3. High-Energy Dynamics

- CCWZ Formalism
- Heavy Fields
- Low-Energy Constants
- Asymptotic Behaviour
- Signals of Heavy Scales

A. Pich - 2015

Large–N_C Counting Rules

 $g_s \sim 1/\sqrt{N_C}$; $\alpha_s \sim 1/N_C$; $\langle T (J_1 \cdots J_n) \rangle \sim N_C$

- Dominance of planar gluonic exchanges
- Non-planar diagrams suppressed by $1/N_C^2$
- Internal quark loops suppressed by $1/\ensuremath{N_C}$

Colour Confinement

$$\langle J(k) J(-k) \rangle = \sum_{n} \frac{f_n^2}{k^2 - M_n^2}$$

• Infinite number of mesons $(\sim \ln k^2)$

 $J|0\rangle \sim |1 \text{ Meson}\rangle$

- $f_n = \langle 0|J|n \rangle \sim \sqrt{N_C}$; $M_n \sim \mathcal{O}(1)$
- Mesons are free, stable and non-interacting

Crossing + **Unitarity**

Tree Approximation to some Local **Effective Meson Lagrangian**

A. Pich - 2015

2015

$$ar{\xi}(\phi) \equiv (\xi_{\scriptscriptstyle L}(\phi),\xi_{\scriptscriptstyle R}(\phi)) \in G$$

 $\xi_{\iota}(\phi) \stackrel{\mathsf{G}}{\longrightarrow} g_{\iota} \, \xi_{\iota}(\phi) \, h^{\dagger}(\phi, g)$ $\xi_{R}(\phi) \xrightarrow{G} g_{R} \xi_{R}(\phi) h^{\dagger}(\phi, g)$

$$ar{\xi}(\phi) \equiv (\xi_{\scriptscriptstyle L}(\phi),\xi_{\scriptscriptstyle R}(\phi)) \in G$$

$$egin{aligned} &\xi_L(\phi) & \stackrel{G}{\longrightarrow} g_L\,\xi_L(\phi)\,h^\dagger(\phi,g) \ &\xi_R(\phi) & \stackrel{G}{\longrightarrow} g_R\,\xi_R(\phi)\,h^\dagger(\phi,g) \end{aligned}$$

 $\mathbf{U}(\phi) \equiv \xi_{R}(\phi) \xi_{I}^{\dagger}(\phi) \xrightarrow{G} g_{R} \mathbf{U}(\phi) g_{I}^{\dagger}$

$$ar{\xi}(\phi) \equiv (\xi_{\scriptscriptstyle L}(\phi),\xi_{\scriptscriptstyle R}(\phi)) \in G$$

$$egin{aligned} &\xi_L(\phi) & \stackrel{G}{\longrightarrow} g_L\,\xi_L(\phi)\,h^\dagger(\phi,g) \ &\xi_R(\phi) & \stackrel{G}{\longrightarrow} g_R\,\xi_R(\phi)\,h^\dagger(\phi,g) \end{aligned}$$

$$\mathbf{U}(\phi) \equiv \xi_{R}(\phi) \, \xi_{L}^{\dagger}(\phi) \stackrel{\mathsf{G}}{\longrightarrow} \, g_{R} \, \mathbf{U}(\phi) \, g_{L}^{\dagger}$$

Canonical choice:

$$\xi_{R}(\phi) = \xi_{L}(\phi)^{\dagger} \equiv \mathbf{u}(\phi) \quad \stackrel{G}{\longrightarrow} \quad g_{R} \, \mathbf{u}(\phi) \, h^{\dagger}(\phi, g) = h(\phi, g) \, \mathbf{u}(\phi) \, g_{L}^{\dagger}$$
$$\mathbf{U}(\phi) = \, \mathbf{u}(\phi)^{2} = \, \exp\left\{i \, \frac{\sqrt{2}}{f} \, \mathbf{\Phi}\right\}$$

CCWZ Formalism

$$\mathbf{u}(\varphi) \xrightarrow{\mathbf{G}} g_{R} \mathbf{u}(\varphi) h^{\dagger}(\phi, g) = h(\phi, g) \mathbf{u}(\phi) g_{L}^{\dagger}$$

$$\mathbf{SU}(\mathbf{3})_{\mathbf{V}} \text{ octets:} \qquad \mathbf{X} \xrightarrow{\mathbf{G}} \mathbf{h}(\phi, g) \mathbf{X} \mathbf{h}(\phi, g)^{\dagger}$$

$$\mathbf{R} \equiv \frac{1}{2} \lambda^{a} R^{a} , \qquad \nabla_{\mu} R = \partial_{\mu} R + [\Gamma_{\mu}, R]$$

$$u_{\mu} \equiv i u^{\dagger} D_{\mu} U u^{\dagger} = u_{\mu}^{\dagger} , \qquad h^{\mu\nu} = \nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu}$$

$$f_{\pm}^{\mu\nu} = u F_{L}^{\mu\nu} u^{\dagger} \pm u^{\dagger} F_{R}^{\mu\nu} u , \qquad \chi_{\pm} \equiv u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u$$

$$\Gamma_{\mu} = rac{1}{2} \left\{ u^{\dagger} (\partial_{\mu} - i r_{\mu}) u + u (\partial_{\mu} - i \ell_{\mu}) u^{\dagger}
ight\}$$

CCWZ Formalism

$$\mathbf{u}(\varphi) \xrightarrow{\mathbf{G}} g_{R} \mathbf{u}(\varphi) h^{\dagger}(\phi, g) = h(\phi, g) \mathbf{u}(\phi) g_{L}^{\dagger}$$

$$\mathbf{SU(3)_{V} \text{ octets:}} \qquad \mathbf{X} \xrightarrow{\mathbf{G}} \mathbf{h}(\phi, g) \mathbf{X} \mathbf{h}(\phi, g)^{\dagger}$$

$$\mathbf{R} \equiv \frac{1}{2} \lambda^{a} R^{a} , \qquad \nabla_{\mu} R = \partial_{\mu} R + [\Gamma_{\mu}, R]$$

$$u_{\mu} \equiv i u^{\dagger} D_{\mu} U u^{\dagger} = u_{\mu}^{\dagger} , \qquad h^{\mu\nu} = \nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu}$$

$$f_{\pm}^{\mu\nu} = u F_{L}^{\mu\nu} u^{\dagger} \pm u^{\dagger} F_{R}^{\mu\nu} u , \qquad \chi_{\pm} \equiv u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u$$

$$\Gamma_{\mu} = \frac{1}{2} \left\{ u^{\dagger} (\partial_{\mu} - i r_{\mu}) u + u (\partial_{\mu} - i \ell_{\mu}) u^{\dagger} \right\}$$

$$\mathcal{L}_2 = rac{f^2}{4} \left\langle u^\mu u_\mu + \chi_+
ight
angle$$

A. Pich - 2015

Resonance Nonet Multiplets: $V(1^{--})$, $A(1^{++})$, $S(0^{++})$, $P(0^{-+})$

 $\mathbf{R}\chi\mathbf{T}$

$$\mathcal{L}_{2}^{V} = \frac{F_{V}}{2\sqrt{2}} \langle V_{\mu\nu} f_{+}^{\mu\nu} \rangle + \frac{i G_{V}}{\sqrt{2}} \langle V_{\mu\nu} u^{\mu} u^{\nu} \rangle$$

$$\mathcal{L}_{2}^{A} = \frac{F_{A}}{2\sqrt{2}} \langle A_{\mu\nu} f_{-}^{\mu\nu} \rangle$$

$$\mathcal{L}_{2}^{S} = c_{d} \langle S u^{\mu} u^{\nu} \rangle + c_{m} \langle S \chi_{+} \rangle$$

$$\mathcal{L}_{2}^{P} = i d_{m} \langle P \chi_{-} \rangle$$

$$u_{\mu} = i u^{\dagger} D_{\mu} U u^{\dagger} = u^{\dagger}_{\mu} ; \qquad U = u^{2}$$

$$f_{\pm}^{\mu\nu} = u F_{L}^{\mu\nu} u^{\dagger} \pm u^{\dagger} F_{R}^{\mu\nu} u ; \qquad \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger}$$

и

 $O(N_{C})$:

$$2L_1 = L_2 = \sum_i \frac{G_{V_i}^2}{4M_{V_i}^2} \quad ; \quad L_3 = \sum_i \left\{ -\frac{3G_{V_i}^2}{4M_{V_i}^2} + \frac{c_{d_i}^2}{2M_{S_i}^2} \right\}$$

$$L_5 = \sum_{i} \frac{c_{d_i} c_{m_i}}{M_{S_i}^2} ; \qquad L_8 = \sum_{i} \left\{ \frac{c_{m_i}^2}{2 M_{S_i}^2} - \frac{d_{m_i}^2}{2 M_{P_i}^2} \right\}$$

$$L_{9} = \sum_{i} \frac{F_{V_{i}} G_{V_{i}}}{2 M_{V_{i}}^{2}} \quad ; \quad L_{10} = \frac{1}{4} \sum_{i} \left\{ \frac{F_{A_{i}}^{2}}{M_{A_{i}}^{2}} - \frac{F_{V_{i}}^{2}}{M_{V_{i}}^{2}} \right\}$$

 $O(N_{C})$:

$$2L_1 = L_2 = \sum_i \frac{G_{V_i}^2}{4M_{V_i}^2} \quad ; \quad L_3 = \sum_i \left\{ -\frac{3G_{V_i}^2}{4M_{V_i}^2} + \frac{c_{d_i}^2}{2M_{S_i}^2} \right\}$$

$$L_5 = \sum_i \frac{c_{d_i} c_{m_i}}{M_{S_i}^2}$$
; $L_8 = \sum_i \left\{ \frac{c_{m_i}^2}{2 M_{S_i}^2} - \frac{d_{m_i}^2}{2 M_{P_i}^2} \right\}$

$$L_{9} = \sum_{i} \frac{F_{V_{i}} G_{V_{i}}}{2 M_{V_{i}}^{2}} \quad ; \quad L_{10} = \frac{1}{4} \sum_{i} \left\{ \frac{F_{A_{i}}^{2}}{M_{A_{i}}^{2}} - \frac{F_{V_{i}}^{2}}{M_{V_{i}}^{2}} \right\}$$

O(1): $2L_1 - L_2 = L_4 = L_6 = 0$; $L_7 = -\frac{\tilde{d}_m^2}{2M_{\eta_1}^2}$

 $O(N_{C})$:

$$2L_1 = L_2 = \sum_i \frac{G_{V_i}^2}{4M_{V_i}^2} \quad ; \quad L_3 = \sum_i \left\{ -\frac{3G_{V_i}^2}{4M_{V_i}^2} + \frac{c_{d_i}^2}{2M_{S_i}^2} \right\}$$

$$L_5 = \sum_i \frac{c_{d_i} c_{m_i}}{M_{S_i}^2}$$
; $L_8 = \sum_i \left\{ \frac{c_{m_i}^2}{2 M_{S_i}^2} - \frac{d_{m_i}^2}{2 M_{P_i}^2} \right\}$

$$L_{9} = \sum_{i} \frac{F_{V_{i}} G_{V_{i}}}{2 M_{V_{i}}^{2}} \quad ; \quad L_{10} = \frac{1}{4} \sum_{i} \left\{ \frac{F_{A_{i}}^{2}}{M_{A_{i}}^{2}} - \frac{F_{V_{i}}^{2}}{M_{V_{i}}^{2}} \right\}$$

O(1): $2L_1 - L_2 = L_4 = L_6 = 0$; $L_7 = -\frac{\tilde{d}_m^2}{2M_m^2}$

BUT
$$M_{\eta_1}^2 \sim O\left(\frac{1}{N_c}, \mathcal{M}\right)$$

Vector Form Factor

 $\langle \pi | \mathbf{v}_{\mu} | \pi
angle$:

$$F_V(t) = 1 + \sum_i \frac{F_{V_i} G_{V_i}}{f^2} \frac{t}{M_{V_i}^2 - t}$$

Vector Form Factor

$$\langle \pi | \mathbf{v}_{\mu} | \pi \rangle$$
: $F_{V}(t) = 1 + \sum_{i} \frac{F_{V_i} G_{V_i}}{f^2} \frac{t}{M_{V_i}^2 - t}$

Short-distance QCD constraint:

 $\lim_{t\to\infty}F_V(t)=0$

Vector Form Factor

$$\langle \pi | \mathbf{v}_{\mu} | \pi \rangle$$
: $F_{V}(t) = 1 + \sum_{i} \frac{F_{V_i} G_{V_i}}{f^2} \frac{t}{M_{V_i}^2 - t}$

Short-distance QCD constraint:

 $\lim_{t\to\infty}F_V(t)=0$

$$\blacktriangleright \qquad \qquad \sum_i F_{V_i} G_{V_i} = f^2$$

Chiral Symmetry:

 $\Pi_{LR}^{\mu\nu}(q) \equiv \int d^4x \, \mathrm{e}^{iqx} \, \langle 0 | \, T(J_L^\mu(x) \, J_R^\nu(0)^\dagger) | 0 \rangle = (-g^{\mu\nu}q^2 + q^\mu q^\nu) \, \Pi_{LR}(q^2) = 0$

Chiral Symmetry:

 $\Pi_{LR}^{\mu\nu}(q) \equiv \int d^4x \, \mathrm{e}^{iqx} \, \langle 0 | \, T(J_L^\mu(x) \, J_R^\nu(0)^\dagger) | 0 \rangle = (-g^{\mu\nu}q^2 + q^\mu q^\nu) \, \Pi_{LR}(q^2) = 0$

OPE: $\Pi_{LR}^{\mu\nu}(q) \neq 0$ only through order parameters of EWSB (operators invariant under **H** but not under **G**)

Chiral Symmetry:

 $\Pi_{LR}^{\mu\nu}(q) \equiv \int d^4x \, \mathrm{e}^{iqx} \, \langle 0 | \, T(J_L^\mu(x) \, J_R^\nu(0)^\dagger) | 0 \rangle = (-g^{\mu\nu}q^2 + q^\mu q^\nu) \, \Pi_{LR}(q^2) = 0$

OPE: $\Pi_{LR}^{\mu\nu}(q) \neq 0$ only through order parameters of EWSB (operators invariant under **H** but not under **G**)

Asymptotically-Free Theories: $\lim_{s \to \infty} s^2 \Pi_{LR}(s) = 0$ (Bernard et al.)

Chiral Symmetry:

 $\Pi_{LR}^{\mu\nu}(q) \,\equiv\, \int d^4x \; {\rm e}^{iqx} \; \langle 0 | \, T(J^{\mu}_L(x) \, J^{\nu}_R(0)^\dagger) | 0 \rangle \,=\, (-g^{\mu\nu}q^2 + q^{\mu}q^{\nu}) \; \Pi_{LR}(q^2) \,=\, 0$

OPE: $\Pi_{LR}^{\mu\nu}(q) \neq 0$ only through order parameters of EWSB (operators invariant under **H** but not under **G**)

Asymptotically-Free Theories: $\lim_{s \to \infty} s^2 \Pi_{LR}(s) = 0$ (Bernard et al.)

$$\frac{1}{\pi} \int_0^\infty ds \, \left[\operatorname{Im} \Pi_{VV}(s) - \operatorname{Im} \Pi_{AA}(s) \right] = f^2 \qquad (1^{\text{st WSR}})$$
$$\frac{1}{\pi} \int_0^\infty ds \, s \, \left[\operatorname{Im} \Pi_{VV}(s) - \operatorname{Im} \Pi_{AA}(s) \right] = 0 \qquad (2^{\text{nd WSR}})$$

$$\Pi_{LR}(s) = \frac{f^2}{s} + \sum_{i} \frac{F_{V_i}^2}{M_{V_i}^2 - s} - \sum_{i} \frac{F_{A_i}^2}{M_{A_i}^2 - s}$$

• 1 st WSR:	$\sum_i F_{V_i}^2 - \sum_i F_{A_i}^2 = f^2$				
• 2 nd WSR:	$\sum_{i} F_{V_{i}}^{2} M_{V_{i}}^{2} - \sum_{i} F_{A_{i}}^{2} M_{A_{i}}^{2} = 0$				

$$\Pi_{LR}(s) = \frac{f^2}{s} + \sum_{i} \frac{F_{V_i}^2}{M_{V_i}^2 - s} - \sum_{i} \frac{F_{A_i}^2}{M_{A_i}^2 - s}$$

• 1st WSR:
$$\sum_{i} F_{V_{i}}^{2} - \sum_{i} F_{A_{i}}^{2} = f^{2}$$

• 2nd WSR: $\sum_{i} F_{V_{i}}^{2} M_{V_{i}}^{2} - \sum_{i} F_{A_{i}}^{2} M_{A_{i}}^{2} = 0$

SRA
$$\longrightarrow$$
 $F_V^2 = v^2 \frac{M_A^2}{M_A^2 - M_V^2}$, $F_A^2 = v^2 \frac{M_V^2}{M_A^2 - M_V^2}$, $M_A > M_V$

$$\Pi_{LR}(s) = \frac{f^2}{s} + \sum_{i} \frac{F_{V_i}^2}{M_{V_i}^2 - s} - \sum_{i} \frac{F_{A_i}^2}{M_{A_i}^2 - s}$$

• 1st WSR:
$$\sum_{i} F_{V_{i}}^{2} - \sum_{i} F_{A_{i}}^{2} = f^{2}$$

• 2nd WSR: $\sum_{i} F_{V_{i}}^{2} M_{V_{i}}^{2} - \sum_{i} F_{A_{i}}^{2} M_{A_{i}}^{2} = 0$

SRA
$$\longrightarrow$$
 $F_V^2 = v^2 \frac{M_A^2}{M_A^2 - M_V^2}$, $F_A^2 = v^2 \frac{M_V^2}{M_A^2 - M_V^2}$, $M_A > M_V$

1st WSR likely valid also in gauge theories with non-trivial UV fixed points 2nd WSR questionable (not valid) in walking (conformal) TC scenarios Appelquist-Sannino, Orgogozo-Rychkov EFT A. Pich - 2015 56

Short-Distance Constraints

Vector Form Factor $\langle \pi \mathbf{v}_{\mu} \pi \rangle$:	$F_V(t) = 1 + \sum_i \frac{F_{V_i} G_{V_i}}{f^2} \frac{t}{M_{V_i}^2 - t}$
$\lim_{t\to\infty}F_V(t)=0$	$\mathbf{r}_{i} \ \mathbf{F}_{\mathbf{V}_{i}} \ \mathbf{G}_{\mathbf{V}_{i}} = f^{2}$
Axial Form Factor $\langle \gamma a_{\mu} \pi \rangle$: G	$F_{\mathcal{A}}(t) = \sum_{i} \left\{ \frac{2 F_{V_i} G_{V_i} - F_{V_i}^2}{M_{V_i}^2} + \frac{F_{\mathcal{A}_i}^2}{M_{\mathcal{A}_i}^2 - t} \right\}$
$\lim_{t\to\infty}G_{A}(t)=0 \qquad \Longrightarrow \qquad $	$\sum_{i} \left(2 F_{V_i} G_{V_i} - F_{V_i}^2 \right) / M_{V_i}^2 \; = \; 0$
Weinberg Sum Rules: $\Pi_{LR}(t)$	$= -\frac{f^2}{t} + \sum_{i} \frac{F_{V_i}^2}{M_{V_i}^2 + t} - \sum_{i} \frac{F_{A_i}^2}{M_{A_i}^2 + t}$
$\lim_{t \to \infty} t \ \Pi_{LR}(t) = 0$ $\lim_{t \to \infty} t^2 \ \Pi_{LR}(t) = 0$	$\sum_{i} (F_{V_{i}}^{2} - F_{A_{i}}^{2}) = f^{2}$ $\sum_{i} (M_{V_{i}}^{2} F_{V_{i}}^{2} - M_{A_{i}}^{2} F_{A_{i}}^{2}) = 0$
EFT A. Pic	h – 2015 57

Scalar FF:
$$F_{K\pi}^{S}(s) = 1 + \sum_{i} \frac{4c_{m_i}}{f^2} \left[c_{d_i} + (c_{m_i} - c_{d_i}) \frac{M_K^2 + M_\pi^2}{M_{S_i}^2} \right] \frac{s}{M_{S_i}^2 - s}$$

 $\lim_{s\to\infty} F^S_{K\pi}(s) = 0 \quad \Longrightarrow \quad 4\sum_i c_{d_i}c_{m_i} = f^2 \quad ; \quad \sum_i \frac{c_{m_i}}{M^2_{S_i}} (c_{m_i} - c_{d_i}) = 0$

S - **P** Sum Rules:
$$\Pi_{SS-PP}(t) = 16B_0^2 \left\{ \sum_i \frac{c_{m_i}^2}{M_{S_i}^2 + t} - \sum_i \frac{d_{m_i}^2}{M_{P_i}^2 + t} - \frac{f^2}{8t} \right\}$$

$$\lim_{t \to \infty} t \ \Pi_{SS-PP}(t) = 0 \qquad \Longrightarrow \qquad \boxed{8 \sum_i \left(c_{m_i}^2 - d_{m_i}^2\right) = f^2}$$

Pseudoscalar Nonet:

1-Resonance Approximation: Ecker, Gasser, Leutwyler, Pich, de Rafael

$$F_V = 2 G_V = \sqrt{2} F_A = \sqrt{2} f$$
; $M_A = \sqrt{2} M_V$; $d_m = \frac{1}{2\sqrt{2}} f$

$$c_m = c_d = \frac{1}{2} f$$
 Jamin, Oller, Pich

 $M_P \approx \sqrt{2} M_S$

$$\begin{split} 2\,L_1 &= L_2 = \frac{1}{4}\,L_9 = -\frac{1}{3}\,L_{10} = \frac{f^2}{8\,M_V^2} \\ L_3 &= -\frac{3\,f^2}{8\,M_V^2} + \frac{f^2}{8\,M_S^2} \qquad ; \qquad L_5 = \frac{f^2}{4\,M_S^2} \\ L_8 &= \frac{f^2}{8\,M_S^2} - \frac{f^2}{16\,M_P^2} \qquad ; \qquad L_7 = -\frac{f^2}{48\,M_{\eta_1}^2} \end{split}$$

L_i'S from Resonance Exchange

i	$10^3 \cdot L^r_i(M_ ho)$	V	Α	5	η_1	Total	Total ^{b)}
1	0.7 ± 0.3	0.6	0	0	0	0.6	0.9
2	1.3 ± 0.3	1.2	0	0	0	1.2	1.8
3	-3.5 ± 1.1	-3.6	0	0.6	0	-3.0	-4.3
4	-0.3 ± 0.5	0	0	0	0	0.0	0.0
5	1.4 ± 0.5	0	0	1.4 ^{a)}	0	1.4	2.1
6	-0.2 ± 0.3	0	0	0	0	0.0	0.0
7	-0.4 ± 0.2	0	0	0	-0.3	-0.3	-0.3
8	0.9 ± 0.3	0	0	0.9 ^{a)}	0	0.9	0.8
9	6.9 ± 0.7	6.9 ^{a)}	0	0	0	6.9	7.2
10	-5.5 ± 0.7	-10.0	4.0	0	0	-6.0	-5.4

^{a)} Input

^{b)} Short-Distance Constraints

Lattice Determination of SU(3) LECs

A. Pich - 2015

Lattice Determination of SU(3) LECs

Lattice Determination of SU(2) LECs

$$F = F_{\pi}|_{m_u = m_d = 0}$$

,

 $\Sigma = -\langle 0|\bar{u}u|0\rangle|_{m_u=m_d=0}$

Lattice Determination of SU(2) LECs

64