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Overview

Goal: We want to find the scattering amplitude when the Wilson loop is
dominated by the non-perturbative minimal area behavior.

Procedure:

There exists a connection between the Wilson loop
and the large N (or quenched) QCD scattering amplitudes.

Lattice Gauge Theory gives this behavior of the quenched Wilson loop
W |C] quite precisely
at large and not so large distances for various N's.

The relation Amplitude/Wilson loop is expressed in terms of
Feynman path integrals.



The leading behavior of W [C'| obtained on the lattice is just
W ~ exp(—Minimal Area), with Liischer term correction.

Since the amplitude is a path integral over W, to do a simple calculation
we need the minimal area expressed as a path integral.

Jesse Douglas (1929-1930) showed how to compute the minimal area
from a variational principle involving only the boundary curve C.

Inserting Douglas’ path integral for W[C] we find that
the spectrum is of the Regge type Mass? < integer.

If the # of external particles is very large

we find that the Veneziano amplitude in the Koba-Nielsen form
is valid in QCD for large energies/momentum transfers.

We need incoming energy >> momentum transfers.



The Wilson Loop/Scattering Amplitude Relation
[Wilson 1974, Makeenko and Migdal 1981]

External momenta p; =¢q;_1 —q;, 1 =1,..., M,

G(z1,..,xn) =< q@(x1)q(x1)...q(xpr)g(Tr) >

In momentum space:
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Explanation of symbols.
 p(d) =¢q, ¢i<d<pit1and p(¢) =—> pid(P— @;).
e k(¢) is virtual momentum, related to the covariant derivative in QCD.

e The ¢'s are related to the Schwinger proper time variables,
and Z(¢;) = x; is the Fourier conjugate to the external momentum p;.

e W[Z(¢)| goes through the points x;. These are integrated
because the Schwinger angles ¢, are.

e No integration over Z(0) = Z(2).
Would give an infinite volume factor because of translational invariance.



Douglas and the minimal area (Plateau’s problem)

[Douglas 1930]. The minimal area bounded by a curve Z(¢) is given by the
minimum of

1 o o7 I > (0! /
o [ / 40’ Z(0)Z(0') (1 — cos[(0) — $(6))).

e 0 = 0(¢p) is reparametrization of curve.

e The minimal area is obtained by minimizing w.r.t. 8(¢) or, alternatively,
wrt ¢(6), demanding
— o (0)

/ 7 d0'Z(0)Z(9") cot ¢+(0) 5 =0,

integral is principal value, ¢, minimizes integral for given Z.



What we need in order to compute the QCD Amplitude:

Summary: Combine everything to get
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with F given by
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W[Z(¢)] = SPg / D (0)e/2m 17 40 [T d6'Z(8)Z(6) In(1—coslp(6)=¢(8")])

SP means that only the saddle point is kept
so to the first order we only keep the minimal area behavior.



Postponement of SP from Z— to k—integral = Gaussian

e The SP operation is equivalent to the “classical” limit
so it can be postponed from the Z to the k integration.

e This postponement also follows since
the ¢(0) dependence is only in the logarithm in the k integration.

The relevant integral over Z (all curves!) is thus Gaussian. Easily doable,
left with k, ¢;, 7 integrations. Result:

Pit1
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1 0

K is function of ¢;,p;. Poles come when logarithm is integrated,
Mass? ~integer. Valid for K << t << s.



Large # of external particles = the Veneziano model
If M is large, the T integrand 7 ~1e="7 is
dominated by large 7 = (M — 1)/m. The kernel K contains a factor, the
exponent of which is

— / "0 / "4 k(0)k(B) In(1 - cos(6(6) — 6(6)))

. 27
tsimilar factor — — do v(P)k().
2T 0

Scaling k in the last factor, k — 7k, the first terms are of the order 1/72
and can be ignored. So the integral over k in IC is not important to leading
order.



The kernel then simplifies

M

. D Sin(¢z+1/2 81n(¢z/2).
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The Veneziano model essentially follows (s = tan ¢/2)

Sitl s,
G(many p's) / ' x a Koba — Nielsen integrand.
oo 1 s
The unsual factor ffl does not destroy

Regge pole/Regge asymptotlc behavior.



Remarks and conclusions

e Our approach valid only when the area behavior dominates the Wilson
loop. Thus

-no tachyon, it is a short distance phenomenon [Arvis 1983],
lowest energy=1/(2wa’)\/R? — R2, R? = n%a/(d — 2) /6.

-for the four point function our results are valid for
+ < |[t| << s. Higher points obvious generalizations.

-no requirement D = 26, the D # 26 anomaly is not relevant at large
distances [Olesen 1985],

(LY, LY = —iLY + (d — 26)/R? x stuff independent of R,

L% =rotation generators.

Thus: restriction to large distances makes the standard dual models more
healthy.
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e Strong exponential decrease for |t| ~ s follows
from the area behavior of W,
like in the Veneziano case, but is not physically significant in our
approach—
for the |t| ~ s case the perturbative behavior is much more important,
decreases only like power.
In the relation between the scattering amplitude and the Wilson loop we
always need to insert the dominant W.

e Regge trajectory o't + «(0). In our case we need o'|t| >> 1, so the
intercept is not fixed here.

e |In some kinematical domain our results are valid in all dimensions where
W is area behaved.
We can check with 2D: 't Hooft found for large masses Mass? ~ integer,
good agreement!
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e From lattice gauge theory one finds that the potential has a subdominant
Luscher-term. We are now working on the inclusion of this.

e Hope that some of the results may survive approximately also for N = 3.
If so at LHC one should see tracks of the Veneziano amplitude
in the collider data, where huge # of particles are produced.
Perhaps heavy ions would be a good place...

12



