QCD Scattering Amplitudes from Wilson Loops

Talk by Poul Olesen NBI, August 12, 2009

Work done with Yuri Makeenko, ITEP

PRL 102 (2009) 07602 and PRD 80 (2009) 026002[arXiv:0903.4114]

August 10, 2009

Overview

- *Goal:* We want to find the scattering amplitude when the Wilson loop is dominated by the non-perturbative minimal area behavior.
- Procedure:
- There exists a connection between the Wilson loop and the large N (or quenched) QCD scattering amplitudes.
- Lattice Gauge Theory gives this behavior of the quenched Wilson loop W[C] quite precisely at large and not so large distances for various N's.
- The relation Amplitude/Wilson loop is expressed in terms of Feynman path integrals.

- The leading behavior of W[C] obtained on the lattice is just $W \sim \exp(-\text{Minimal Area})$, with Lüscher term correction.
- Since the amplitude is a path integral over W, to do a simple calculation we need the minimal area expressed as a path integral.
- Jesse Douglas (1929-1930) showed how to compute the minimal area from a variational principle involving *only* the boundary curve *C*.
- Inserting Douglas' path integral for W[C] we find that the spectrum is of the Regge type ${\rm Mass}^2\propto$ integer.
- If the # of external particles is very large we find that the Veneziano amplitude in the Koba-Nielsen form is valid in QCD for large energies/momentum transfers. We need incoming energy >> momentum transfers.

The Wilson Loop/Scattering Amplitude Relation

[Wilson 1974, Makeenko and Migdal 1981]

External momenta $p_i = q_{i-1} - q_i$, i = 1, ..., M,

$$G(x_1, ..., x_M) = <\bar{q}(x_1)q(x_1)...\bar{q}(x_M)q(x_M) >$$

In momentum space:

$$G(p_1, \dots, p_M) \propto \int_0^\infty d\tau \tau^{M-1} e^{-m\tau} \prod_{i=1}^{M-1} \int_0^{\phi_{i+1}} d\phi_i \int Dk(\phi) \mathcal{F}$$

with ${\mathcal F}$ given by

 $\int_{Z(0)=Z(2\pi)=0} DZ(\phi) \operatorname{tr} \operatorname{P}e^{i\int_0^{2\pi} d\phi [(k(\phi)+p(\phi))\dot{Z}(\phi)-\tau\gamma(\phi)k(\phi)/2\pi]} W[Z(\phi)]$

Explanation of symbols.

- $p(\phi) = q_i$, $\phi_i < \phi < \phi_{i+1}$ and $\dot{p}(\phi) = -\sum p_i \delta(\phi \phi_i)$.
- $k(\phi)$ is virtual momentum, related to the covariant derivative in QCD.
- The ϕ 's are related to the Schwinger proper time variables, and $Z(\phi_i) = x_i$ is the Fourier conjugate to the external momentum p_i .
- $W[Z(\phi)]$ goes through the points x_i . These are integrated because the Schwinger angles ϕ_i are.
- No integration over Z(0) = Z(2π).
 Would give an infinite volume factor because of translational invariance.

Douglas and the minimal area (Plateau's problem)

[Douglas 1930]. The minimal area bounded by a curve $Z(\phi)$ is given by the minimum of

$$-\frac{1}{4\pi}\int_0^{2\pi} d\theta \int_0^{2\pi} d\theta' \dot{Z}(\theta) \dot{Z}(\theta') \ln(1 - \cos[\phi(\theta) - \phi(\theta')]).$$

- $\theta = \theta(\phi)$ is reparametrization of curve.
- The minimal area is obtained by minimizing w.r.t. $\theta(\phi)$ or, alternatively, wrt $\phi(\theta)$, demanding

$$\int_0^{2\pi} d\theta' \dot{Z}(\theta) \dot{Z}(\theta') \ \cot \frac{\phi_\star(\theta) - \phi_\star(\theta')}{2} = 0,$$

integral is principal value, ϕ_{\star} minimizes integral for given Z.

What we need in order to compute the QCD Amplitude:

Summary: Combine everything to get

$$G(p_1, \dots, p_M) \propto \int_0^\infty d\tau \tau^{M-1} e^{-m\tau} \prod_{i=1}^{M-1} \int_0^{\phi_{i+1}} d\phi_i \int Dk(\phi) \mathcal{F}$$

with $\mathcal F$ given by

$$\int_{Z(0)=Z(2\pi)=0} DZ(\phi) \operatorname{tr} \operatorname{P}e^{i\int_0^{2\pi} d\phi [(k(\phi)+p(\phi))\dot{Z}(\phi)-\tau\gamma(\phi)k(\phi)/2\pi]} W[Z(\phi)]$$

$$W[Z(\phi)] = \mathcal{SP}_{\phi} \int D\phi(\theta) e^{K/2\pi \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' \dot{Z}(\theta) \dot{Z}(\theta') \ln(1 - \cos[\phi(\theta) - \phi(\theta')])}$$

SP means that only the saddle point is kept so to the first order we only keep the minimal area behavior.

Postponement of SP from Z- to k-integral \Rightarrow Gaussian

- The SP operation is equivalent to the "classical" limit so it can be postponed from the Z to the k integration.
- This postponement also follows since the $\phi(\theta)$ dependence is only in the logarithm in the k integration.

The relevant integral over Z (all curves!) is thus *Gaussian*. Easily doable, left with k, ϕ_i, τ integrations. Result:

$$G(p_1, ..., p_M) = \prod_{1}^{M-1} \int_0^{\phi_{i+1}} d\phi_i e^{1/4\pi K \sum p_i p_j \ln(1 - \cos(\phi_i - \phi_j))} \mathcal{K}.$$

 \mathcal{K} is function of ϕ_i, p_j . Poles come when logarithm is integrated, Mass² ~integer. Valid for $K \ll t \ll s$.

Large # of external particles \Rightarrow the Veneziano model

If M is large, the τ integrand $\tau^{M-1}e^{-m\tau}$ is dominated by large $\tau = (M-1)/m$. The kernel \mathcal{K} contains a factor, the exponent of which is

$$\frac{1}{4\pi K} \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\theta' \dot{k(\theta)} \dot{k(\theta')} \ln(1 - \cos(\phi(\theta) - \phi(\theta'))) + \text{similar factor} - \frac{i\tau}{2\pi} \int_{0}^{2\pi} d\phi \ \gamma(\phi) k(\phi).$$

Scaling k in the last factor, $k \to \tau k$, the first terms are of the order $1/\tau^2$ and can be ignored. So the integral over k in \mathcal{K} is not important to leading order.

The kernel then simplifies

$$\mathcal{K} \propto \int D\phi(\theta) = \prod_{1}^{M} \frac{\sin(\phi_{i+1}/2)\sin(\phi_{i}/2)}{\sin((\phi_{i+1}-\phi_{i})/2)}.$$

The Veneziano model essentially follows ($s=\tan\phi/2$)

$$G(\text{many } p'_i \mathbf{s}) \propto \int_{-\infty}^{s_{i+1}} \frac{ds_i}{1+s_i^2} \times \text{ a Koba - Nielsen integrand.}$$

The unsual factor $\frac{ds_i}{1+s_i^2}$ does not destroy Regge pole/Regge asymptotic behavior.

Remarks and conclusions

• Our approach valid only when the area behavior dominates the Wilson loop. Thus

-no tachyon, it is a short distance phenomenon [Arvis 1983], lowest energy= $1/(2\pi\alpha')\sqrt{R^2 - R_c^2}$, $R_c^2 = \pi^2\alpha'(d-2)/6$.

-for the four point function our results are valid for $\frac{1}{K} < |t| << s$. Higher points obvious generalizations.

-no requirement D = 26, the $D \neq 26$ anomaly is not relevant at large distances [Olesen 1985], $[L^{1i}, L^{1j}] = -iL^{ij} + (d - 26)/R^2 \times \text{stuff independent of } R$, L^{ij} =rotation generators.

Thus: restriction to large distances makes the standard dual models more healthy.

- Strong exponential decrease for |t| ~ s follows from the area behavior of W, like in the Veneziano case, but is not physically significant in our approach for the |t| ~ s case the perturbative behavior is much more important, decreases only like power. In the relation between the scattering amplitude and the Wilson loop we always need to insert the *dominant* W.
- Regge trajectory $\alpha' t + \alpha(0)$. In our case we need $\alpha' |t| >> 1$, so the intercept is not fixed here.
- In some kinematical domain our results are valid in all dimensions where W is area behaved.
 We can check with 2D: 't Hooft found for large masses Mass² ~ integer, good agreement!

- From lattice gauge theory one finds that the potential has a subdominant Lüscher-term. We are now working on the inclusion of this.
- Hope that some of the results may survive approximately also for N = 3.
 If so at LHC one should see tracks of the Veneziano amplitude in the collider data, where huge # of particles are produced.
 Perhaps heavy ions would be a good place...