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Calculation 
& 

Structures.
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In this talk I'm going to present the calculation of the complete four-point four-loop N=8 supergravity amplitude and I will point out 

various structures that we discovered and/or exploited along the way.



Exciting Proposition:

Why surprising if possible:

κ ∼ m−1
pl

Dimensionful 
coupling:

non-
renomalizable

(κ pµpν) · · ·
propagators

gravity

(g pµ) · · ·
propagators

gauge

 Perturbatively finite QFT of gravity in 4D 

No known structure 
to make up diff btw

and

Any responsible mechanism would 
fundamentally impact our 
understanding of gravity
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Evidence of spectacular 
cancellations in N=8!

D-dimensional calculations demonstrate certain 
cancellations to all loop orders, beyond known SUSY 
or string theory non-renormalization arguments.

Evidence that responsible mechanism maybe 
somewhat generic to gravity theories.

No proof of finiteness yet!

Dramatic 3-loop cancellations demonstrated.

Bern, Dixon, Roiban (2007)

Bern, JJMC, Dixon, Johansson, Kosower, Roiban (2007,2008)

Bern, JJMC, Forde, Johansson, Ita (2007)

Suggestive hints that String dualities restrict form of 
effective action, possibly preventing divergences (issues of 
decoupling of towers of massive states cloud the situation)  

Chalmers [hep-th/0008162] (2000) ; Green, Vanhove, Russo (2007)
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1. To find structure responsible for cancellations, we 

want more data!  (3-loops was only first chance to 

diverge from gauge-like powercounting.)

Why go after Four Loops?

2. Direct challenge to a potential N = 6 superspace 
explanation suggested by Howe and Stelle. hep-th/0211279 (2003)

3. Bossard, Howe, Stelle predicted D = 5, L = 4  
divergence from algebraic methods, avoiding superspace 
0901.4661 [hep-th] (2009)
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4.  There is perhaps a fourth reason as well.  Tools developed to probe higher loops can generalize to other more 
physical theories.



“The algebraic formalism […] suggests that maximal 

supergravity is likely to diverge at four loops in D = 5 and at 

five loops in D = 4, unless other infinity suppression 

mechanisms not involving super-symmetry or gauge 

invariance are at work.”   Bossard, Howe & Stelle

Careful study considering new algebraic 
renormalization theorems exploiting 
cohomological methods as well as the full  
non-linear supersymmetry 

Bossard, Howe and Stelle   0901.4661 [hep-th]
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1. Generalized Unitarity Method
a. Method of maximal cuts
b. Supersums

2. KLT + “n-factors”

Knowledge of Dark Lore

See talks by: Bern, Kosower, Roiban, 
Johansson, ...

Bern, Dixon, Dunbar and Kosower (1994)

Bern, Dixon and Kosower 
(1998, 2004, 2005)

Bern, JJMC, Johanson
and Kosower (2007) 

Britto, Cachazo, Feng; Buchbinder, Cachazo (2004)
Cachazo and Skinner; Cachazo, Spradlin, Volovich (2008)      

Bern, JJMC, Dixon, 
Johansson, Kosower, Roiban (2008)

Bianchi, Freedman, Elvang, Kiermaier;  Arkanki-Hamed, Cachazo, Kaplan;  Brandhuber, Spence, Travaglini; 
Drummond, Korchemsky, Henn, Sokatchev;  Bern, JJMC, Ita, Johansson, Roiban; Hall

Let’s calculate!
What do we need?

Kawai, Lewellen, and Tye (1986); Bern, Dixon, Dunbar, Perelstein, and Rozowsky (1998);  Bern, JJMC, Johansson (2008)
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All this knowledge has been discussed in previous talks.



Pre-reqs.

1. Draw tree graphs (no cycles)
2. Add loops to diagrams
3. Identify matching graphs

Gross motor skills

Knowledge of Dark Lore

=
1. Generalized Unitarity Method
a. Method of maximal cuts
b. Supersums

2. KLT + “n-factors”
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I’m going to take this opportunity to talk about some of the little-mentioned gross-motor 
skills required to use the Unitarity method, and KLT in the ways we’ve been pioneering for 
higher-loop calculation.



Pre-reqs.

1. Draw tree graphs (no cycles)
2. Add loops to diagrams
3. Identify matching graphs

Gross motor skills

=

For this talk I’ll discuss these skills.  
Don’t worry, we’ll find structures 

here too.
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I’m going to take this opportunity to talk about some of the little-mentioned gross-motor 
skills required to use the Unitarity method, and KLT in the ways we’ve been pioneering for 
higher-loop calculation.



Why draw trees?

∑

sYM states

A5
tree(k1, k2, l3, l2, l1)×A5

tree(−l1,−l2,−l3, k3, k4) =

δ(8)(λα
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]

To get value from cuts!
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Supersums on cuts are great.  But individual cuts don’t tell you what the full amplitude is.  
Need to be able to organize results into diagrams.



Drawing trees

∑

sYM states

A5
tree(k1, k2, l3, l2, l1)×A5

tree(−l1,−l2,−l3, k3, k4)

=
δ(8)(λα

1 ηa
1 + λα

2 ηa
2 + λα

3 ηa
3 + λα

4 ηa
4 ) × 1
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++

+

=

s ≡ (k1 + k2)2

t ≡ (k1 + k4)2

s
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k2 k3

k4

t

k1

k2

k4

k3

s

k1

k2 k3

k4
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In order to organize the results into diagrams, you need to be able to draw all tree 
diagrams that contribute, and glue them together.



!l1

!l2 !l3

k3k4 !l2

!l3 k3

k4!l1

!l3

k3 k4

!l1!l2 k3

k4 !l1

!l2!l3

k4

!l1 !l2

!l3k3

Drawing trees

∑

sYM states

A5
tree(k1, k2, l3, l2, l1)×A5

tree(−l1,−l2,−l3, k3, k4)

=
δ(8)(λα

1 ηa
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+

=
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In order to organize the results into diagrams, you need to be able to draw all tree 
diagrams that contribute, and glue them together.



Drawing ^ Trees 101
COLOR ORDERED

Easy right?

9 point tree (good for a particular four-loop 
cut) has 429 color-ordered diagrams.

If you’re good with your book-keeping you 
only need to do each n-point once

By hand or by computer you’ll want to 
minimize isomorphism operations.
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For all graphs g in S{n},  

for each edge e between leg n and 1, 

create a graph in S{n+1} with leg (n+1) connected to edge e

Drawing ^ Trees 101
COLOR ORDERED

Simple algorithm to go from set of n leg tree graphs 
to n+1:

1

2

3{

S{1}
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For all graphs g in S{n},  

for each edge e between leg n and 1, 

create a graph in S{n+1} with leg (n+1) connected to edge e

Drawing ^ Trees 101
COLOR ORDERED

Simple algorithm to go from set of n leg tree graphs 
to n+1:

1

2

3
e2e1

{

S{1}

12



4

For all graphs g in S{n},  

for each edge e between leg n and 1, 

create a graph in S{n+1} with leg (n+1) connected to edge e

Drawing ^ Trees 101
COLOR ORDERED

Simple algorithm to go from set of n leg tree graphs 
to n+1:

1

2

3
e2e1

1

2

3
e2e1

{

S{1}

“t channel”

12



4 4

For all graphs g in S{n},  

for each edge e between leg n and 1, 

create a graph in S{n+1} with leg (n+1) connected to edge e

Drawing ^ Trees 101
COLOR ORDERED

Simple algorithm to go from set of n leg tree graphs 
to n+1:

1

2

3
e2e1

1

2

3
e2e1

1

2

3
e2e1

{

S{1}

{ S{2}

“t channel”
“s channel”
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Drawing ^ Trees 101
COLOR ORDERED

Need to pay attention to orientation:

1

2
3

54

6

7
8

OK

1

2
3

54

6

7

8

Not OK
(you want representations that can 

encode the difference)
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For all graphs g in S{n},  for every edge e, 
create a graph in S{n+1} with leg (n+1) connected 
to edge e.

Drawing ^ Trees 101
NON-COLOR ORDERED

Even simpler algorithm to go from set of n leg non-
color ordered tree graphs to n+1: (No orientation to 

worry about.)

n leg cubic graph has

n ext + (n-3) internal edges = 2n-3 edges  

|S{n}|=(2(n-1)-3)!!=(2n-5)!!

|S{n+1}| = (2n-3) |S{n}|  = (2n-3)( (2n-5)  |S{n-1}| ) =

(2n-3) (2n-5) (2n-7) ... (3) = (2n-3)!!
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Number of ways of cutting a n convex polygon into 
n-2 triangles with (non-intersecting) straight lines.

Euler's Polygon Division Problem

COLOR ORDERED Structure

Number of distinct
color-ordered cubic
n-trees:

(dual-space 
rep of 6-trees)

Cn!2 "
2
!n!2" !2 n ! 5"##!n ! 1"#
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How do we know what cuts span the amplitude?

Gross motor skill #2: 
Add loops to graphs

1) Draw all (trivalent) vacuum diagrams
2) Dress them with external legs in all 
(distinct) ways
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Start with:

Finding all trivalent vacuum diagrams

Choose all unique pairs of 
edges (including {self, self})

{self,self}

distinct: 
{A,B}

Edge pair:

A

B

Discard: redundant 
diagrams

1 particle 
reducible

,

17



=Gross motor skill #3: 
Identify matching graphs

Fascinating and extensive literature:
graph isomorphism problem
Many implementations sufficiently speedy for graphs this small.  c.f. 
Mathematica’s Combinitorica, or Brendon D. McKay’s Nauty 

=

ƒ(a) = 1

ƒ(b) = 6

ƒ(c) = 8

ƒ(d) = 3

ƒ(g) = 5

ƒ(h) = 2

ƒ(i) = 4

ƒ(j) = 7

via

(http://cs.anu.edu.au/~bdm/nauty/)

redundant 
diagrams

automorphism
special case 
useful for 

symmetrization 
and 

determining 
symmetry 
factors

taken from wikipedia
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Certainly possible to just build your own for these purposes: 3 loop 4-particle cut was done with home-rolled 
isomorphism prior to consulting literature.  Turns out a lot of very clever people have thought about this and 
come up with some appreciable optimizations.  

http://cs.anu.edu.au/~bdm/nauty/
http://cs.anu.edu.au/~bdm/nauty/


∑

sYM states

A5
tree(k1, k2, l3, l2, l1)×A5

tree(−l1,−l2,−l3, k3, k4)

+ +s
k1

k2 k3

k4

t

k1

k2

k4

k3

s
k1

k2 k3

k4

=

A

B C

D
has numerator (A + B)2

Given knowledge of an integral, e.g.

graph isomorphism necessary to dress cuts, e.g.

How KLT is used in practice!
s ≡ (k1 + k2)2

t ≡ (k1 + k4)2
19



How KLT is used in practice!
∑

N=8 states

M tree
5 (1, 2, !3, !2, !1)M tree

5 (3, 4,−!1,−!2,−!3)

= −(!1 + k1)2(!3 + k2)2(!3 − k3)2(!1 − k4)2

×
[ ∑

N=4 states

Atree
5 (!1, 1, 2, !3, !2)Atree

5 (−!3, 3, 4,−!1,−!2)
]

×
[ ∑

N=4 states

Atree
5 (1, !1, !3, 2, !2)Atree

5 (3,−!3,−!1, 4,−!2)
]

+{1↔ 2} + {3↔ 4} + {1↔ 2, 3↔ 4}

A

B C

D
(A + B)2

A

B
C D(A + B)2
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Because we can:  (a) Draw trees, and (b) Match graphs.  Knowing YM amplitudes, we can find their contributions to 
various cuts.   Rather then having to perform the susysum time and time again, we just draw pictures, match 
graphs, and dress appropriately.

Of course we’ve now got all sorts of algebra to do on the gravity side to assign to the appropriate gravity graphs 
on the cut, but here too, since we can draw trees and match graphs, we haven’t had to do any expensive gravity 
SUSY-summing.



2 loops
3 loops

4 loops

With all tools in place we can find all contributing 
vacuums
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Four-Loop Amplitude Construction

ext. leg 
perms

symmetry 
factor

4-loop trivalent

1PI vacuum graphs

Attach 4 external legs.

left with 50 diagram topologies or integrals   

Remove all diagrams with 2, 3-point sub-graphs.

M4-loop
4 =

(κ

2

)10
stuM tree

4

∑

S4

50∑

i=1

ciIi
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Want to see the integrals?

(follow download instructions at the end of the talk!)
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Four-Loop Cuts

Numerators determined from 2 906 

maximal and near maximal cuts

Completeness of 

ansatz verified 

on 26 generalized 

cuts

Ii =
∫ [

4∏

p=1

dDlnp

(2π)D

]
Ni(lj , kj)
l1l2...l13

See Henrik’s talk
for N=4 integrals

YM diags thru KLT 

used as truth.
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Following the method of maximal cuts (c.f. 0705.1864, 0808.4112 [hep-th]):
  * we first fix those coe!cients of the $N_i$ that contribute when the number of cut propagators is maximal (13)
  * we then consider cuts with 12 cut lines, fixing the coe!cients assoc. w/ single inverse propagators $l_n^2$ 
(contact terms).  
  * We continue this procedure down to nine cut lines, considering, in total, 2906 distinct cuts.  

At this point, the resulting expression is complete.  Can verify with only 26 cuts, su!cient to completely 
determine any four-loop four-point amplitude in any massless theory.   The 11 cuts that cannot be 
straightforwardly verified using lower-loop four-point amplitudes in two-particle cuts are shown above.



Leading numerators    

UV Divergence at Four Loops

Sub-leading divergence:

Represented by integrals which cancel in the full 
amplitude 

 would have D = 4.5 divergence

Ni ∼ O(k4l8)

Ii =
∫ [

4∏

p=1

dDlnp

(2π)D

]
Ni(lj , kj)
l1l2...l13

O(k5l7)
trivially vanishes under integration by Lorentz invariance
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 (    annotates sums 
over external momenta)

Expand the integrands about small external momenta:

cancels after using D = 5 integral identities like:

Marcus & Sagnotti UV extraction method

corresponding to  D = 5  div.

UV Divergence at Four Loops

Ni ∼ O(k6l6)

N (6)
i + N (7)

i

Kn · lj
l2j

+ N (8)
i

(
K2

n

l2j
+

Kn · lj Kq · lp
l2j l

2
p

)

Ki
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Many ways of expanding the contributing integrals $I_i$ in terms of independent momenta.  Each must be 
equivalent order by order in small external momenta.  Equating expansions is su!cient to produce all required 
integral identities to demonstrate the cancellations of D=5 divergences.

Verified by explicit analytical integration in $D=5-2\epsilon$



is finite

N=8 SUGRAFour Loop

 in D=5!
actually finite for D < 5.5
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actually finite for D < 5.5

Verified at 4 loops the all-loop order D-dimensional 
cancellations predicted by Bern, Dixon, Roiban

Developed, extended, and refined higher-
loop calculation methods exposing 
surprising relations:

Box Cut, “twist rule”, Jacobi-like relations, 
only (n-3)! indep. color-ordered Amps, n-factor KLT,

supersum structure, applications to theories w/ less SUSY
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Open Data available at: 

Story’s not over: there exists 
structure yet to be found.

http://www.aip.org/pubservs/epaps.html.

 EPAPS Document No. E-PRLTAO-103-025932

http://ftp.aip.org/epaps/phys_rev_lett/E-PRLTAO-103-025932/
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http://ftp.aip.org/epaps/phys_rev_lett/E-PRLTAO-103-025932/
http://www.aip.org/pubservs/epaps.html
http://www.aip.org/pubservs/epaps.html
http://ftp.aip.org/epaps/phys_rev_lett/E-PRLTAO-103-025932/

