{\text{tot}} = h_1 + \dots + h_n = \{n, n-2, n-4, \dots, -(n-2), -n\}$$

- ✗ $h_{\text{tot}} = \pm n, \pm(n-2)$: \mapsto amplitudes vanish to all loops due to supersymmetry
- ✗ $h_{\text{tot}} = n-4$: \mapsto MHV amplitudes $A^{--+\dots+}, A^{-+-\dots+}$

$$A_n^{\text{MHV}} = A_n^{\text{MHV(tree)}}(p_i, h_i) \mathcal{M}_n^{\text{MHV}}(\{s_{ij}\}; a)$$

All-loop corrections are described by a single scalar function!

[Parke,Taylor]

- ✗ $h_{\text{tot}} = n-4-2p$: \mapsto N^p MHV amplitudes $A^{---+\dots+}, A^{--+ -\dots+}$

$A_n^{N^p \text{MHV}} = \text{much more complicated structure compared with MHV amplitudes}$

Use supersymmetry to combine amplitudes into superamplitudes

From MHV amplitudes to MHV superamplitude in $\mathcal{N} = 4$ SYM

- ✓ On-shell helicity states in $\mathcal{N} = 4$ SYM:

$$G^\pm \text{ (gluons } h = \pm 1\text{)}, \quad \Gamma_A, \bar{\Gamma}^A \text{ (gluinos } h = \pm \frac{1}{2}\text{)}, \quad S_{AB} \text{ (scalars } h = 0\text{)}$$

- ✓ Can be combined into a single on-shell superstate

[Mandelstam],[Brink et al]

$$\begin{aligned} \Phi(p, \eta) = & G^+(p) + \eta^A \Gamma_A(p) + \frac{1}{2} \eta^A \eta^B S_{AB}(p) \\ & + \frac{1}{3!} \eta^A \eta^B \eta^C \epsilon_{ABCD} \bar{\Gamma}^D(p) + \frac{1}{4!} \eta^A \eta^B \eta^C \eta^D \epsilon_{ABCD} G^-(p) \end{aligned}$$

- ✓ Combine all MHV amplitudes into a single MHV superamplitude

[Nair]

$$\begin{aligned} \mathcal{A}_n^{\text{MHV}} = & (\eta_1)^4 (\eta_2)^4 \times A \left(G_1^- G_2^- G_3^+ \dots G_n^+ \right) \\ & + (\eta_1)^4 (\eta_2)^2 (\eta_3)^2 \times A \left(G_1^- \bar{S}_2 S_3 \dots G_n^+ \right) + \dots \end{aligned}$$

- ✓ Spinor helicity formalism:

[Xu,Zhang,Chang'87]

$$p_i^2 = 0 \quad \Leftrightarrow \quad p_i^{\alpha\dot{\alpha}} \equiv p_i^\mu (\sigma_\mu)^{\alpha\dot{\alpha}} = \lambda_i^\alpha \tilde{\lambda}_i^{\dot{\alpha}} \equiv |i\rangle[i|$$

- ✓ Superamplitudes are functions of $\{\lambda_i, \tilde{\lambda}_i, \eta_i\}$

$$\mathcal{A}_n(\Phi_1, \Phi_2, \dots, \Phi_n) = \mathcal{A}_n(\lambda_1, \tilde{\lambda}_1, \eta_1; \dots, \lambda_n, \tilde{\lambda}_n, \eta_n)$$

Tree MHV superamplitude

- ✓ All MHV amplitudes are combined into a **single superamplitude** (spinor notations $\langle ij \rangle = \lambda_i^\alpha \lambda_{j\alpha}$)

$$\mathcal{A}_n^{\text{MHV}} = i \frac{\delta^{(4)}(\sum_{i=1}^n p_i) \delta^{(8)}(\sum_{i=1}^n \lambda_i^\alpha \eta_i^A)}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

- ✓ On-shell $\mathcal{N} = 4$ supersymmetry: [Nair]

$$q_\alpha^A = \sum_i \lambda_{i,\alpha} \eta_i^A, \quad \bar{q}_{A\dot{\alpha}} = \sum_i \tilde{\lambda}_{i,\dot{\alpha}} \frac{\partial}{\partial \eta_i^A} \quad \Rightarrow \quad q_\alpha^A \mathcal{A}_n^{\text{MHV}} = \bar{q}_{A\dot{\alpha}} \mathcal{A}_n^{\text{MHV}} = 0$$

- ✓ (Super)conformal invariance [Witten]

$$k_{\alpha\dot{\alpha}} = \sum_i \frac{\partial^2}{\partial \lambda_i^\alpha \partial \tilde{\lambda}_i^{\dot{\alpha}}} \quad \Rightarrow \quad k_{\alpha\dot{\alpha}} \mathcal{A}_n^{\text{MHV}} = 0$$

Much less trivial to verify for NMHV amplitudes

- ✓ In fact, (super)conformal symmetry is almost exact (due to holomorphic anomaly)

$$\bar{s} \mathcal{A}_n^{\text{MHV}} \sim \sum_i \left(\eta_i \tilde{\lambda}_{i+1} - \eta_{i+1} \tilde{\lambda}_i \right) \delta^{(2)}(\lambda_i, \lambda_{i+1}) \mathcal{A}_{n-1}^{\text{MHV}}$$

$\bar{s} \mathcal{A}_n^{\text{MHV}}$ is localized at collinear configurations $p_i \parallel p_{i+1}$

[Bargheer, Beisert, Galleas, Loebbert, McLoughlin]

Dual $\mathcal{N} = 4$ superconformal symmetry I

- ✓ The $\mathcal{N} = 4$ superamplitudes possess a much bigger, **dual superconformal symmetry**

[Drummond, Henn, GK, Sokatchev]

- ✓ **Chiral** dual superspace $(x_{\alpha\dot{\alpha}}, \theta_{\alpha}^A, \lambda_{\alpha})$:

$$\begin{aligned} \cancel{x} \quad p = \sum_{i=1}^n p_i &= 0 \quad \rightarrow \quad p_i = \cancel{x}_i - x_{i+1} \\ \cancel{x} \quad q = \sum_{i=1}^n \lambda_i \eta_i &= 0 \quad \rightarrow \quad \lambda_i \alpha \eta_i^A = (\cancel{\theta}_i - \theta_{i+1})_{\alpha}^A \end{aligned}$$

- ✓ The MHV superamplitude in the dual superspace

$$\mathcal{A}_n^{\text{MHV}} = i(2\pi)^4 \frac{\delta^{(4)}(\cancel{x}_1 - \cancel{x}_{n+1}) \delta^{(8)}(\cancel{\theta}_1 - \cancel{\theta}_{n+1})}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle}$$

- ✓ $\mathcal{N} = 4$ supersymmetry in the dual superspace:

$$Q_{A\alpha} = \sum_{i=1}^n \frac{\partial}{\partial \theta_i^A} \alpha, \quad \bar{Q}_{\dot{\alpha}}^A = \sum_{i=1}^n \theta_i^A \alpha \frac{\partial}{\partial x_i^{\dot{\alpha}}} \alpha, \quad P_{\alpha\dot{\alpha}} = \sum_{i=1}^n \frac{\partial}{\partial x_i^{\dot{\alpha}}} \alpha$$

- ✓ Dual supersymmetry

$$Q_{A\alpha} \mathcal{A}_n^{\text{MHV}} = \bar{Q}_{\dot{\alpha}}^A \mathcal{A}_n^{\text{MHV}} = P_{\alpha\dot{\alpha}} \mathcal{A}_n^{\text{MHV}} = 0$$

Dual $\mathcal{N} = 4$ superconformal symmetry II

- ✓ Super-Poincaré + inversion = conformal supersymmetry:

- ✗ Inversions in the dual superspace

$$I[\lambda_i^\alpha] = (x_i^{-1})^{\dot{\alpha}\beta} \lambda_{i\beta}, \quad I[\theta_i^{\alpha A}] = (x_i^{-1})^{\dot{\alpha}\beta} \theta_{i\beta}^A$$

- ✗ Neighbouring contractions are dual conformal covariant

$$I[\langle i i+1 \rangle] = (x_i^2)^{-1} \langle i i+1 \rangle$$

- ✗ Impose cyclicity, $x_{n+1} = x_1$, $\theta_{n+1} = \theta_1$, through delta functions. Then, only in $\mathcal{N} = 4$,

$$I[\delta^{(4)}(x_1 - x_{n+1})] = x_1^8 \delta^{(4)}(x_1 - x_{n+1})$$

$$I[\delta^{(8)}(\theta_1 - \theta_{n+1})] = x_1^{-8} \delta^{(8)}(\theta_1 - \theta_{n+1})$$

- ✓ The tree-level MHV superamplitude is **covariant** under dual conformal inversions

$$I \left[\mathcal{A}_n^{\text{MHV}} \right] = (x_1^2 x_2^2 \dots x_n^2) \times \mathcal{A}_n^{\text{MHV}}$$

- ✓ **Dual superconformal covariance is a property of all tree-level superamplitudes**

(MHV, NMHV, N^2 MHV,...) in $\mathcal{N} = 4$ SYM theory

[Drummond, Henn, GK, Sokatchev], [Brandhuber, Heslop, Travaglini]

Symmetries at tree amplitudes

- ✓ The relationship between conventional and dual superconformal $su(2, 2|4)$ symmetries:

[Drummond,Henn,GK,Sokatchev]

- ✓ The same symmetries appear at strong coupling from invariance of $AdS_5 \times S^5$ sigma model under bosonic [Kallosh,Tseytlin] + fermionic T-duality [Berkovits,Maldacena],[Beisert,Ricci,Tseytlin,Wolf]

- ✓ (Infinite-dimensional) closure of two symmetries has Yangian structure

[Drummond,Henn,Plefka]

- ✓ All tree-level amplitudes are known [Drummond,Henn] from the supersymmetric generalization of the BCFW recursion relations

[Brandhuber,Heslop,Travaglini],[Bianchi,Elvang,Freeman],[Arkani-Hamed,Cachazo,Kaplan]

Are tree level amplitudes completely determined by the symmetries?

Invariants of both symmetries

- ✓ The ‘ratio’ of two tree superamplitudes

$$\mathcal{A}_n = \mathcal{A}_n^{\text{MHV}} R_n = \mathcal{A}_n^{\text{MHV}} \left[R_n^{\text{MHV}} + R_n^{\text{NMHV}} + \dots \right]$$

- ✓ The ratio R_n -functions are invariants of **both** conventional (g) and dual (G) symmetries:

$$g \cdot R_n^{\text{N}^p \text{MHV}} = G \cdot R_n^{\text{N}^p \text{MHV}} = 0,$$

$R_n^{\text{N}^p \text{MHV}}$ = Polynomial in θ ’s of degree $4p$

General solution is unknown, classification of $\text{N}^p \text{MHV}$ superinvariants remains to be done

✗ MHV superinvariants ($p = 0$) are trivial: $R_n^{\text{MHV}} = \text{const}$

✗ NMHV superinvariants ($p = 1$) are nontrivial:

[Drummond,Henn,GK,Sokatchev]

$$R_{rst}^{\text{N}^1 \text{MHV}}(x, \lambda, \theta) = \frac{\langle s-1s \rangle \langle t-1t \rangle \delta^{(4)}(\langle r|x_{rs}x_{st}|\theta_{tr} \rangle + \langle r|x_{rt}x_{ts}|\theta_{sr} \rangle)}{x_{st}^2 \langle r|x_{rs}x_{st}|t-1 \rangle \langle r|x_{rs}x_{st}|t \rangle \langle r|x_{rt}x_{ts}|s-1 \rangle \langle r|x_{rt}x_{ts}|s \rangle}$$

Supersymmetric extenstion of three-mass box coefficients

[Bern,Dixon,Kosower]

How powerful are the symmetries?

General expression for the NMHV ratio function dictated by the symmetries

$$g \cdot R_n^{\text{NMHV}} = G \cdot R_n^{\text{NMHV}} = 0 \quad \mapsto \quad R_n^{\text{NMHV}} = \sum_{r,s,t} c_{rst} R_{rst} \quad (\text{with } c_{rst} \text{ arbitrary!})$$

- ✓ The combined action of conventional and dual superconformal symmetries *is not sufficient* to fix all the freedom in the tree-level amplitudes
- ✓ Additional information needed comes from the analytic properties of tree amplitudes: [GK, Sokatchev]
 - ✗ ‘Physical’ poles in multi-particle invariant masses $(p_s + \dots + p_{t-1})^2 = x_{st}^2 = 0$
 - ✗ Free from spurious singularities
 - ✗ Correct collinear factorization $p_i \parallel p_{i+1}$

Analytical properties of R_{rst} -invariants:

$$R_{rst} \sim \left(\underbrace{x_{st}^2}_{\text{physical pole}} \times \underbrace{\langle r|x_{rs}x_{st}|t-1\rangle \langle r|x_{rs}x_{st}|t\rangle \langle r|x_{rt}x_{ts}|s-1\rangle \langle r|x_{rt}x_{ts}|s\rangle}_{\text{spurious poles}} \right)^{-1}$$

Kinematical configuration corresponding to spurious pole at $\langle r|x_{rs}x_{st}|t\rangle = 0$:

$$-x_{rt}^2 x_{r+1,s}^2 x_{t+1,s}^2 + x_{r+1,t}^2 x_{rs}^2 x_{t+1,s}^2 - x_{r+1,t+1}^2 x_{rs}^2 x_{ts}^2 + x_{r,t+1}^2 x_{r+1,s}^2 x_{ts}^2 = 0$$

Spurious poles should cancel inside R_n^{NMHV} !

Cancellation of spurious poles

- ✓ Each invariant R_{rst} has four sets of spurious poles

$$\langle r|x_{rs}x_{st}|t-1\rangle = \langle r|x_{rs}x_{st}|t\rangle = \langle r|x_{rt}x_{ts}|s-1\rangle = \langle r|x_{rt}x_{ts}|s\rangle = 0$$

- ✓ ‘Master identity’: all spurious poles of R_{rst} cancel in the linear combination of invariants:

$$R_{rst} + (R_{str} + R_{trs} - R_{s-1\,tr} - R_{t-1\,rs})$$

- ✗ $n = 8$ NMHV: general expression consistent with all symmetries

$$R_8^{\text{NMHV};0} = \alpha R_{147} + \beta R_{148} + \gamma R_{157} + \delta R_{158} + \epsilon R_{168} + \text{cyclic}$$

Cancellation of spurious poles leads to

$$\alpha - \beta = \alpha + \gamma - \delta = 2\alpha - \gamma = \delta - \epsilon = \beta + \gamma - \delta = \beta + \gamma - \epsilon = 0$$

This system is overdetermined but it has a unique solution

$$\beta = \alpha, \quad \gamma = 2\alpha, \quad \delta = \epsilon = 3\alpha$$

- ✓ The same relations (with $\alpha = \frac{1}{8}$) ensure the correct behavior in the collinear limit $p_i \parallel p_{i+1}$

$$R_n(\dots, i, i+1, \dots) \xrightarrow{i \parallel i+1} R_{n-1}(\dots, \ell, \dots)$$

Tree amplitudes are uniquely fixed by symmetries + analyticity condition

[GK,Sokatchev]

Do symmetries survive loop corrections?

- ✓ Loop corrections to the amplitudes necessarily induce infrared divergences
- ✓ The scattering amplitudes are well-defined in $D = 4 - 2\epsilon_{\text{IR}}$ dimensions only
- ✓ *All-loop planar* (super)amplitudes can be split into a IR divergent and a finite part

$$\mathcal{A}_n^{(\text{all-loop})} = \text{Div}(1/\epsilon_{\text{IR}}) [\text{Fin} + O(\epsilon_{\text{IR}})]$$

- ✗ IR divergences (poles in ϵ_{IR}) exponentiate (in any gauge theory!) [Mueller],[Sen],[Collins],[Sterman],...

$$\text{Div}(1/\epsilon_{\text{IR}}) = \exp \left\{ -\frac{1}{2} \sum_{l=1}^{\infty} a^l \left(\frac{\Gamma_{\text{cusp}}^{(l)}}{(l\epsilon_{\text{IR}})^2} + \frac{G^{(l)}}{l\epsilon_{\text{IR}}} \right) \sum_{i=1}^n (-s_{i,i+1})^l \epsilon_{\text{IR}} \right\}$$

- ✗ IR divergences are in the one-to-one correspondence with UV divergences of Wilson loops

[Ivanov,GK,Radyushkin]

$$\Gamma_{\text{cusp}}(a) = \sum_l a^l \Gamma_{\text{cusp}}^{(l)} = \text{cusp anomalous dimension of Wilson loops}$$

$$G(a) = \sum_l a^l G_{\text{cusp}}^{(l)} = \text{collinear anomalous dimension}$$

- ✓ IR divergences preserve Poincaré supersymmetry but break conformal + dual conformal symmetry

IR divergences come from small momenta (=large distances) and, therefore, the conformal anomaly is not 'localized' (= difficult to control)

Anomalous symmetries at loop level

- ✓ Some symmetries $(p, q, \bar{q}, P, Q, \bar{S}, \dots)$ survive loop corrections while other $(s, \bar{s}, k, K, S, \bar{Q}, \dots)$ are broken

- ✓ But the anomalies are not independent: $[K, \bar{Q}] = S$, $[s, \bar{s}] = k$
- ✓ Three independent anomalies are

$$s_{\alpha A} = \sum_i \frac{\partial^2}{\partial \lambda_i^\alpha \partial \eta_i^A}, \quad \bar{Q}_{\dot{\alpha}}^A = \sum_i \eta_i^A \frac{\partial}{\partial \tilde{\lambda}_i^{\dot{\alpha}}}, \quad K^{\alpha \dot{\alpha}} = \sum_i [x_i^{\alpha \dot{\beta}} x_i^{\beta \dot{\alpha}} \frac{\partial}{\partial x_i^{\beta \dot{\beta}}} + x_i^{\beta \dot{\alpha}} \theta_i^{\alpha B} \frac{\partial}{\partial \theta_i^{\beta B}} + \dots]$$

- ✓ Dual conformal K -anomaly is *universal* for all superamplitudes (MHV, NMHV,...)
- ✓ K -anomaly can be determined to all loops from *Wilson loop/MHV amplitude duality*, whereas the s - and \bar{Q} -anomalies are hard to control

MHV scattering amplitudes/Wilson loop duality

MHV amplitudes are dual to light-like Wilson loops

$$\ln \mathcal{A}_n^{(\text{MHV})} \sim \ln W(C_n) + O(1/N_c^2), \quad C_n = \text{light-like } n\text{-(poly)gon}$$

- ✓ At **strong** coupling, agrees with the BDS ansatz [Alday,Maldacena]
- ✓ At **weak** coupling, the duality was verified against BDS ansatz to two loops for $n \geq 4$ [Drummond,Henn,GK,Sokatchev], [Anastasiou,Brandhuber,Heslop,Khoze,Spence,Travaglini]

Wilson loops match the BDS ansatz for $n = 4, 5$ but not for $n \geq 6$

- ✓ Scattering amplitude/Wilson loop duality also holds in QCD but in the Regge limit only [GK]

Dual conformal K -anomaly

$$\begin{array}{lll} \text{Dual conformal symmetry of the amplitudes} & \Leftrightarrow & \text{Conformal symmetry of Wilson loops} \\ \\ \text{Dual conformal anomaly} & \Leftrightarrow & \text{Conformal anomaly of Wilson loops} \end{array}$$

✓ How could Wilson loops have conformal anomaly in $\mathcal{N} = 4$ SYM?

✗ Were the Wilson loop well-defined (=finite) in $D = 4$ dimensions it would be conformal invariant

$$W(C_n) = W(C'_n)$$

✗ ... but $W(C_n)$ has cusp UV singularities \mapsto dim.reg. breaks conformal invariance

$$W(C_n) = W(C'_n) \times [\text{cusp anomaly}]$$

✓ *All-loop* anomalous conformal Ward identities for the *finite part* of the Wilson loop

$$\ln W(C_n) = \textcolor{red}{F_n^{(WL)}} + [\text{UV divergencies}] + O(\epsilon)$$

Under special conformal transformations (boosts), to *all orders*,

[Drummond,Henn,GK,Sokatchev]

$$K^\mu F_n \equiv \sum_{i=1}^n [2x_i^\mu (x_i \cdot \partial_{x_i}) - x_i^2 \partial_{x_i}^\mu] \textcolor{red}{F_n} = \frac{1}{2} \Gamma_{\text{cusp}}(a) \sum_{i=1}^n x_{i,i+1}^\mu \ln \left(\frac{x_{i,i+2}^2}{x_{i-1,i+1}^2} \right)$$

The same relations also hold at strong coupling

[Alday,Maldacena],[Komargodski]

Dual conformal anomaly at work

Consequences of the conformal Ward identity for the finite part of the Wilson loop W_n :

- ✓ $n = 4, 5$ are special: there are no conformal invariants (too few distances due to $x_{i,i+1}^2 = 0$)
 \implies the Ward identity has a *unique all-loop solution* (up to an additive constant)

$$F_4 = \frac{1}{4} \Gamma_{\text{cusp}}(a) \ln^2 \left(\frac{x_{13}^2}{x_{24}^2} \right) + \text{const} ,$$

$$F_5 = -\frac{1}{8} \Gamma_{\text{cusp}}(a) \sum_{i=1}^5 \ln \left(\frac{x_{i,i+2}^2}{x_{i,i+3}^2} \right) \ln \left(\frac{x_{i+1,i+3}^2}{x_{i+2,i+4}^2} \right) + \text{const}$$

Exactly the BDS ansatz for the 4- and 5-point MHV amplitudes!

- ✓ Starting from $n = 6$ there are conformal invariants in the form of cross-ratios $u_{ijkl} = \frac{x_{il}^2 x_{jk}^2}{x_{ik}^2 x_{jl}^2}$
General solution to the Ward identity contains an arbitrary function of the conformal cross-ratios.
- ✓ Crucial test - go to **six points at two loops** where the answer is not determined by conformal symmetry
[Drummond,Henn,GK,Sokatchev] [Bern,Dixon,Kosower,Roiban,Spradlin,Vergu,Volovich]

$$F_6^{(\text{WL})} = F_6^{(\text{MHV})} \neq F_6^{(\text{BDS})}$$

The Wilson loop/MHV amplitude duality holds at $n = 6$ to two loops!

Dual conformal symmetry beyond MHV

One-loop NMHV superamplitudes

✓ n -gluon one-loop NMHV amplitudes are known

[Bern,Dixon,Kosower]

✓ New result for one-loop NMHV **super**amplitude:

[Henn,Drummond,GK,Sokatchev]

$$\mathcal{A}_n^{\text{NMHV};1} = \mathcal{A}_n^{\text{MHV};1} \times \left[R_n^{\text{NMHV}}(x_i, \lambda_i, \theta_i^A) + O(\epsilon) \right]$$

IR divergences break symmetries of NMHV and MHV but they cancel inside the ‘ratio function’

One-loop NMHV ‘ratio function’ = **sum of tree-level dual superconformal invariants:**

$$R_n^{\text{NMHV}} = \sum_{p,q,r} R_{pqr}(\lambda, \tilde{\lambda}, \theta) V_{pqr}(x_{ij}^2)$$

✗ **Helicity structure** is invariant under both (conventional and dual) superconformal symmetries

✗ **Loop corrections** are described by scalar functions

$$V_{pqr} = 1 + a V^{(1)}(\{u_{pqr}\}) + O(a^2), \quad u_{pqr} = \text{dual conformal cross-ratios}$$

they are **dual conformal invariants** made of IR finite combinations of 1-loop scalar box integrals

[Henn,Drummond,GK,Sokatchev],[Brandhuber,Heslop,Travaglini],[Elvang,Freedman,Kiermaier]

✗ R_n^{NMHV} is free from spurious singularities and has correct collinear limit

*The ratio function is dual **conformal** invariant but it is **not superconformal** invariant, why ?*

Dual supersymmetry \bar{Q} –anomaly

- ✓ Main idea: Instead of $\bar{Q}\mathcal{A}_n$ let us compute its **discontinuity** $\text{Disc}_s(\bar{Q}\mathcal{A}_n) = \bar{Q}(\text{Disc}_s\mathcal{A}_n)$

$$\text{Disc}_{s_{123}}\mathcal{A}_6^{\text{MHV};1} = \mathcal{A}^{\text{MHV};0}(-\ell_1, 1, 2, 3, -\ell_2) \star \mathcal{A}^{\text{MHV};0}(\ell_2, 4, 5, 6, \ell_1),$$

Two tree amplitudes are integrated over the phase space of on-shell states ℓ_1 and ℓ_2

$$\begin{aligned} \delta_{\bar{Q}}\text{Disc}_{s_{123}}\mathcal{A}_6^{\text{MHV};1} &= \delta_{\bar{Q}}\mathcal{A}^{\text{MHV};0}(-\ell_1, 1, 2, 3, -\ell_2) \star \mathcal{A}^{\text{MHV};0}(\ell_2, 4, 5, 6, \ell_1) \\ &\quad + \mathcal{A}^{\text{MHV};0}(-\ell_1, 1, 2, 3, -\ell_2) \star \delta_{\bar{Q}}\mathcal{A}^{\text{MHV};0}(\ell_2, 4, 5, 6, \ell_1) \end{aligned}$$

- ✓ If tree superamplitudes were exactly invariant, $\delta_{\bar{Q}}\mathcal{A}^{\text{MHV};0} = 0$, then $\delta_{\bar{Q}}\text{Disc}_{s_{123}}\mathcal{A}_6^{\text{MHV};1} = 0$.
But they are not due to holomorphic anomaly!

[Cachazo,Svrcek,Witten],[Bena,Bern,Kosower,Roiban]

- ✓ \bar{Q} –anomaly of one-loop NMHV ratio function

$$\begin{aligned} \bar{Q}_{\dot{\alpha}}^A(\text{Disc}_{x_{14}^2}R_6^{\text{NMHV};1}) &\sim (\eta_1[23] + \eta_2[31] + \eta_3[12])^A R_{146} \\ &\quad \times \left(\frac{\tilde{\lambda}_{1\dot{\alpha}}[6|x_{63}|3\rangle}{x_{14}^2[61][12]} + \frac{\tilde{\lambda}_{3\dot{\alpha}}[4|x_{41}|1\rangle}{x_{14}^2[23][34]} \right) + (i \rightarrow i+3) \neq 0 \end{aligned}$$

Holomorphic anomaly is responsible for the breakdown of $\bar{Q} = \bar{s}$ symmetry of the ratio function
(but not of the dual conformal symmetry!)

[GK,Sokatchev]

Analyticity constraints at loop level

All-loop superamplitude \mathcal{A}_n should be free from spurious poles + have correct collinear behaviour:

- ✓ Spurious pole cancellation operates ‘horizontally’, i.e. it establishes a property of the n –particle amplitude, without reference to other amplitudes
- ✓ Collinear factorization operates ‘vertically’, i.e. it recursively relates the n –particle amplitude to the amplitudes with fewer particles
- ✓ Example: One loop correction to NMHV $_{n=7}$ ratio function:

$$R_6^{\text{NMHV};1} = \frac{1}{2} \mathbf{R}_{146} V_{146}(u_1, u_2, u_3) + (\text{cyclic})$$

$$V_{146} = -\ln u_1 \ln u_3 + \frac{1}{2} \sum_{k=1}^3 [\ln u_k \ln u_{k+1} + \text{Li}_2(1 - u_k)] - \frac{\pi^2}{6},$$

with u_i dual conformal cross-ratios, e.g. $u_1 = x_{15}^2 x_{24}^2 / (x_{14}^2 x_{25}^2)$

✗ Spurious pole: $u_1 = 1, u_2, u_3 = \text{arbitrary}$

$$V_{146}(1, u_2, u_3) - V_{146}(u_3, 1, u_2) = 0$$

✗ Collinear limit: $u_1 \rightarrow 0, u_3 \rightarrow 1 - u_2$

$$V_{146}(0, u_2, 1 - u_2) + V_{146}(0, 1 - u_2, u_2) = 0$$

The two approaches are equivalent at tree level but lead to *different* constraints at loop level!

Symmetry of all-loop superamplitudes

DHKS proposal for all-loop superamplitude in $\mathcal{N} = 4$ SYM:

$$\mathcal{A}_n(x_i, \lambda_i, \theta_i^A) = \mathcal{A}_n^{\text{MHV}} + \mathcal{A}_n^{\text{NMHV}} + \mathcal{A}_n^{\text{N}^2\text{MHV}} + \dots + \mathcal{A}_n^{\overline{\text{MHV}}}$$

- ✓ At tree level, \mathcal{A}_n is fixed by conventional and dual symmetries + analyticity conditions
- ✓ At loop level, both symmetries become anomalous due to IR divergences + holomorphic anomaly
- ✓ The dual superconformal symmetry is restored in the ratio of superamplitudes \mathcal{A}_n and $\mathcal{A}_n^{\text{MHV}}$

$$\mathcal{A}_n(x_i, \lambda_i, \theta_i^A) = \mathcal{A}_n^{\text{MHV}} \times \left[R_n(x_i, \lambda_i, \theta_i^A) + O(\epsilon) \right]$$

The ratio function

$$R_n = 1 + R_n^{\text{NMHV}} + R_n^{\text{N}^2\text{MHV}} + \dots$$

is *IR finite* and, most importantly, it is *dual conformal invariant*

[Drummond, Henn, GK, Sokatchev]

$$K^{\alpha\dot{\alpha}} R_n^{(\text{all loops})} = 0$$

The conjecture was recently proven to one loop

[Brandhuber, Heslop, Travaglini]

... but all-loop proof is still missing

Superamplitudes in twistor space

Twistor (half-Fourier) transform $(\lambda, \tilde{\lambda}, \eta) \mapsto (\lambda, \mu, \psi)$ in split signature $(+ + --)$

[Witten'03]

$$T[\mathcal{A}_n](\{\lambda, \mu, \psi\}) = \int \prod_1^n \frac{d^2 \tilde{\lambda}_i}{(2\pi)^2} d^4 \eta_i e^{i([\mu_i \tilde{\lambda}_i] + \psi_i A \eta_i^A)} \mathcal{A}_n(\{\lambda, \tilde{\lambda}, \eta\}),$$

- ✓ The twistor transform of the MHV superamplitude

$$\mathcal{A}_n^{\text{MHV}} = \frac{i}{\prod_1^n \langle i i + 1 \rangle} (2\pi)^4 \delta^{(4)} \left(\sum_1^n \lambda_i \tilde{\lambda}_i \right) \delta^{(8)} \left(\sum_1^n \lambda_i \eta_i \right)$$

$$T \left[\mathcal{A}_n^{\text{MHV}} \right] = i \int d^4 X d^8 \Theta \frac{\prod_1^n \delta^{(2)}(\mu_i + \lambda_i X) \delta^{(4)}(\psi_i + \langle i \Theta \rangle)}{\langle 12 \rangle \dots \langle n-1 n \rangle \langle n1 \rangle}$$

Is localized on the line in the twistor space

$$\mu_{i\dot{\alpha}} + \lambda_i^\alpha X_{\alpha\dot{\alpha}} = 0, \quad \psi_{iA} + \langle i \Theta_A \rangle = 0,$$

- ✓ All superamplitudes are conjectured to be supported on holomorphic curves of higher degree: connected/disconnected prescriptions [Nair],[Witten],[Roiban,Spradlin,Volovich],[Bern,Del Duca,Dixon,Kosower],...
- ✓ Simple form of BCFW recurrence relations [Mason,Skinner],[Arkani-Hamed et al]
- ✓ Simple action of conformal group: the line parameters X and Θ are transformed as the coordinates of *configuration superspace* [GK,Sokatchev]

Twistor transform of NMHV superamplitude I

Half-Fourier transform of the NMHV amplitude

$$\mathcal{A}_n^{\text{NMHV}} = \sum_{3 \leq a+1 < b \leq n-1} \mathcal{A}_{nab}, \quad \mathcal{A}_{nab} = \mathcal{A}_n^{\text{MHV}} R_{nab}.$$

seems to be an impossible task, because of the very non-trivial dependence of R 's on $\tilde{\lambda}$

$$R_{nab} = \frac{\langle a-1|a\rangle\langle b-1|b\rangle \delta^{(4)}(\sum_1^{a-1} \langle n|x_{nb}x_{ba}^{-1}|i\rangle\eta_i + \sum_1^{b-1} \langle n|x_{na}x_{ab}^{-1}|i\rangle\eta_i)}{x_{ab}^2 \langle n|x_{nb}x_{ba}^{-1}|a-1\rangle\langle n|x_{nb}x_{ba}^{-1}|a\rangle\langle n|x_{na}x_{ab}^{-1}|b-1\rangle\langle n|x_{na}x_{ab}^{-1}|b\rangle},$$

✓ First, we define the spinors $\langle \rho_0 | + \langle \rho | + \langle \sigma | = 0$

$$\langle \rho_0 | \equiv \langle n |, \quad \langle \rho | = \langle n|x_{nb}x_{ba}^{-1}|, \quad \langle \sigma | = \langle n|x_{na}x_{ab}^{-1}|,$$

✓ Second, use the Faddeev-Popov approach to introduce them into R 's via delta function integrals

$$\begin{aligned} R(\langle n|x_{nb}x_{ba}^{-1}|) &= \int d^2\rho R(\rho) \delta^{(2)}\left(\langle \rho | - \langle n|x_{nb}x_{ba}^{-1}| \right) \\ &= |x_{ab}^2| \int d^2\rho d^2\tilde{\rho} R(\rho) \exp\{-i(\langle \rho|x_{ba}|\tilde{\rho}\rangle + \langle n|x_{nb}|\tilde{\rho}\rangle)\}. \end{aligned}$$

✓ Incomplete cancellation $|x_{ab}^2|/x_{ab}^2 = \text{sgn}(x_{ab}^2)$ leads to breakdown of conformal symmetry of tree NMHV amplitude

[Mason, Skinner], [Arkani-Hamed et al.]

Twistor transform of NMHV superamplitude II

Twistor transform of the partial NMHV amplitude \mathcal{A}_{nab}

[GK,Sokatchev]

$$T[\mathcal{A}_{nab}] = i \int d^4 X \int d^2 \rho d^2 \tilde{\rho} \frac{(\Pi)_{nab}}{\Delta_{nab}} \times [\text{Fermionic counterpart}]$$

- ✓ Integrand = product of three MHV-like lines in twistor space

$$\frac{(\Pi)_{nab}}{\Delta_{nab}} = \frac{\prod_1^{a-1} \delta^{(2)}(\mu_i + \langle i | X_1)}{\langle 12 \rangle \dots \langle a-1 | \rho \rangle} \times \frac{\prod_a^{b-1} \delta^{(2)}(\mu_i + \langle i | X_2)}{\langle \rho | a \rangle \dots \langle b-1 | \sigma \rangle} \times \frac{\prod_b^n \delta^{(2)}(\mu_i + \langle i | X_3)}{\langle \sigma | b \rangle \dots \langle n | 1 \rangle}$$

- ✓ Line moduli: $X_1 = X - \rho_0 \tilde{\rho}$, $X_2 = X + \sigma \tilde{\rho}$, $X_3 = X$

- ✓ Three vectors X_{12} , X_{23} and X_{31} are *lightlike* \implies three lines intersect pairwise

$$X_{12} = \rho \tilde{\rho}, \quad X_{23} = \sigma \tilde{\rho}, \quad X_{31} = \rho_0 \tilde{\rho}, \quad X_{12} + X_{23} + X_{31} = 0$$

Transforming a single MHV line into three NMHV lines

Geometric interpretation of dual superconformal invariants

NMHV superinvariant = Three intersecting lines = (Coplanar) lightlike triangle in moduli space

N^k MHV superinvariants = $(2k + 1)$ intersecting lines = Nonplanar triangulated surfaces in moduli space

Conclusions and open questions

- ✓ Tree amplitudes in $\mathcal{N} = 4$ SYM respect conventional and dual superconformal symmetries but their combined action is not sufficient to fix the amplitudes. The additional information needed comes from analyticity properties of the amplitudes.
- ✓ At loop level, both symmetries are broken by IR divergences + holomorphic anomaly. The dual conformal anomaly is well understood but how to control the remaining anomalies?

We need the dual model for $\mathcal{N} = 4$ superamplitude:

Dual model for the MHV amplitude = light-like Wilson loop

Dual model for the MHV+NMHV+ ... + $\overline{\text{MHV}}$ amplitude = ???

\bar{Q} -anomaly indicates that the dual model does not respect Poincaré supersymmetry.

How could it be?

- ✓ Weak/strong coupling paradox:

At weak coupling, the \bar{Q} -anomaly is present to all loops $\bar{Q}R_n = af_1 + a^2f_2 + \dots$ but it is not seen at strong coupling !?

$$\mathcal{A}_n^{\text{N}^{\text{P}}\text{MHV}} \sim \exp(-\sqrt{a}S_{\min}) [1 + O(1/\sqrt{a})] \quad \Rightarrow \quad R_n^{\text{N}^{\text{P}}\text{MHV}} \sim 1 + O(1/\sqrt{a})$$

What is the meaning of holomorphic anomaly in string theory?