Computing amplitudes using Wilson loops

Paul Heslop

Queen Mary, University of London

NBIA, Copenhagen

13th August 2009

based on: 0707.1153 Brandhuber, Travaglini, P.H. 0902.2245 Anastasiou, Brandhuber, Khoze, Spence, Travaglini, P.H. Work in progress

A D F A 同 F A E F A E F A Q A

Brief introduction to amplitudes in $\mathcal{N} = 4$

• Duality between two objects in \mathcal{N} =4 Super Yang-Mills:

• Vast simplification of the computation of amplitudes

Example We compute all MHV 2-loop gluon scattering amplitudes (assuming the conjectured duality) for any *n*.

2 The duality

- The evidence so far...
- Wilson loop calculations 1 loop
- Wilson loop calculations 2 loop

3 Results of two-loop computations, n = 6, 7, 8

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation

- Theoretical
 - Hidden structures/symmetries (eg twistor string theory, no triangle hypothesis, dual conformal symmetry, integrability ...)
- Practical
 - Simpler/faster ways to compute amplitudes (recent advances include generalised unitarity/BCFW recursion relations etc.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Background processes at LHC

MHV Amplitudes in $\mathcal{N} = 4$ SYM

 Colour-stripped, planar "Maximally Helicity Violating (MHV)" amplitudes

$$A_n = A_n^{\text{tree}} \mathcal{M}_n$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• We will focus on $\mathcal{M}_n^{(L)}$

L-loop amplitude

The BDS conjecture [Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005]

• IR divergences: dimensional regularisation $d = 4 - 2\epsilon$

The BDS formula: an all-loop expression for any n

$$\log\left(\mathcal{M}_n(\epsilon)\right) = \sum_{L=1}^{\infty} a^L \left(f_{\mathcal{A}}^{(L)}(\epsilon)\mathcal{M}_n^{(1)}(L\epsilon) + C^{(L)}\right) + O(\epsilon)$$

- 'a' is the 't Hooft coupling constant
 Here f^(L)_A(ε) = f^(L)₀ + f^(L)₁ε + f^(L)₂ε² where f^(L)_i is a number.
- needs modification from *n* = 6 points...

Outline

1) Introduction

The duality

- The evidence so far...
- Wilson loop calculations 1 loop
- Wilson loop calculations 2 loop

3 Results of two-loop computations, n = 6, 7, 8

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

4 Higher n

Amplitude/Wilson loop duality

• Wilson loop over the polygonal contour C_n $W[C] := \operatorname{Tr} \mathcal{P} \exp \left[ig \oint_{C} d\tau \left(A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau) \right) \right]$

Amplitude/Wilson loop duality

• Wilson loop over the polygonal contour C_n $W[C] := \operatorname{Tr} \mathcal{P} \exp \left[ig \oint_{C} d\tau \left(A_{\mu}(x(\tau)) \dot{x}^{\mu}(\tau) \right) \right]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Remainder function

n ≥ 6

$$\log \left(\mathcal{M}_{n}(\epsilon) \right) = \sum_{l=1}^{\infty} a^{l} f_{\mathcal{A}}^{(l)}(\epsilon) \mathcal{M}_{n}^{(1)}(l\epsilon) + C_{\mathcal{A}}(a) + \mathcal{R}_{n}^{\mathcal{A}}(\boldsymbol{p}_{i}; \boldsymbol{a}) + O(\epsilon)$$

$$\log \left(W_{n}(\epsilon) \right) = \sum_{l=1}^{\infty} a^{l} f_{W}^{(l)}(\epsilon) W_{n}^{(1)}(l\epsilon) + C_{w}(a) + \mathcal{R}_{n}^{W}(\boldsymbol{p}_{i}; \boldsymbol{a}) + O(\epsilon)$$

 non-zero remainder function found for the two-loop six-point amplitude and the Wilson loop [Drummond Henn Korchemsky Sokatchev 2008,

(日) (日) (日) (日) (日) (日) (日)

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 2008

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Wilson loop calculations, 1-loop

 the expression for the n – point amplitude and for the WL are very closely related:

Wilson loop calculations, 1-loop

 the expression for the n – point amplitude and for the WL are very closely related:

2-loop n-point Wilson loop (log of)

Only four new "master" integrals to be computed for all n

$f_H(p_1, p_2, p_3; Q_1, Q_2, Q_3)$

 $f_Y(p_1, p_2; Q_1, Q_2)$

 p_1

 $f_X(p_1, p_2; Q_1, Q_2)$

 $f_C(p_1, p_2, p_3; Q_1, Q_2, Q_3)$

Also factorised cross diagram

This is given by the product of two one loop diagrams

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

•
$$-1/2f_{\mathcal{P}}(p_i, p_j; Q_{ji}, Q_{ij})f_{\mathcal{P}}(p_k, p_l; Q_{lk}, Q_{kl})$$

(Compare with amplitude (parity even part))

э

n = 7 [vergu]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Complete 2-loop Wilson loop

 The logarithm of the complete *n*-sided Wilson loop is given in terms of the four new master diagrams together with the one loop diagram f_P(p_i, p_j; Q_{ji}, Q_{ij}) as

$$\begin{split} \sum_{1 \le i < j < k \le n} & \left[f_H(p_i, p_j, p_k; Q_{jk}, Q_{ki}, Q_{ij}) + f_C(p_i, p_j, p_k; Q_{jk}, Q_{ki}, Q_{ij}) \\ & + f_C(p_j, p_k, p_i; Q_{ki}, Q_{ij}, Q_{jk}) + f_C(p_k, p_i, p_j; Q_{ij}, Q_{jk}, Q_{ki}) \right] \\ & + \sum_{1 \le i < j \le n} \left[f_X(p_i, p_j; Q_{ji}, Q_{ij}) + f_Y(p_i, p_j; Q_{ji}, Q_{ij}) + f_Y(p_j, p_i; Q_{ij}, Q_{ji}) \right] \\ & + \sum_{1 \le i < k < j < l \le n} (-1/2) f_P(p_i, p_j; Q_{ji}, Q_{ij}) f_P(p_k, p_l; Q_{lk}, Q_{kl}) \end{split}$$

Outline

Introduction

2 The duality

- The evidence so far...
- Wilson loop calculations 1 loop
- Wilson loop calculations 2 loop

3 Results of two-loop computations, n = 6, 7, 8

4 Higher n

Computations at n = 6, 7, 8...

- Using sector decomposition and the numerical techniques of [Anastasiou Beerli Daleo (2007,2008), Lazopoulos Melnikov Petriello (2007), Anastasiou Melnikov Petriello (2005)] we compute the 2-loop master integrals
- Computations of WL performed for $n = 4, 5, 6, 7, 8 \rightarrow$ considerable amount of data collected.
- Verified that the remainder function is conformally invariant

- Verified cyclic and parity (dihedral) symmetry
- Collinear limits

Conformal invariants: cross-ratios

- Number of independent cross-ratios is n(n-5)/2
- Basis:

- This ignores the Gram determinant n(n-5)/2 > 3n-15
- physical kinematics will form a 3n 15 dimensional slice of this space of cross-ratios

Hexagon computations

$$u_{36} = \frac{x_{31}^2 x_{46}^2}{x_{36}^2 x_{41}^2} := u_1 \ , \ u_{14} = \frac{x_{15}^2 x_{24}^2}{x_{14}^2 x_{25}^2} := u_2 \ , \ u_{25} = \frac{x_{26}^2 x_{35}^2}{x_{25}^2 x_{36}^2} := u_3$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• remainder function $\rightarrow \mathcal{R}(u_1, u_2, u_3)$

Hexagon Calculations

 Checks of conformal invariance of the Remainder (previously done by DHKS/BDKSVV):

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(A), (B), (C) are three different but conformally equivalent kinematics.

6-pnt Wilson loop

. . .

•
$$\mathcal{R}_6^W$$
 with $u_1 = u$, $u_2 = v$, $u_3 = w$

w = 1 blue, *w* = 10 green, *w* = 100 yellow, *w* = 1000 orange, *w* = 10000 red

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
Plot of \mathcal{R}_6(u, u, u)
```


Plot of $\mathcal{R}_7(u, u, u, u, u, u, u)$

・ロト・日本・日本・日本・日本・日本

Plot of $\mathcal{R}_7(u, u, u, u, u, u, u)$

・ロト・西ト・ヨト・ヨー うへぐ

Plot of $\mathcal{R}_7(u, u, u, u, u, u, u)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conformal invariance

• Cyclicity and parity (also checked at 6, 7 points)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Collinear limits

• $\mathcal{R}_n(u)$ should have trivial simple collinear limits

 $\mathcal{R}_n \to \mathcal{R}_{n-1}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• We verify this for n = 6, 7, 8 (with no constant shifts)

Outline

Introduction

2 The duality

- The evidence so far...
- Wilson loop calculations 1 loop
- Wilson loop calculations 2 loop

3 Results of two-loop computations, n = 6, 7, 8

Higher n

- We can compute for arbitrarily large n
- Alday and Maldacena recently considered special *n*-point amplitude kinematics at strong coupling via string theory

• Momenta in 2 + 1 dimensions in notation (t, z)

$$x_{2k} = \left(2\sin\frac{\pi}{2n}, e^{i\pi\frac{2k+1}{n}}\right), \qquad x_{2k+1} = \left(0, e^{i\pi\frac{2k}{n}}\right)$$

space projection = regular polygon, zig-zags in time

this kinematics leads to the cross-ratios

$$u_{ij} = 1 , \qquad i - j = \text{odd} ,$$
$$u_{ij} = 1 - \left(\frac{\sin \frac{\pi}{n}}{\sin \frac{\pi a}{n}}\right)^2 , \qquad i - j = 2a ,$$

• At strong coupling:
$$A_n = \pi \left(\frac{3}{8}n - 2 + \frac{2}{n}\right)$$
 [Alday Maldacena]

o does the weak coupling result share any features with this?

(日) (日) (日) (日) (日) (日) (日)

- eg naive counting of two loop diagrams $\Rightarrow n^4$ growth
- put the above kinematics in our program ...

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Results:	no.points	\mathcal{R}_n
	<i>n</i> = 6	-2.708
	<i>n</i> = 8	-5.528
	<i>n</i> = 10	-8.386
	<i>n</i> = 12	-11.261
	<i>n</i> = 14	-14.145
	<i>n</i> = 16	-17.034
	<i>n</i> = 18	-19.926
	<i>n</i> = 20	-22.820
	<i>n</i> = 22	-25.716
	<i>n</i> = 24	-28.614
	<i>n</i> = 30	-37.311

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Plot of two-loop data versus linear fit

- Best linear fit: $\mathcal{R}_n \approx 5.94061 1.43878n$ Error ~ 0.1
- +1/n term: $\mathcal{R}_n \approx 6.3689 1.4538n 2.1928/n$ Error ~ 0.01
- Including $1/n^2$ term $\mathcal{R}_n \approx -1.45128n + 6.26917 - 1.13934/n - 2.8661/n^2$ Error ~ 0.0005 = numerical error

Summary of results

 Summary: the number of distinct integrals for the 2-loop n-gon WL is independent of n

- We compute all *n*-sided polygonal light-like Wilson loops at two loops (eg recent computation of an *n* = 30 WL)
- no additional complexity as n increases: the number of diagrams increases but the type of integral is n-independent
- Assuming the amplitude/Wilson loop duality we compute two-loop planar MHV amplitudes for any number of points

▲□▶▲□▶▲□▶▲□▶ □ のへで

Future directions

- amplitude calculation at *n* ≥ 7-points needed! [vergu]
- analytic determination of ≥6-pnt amplitude/Wilson loop
- Proof of WL/amplitude duality
- Generalisations of WL to NMHV amplitudes etc. [Berkovits Maldacena]
- Generalisations to other theories

 Understanding the role of standard (super)conformal symetry ⇒ Yangian, infinite new symmetries (integrability)
 [Beisert Ricci Tseytlin Wolf, Berkovits Maldacena, Drummond Henn Plefka, Bargheer Beisert Galleas Loebbert McLoughlin]