

Searching for dark matter annihilation lines with HESS II
Knut Dundas Morå for the HESS collaboration

Stockholm University

Outline

- Indirect Dark Matter detection
- Dark Matter signatures
- Dark Matter distributions
- Fermi Line Search
- The HESS Experiment
- HESS 1 Line Search
- HESS 2 Line
- Telescope
- Background techniques
- Instrument Response
- Line search
- Conclusions

Indirect Dark Matter
 Signatures

- The expected flux of gamma rays from dark matter annihilation may be factorized into an astrophysical and particle physics factor.
- The particle physics factor contains the thermally averaged cross-section, as well as the energy spectrum of dark matter to gamma rays
- In the case of a direct two-body annihilation to one or two photons, a distinctive spectral peak would appear

$$
\begin{aligned}
& \frac{\mathrm{d} \Phi}{\mathrm{~d} E}(E, \Delta \Omega)=\Phi_{\text {astro }}(\Delta \Omega) \cdot \frac{\mathrm{d} \Phi^{\text {particle }}}{\mathrm{d} E}(E) \\
& \frac{\mathrm{d} \Phi^{\text {particle }}}{\mathrm{d} E}(E)=\frac{<\sigma v>}{8 \pi m^{2}} \cdot \frac{\mathrm{~d} N}{\mathrm{~d} E}(E)
\end{aligned}
$$

Continuous spectrum

Dark matter distribution

- The astrophysical factor contains the line-of-sight integral of the squared dark matter density.
- Many models of dark matter densities are peaked towards the center- leading to a large signal from the center of a dark matter halo.
- Typical targets are either high signal sources, such as the galactic center, or have a large fraction of inferred dark matter versus ordinary matter- such as dwarf galaxies.

$$
\Phi_{\text {astro }}(\Delta \Omega)=\int_{\Delta \Omega} \mathrm{d} \Omega \int_{\text {Line-of-sight }} \rho^{2}(r) \mathrm{d} l
$$

Via Lactea n-body simulation of a galaxy

$$
\rho_{\mathrm{NFW}}=\frac{\rho_{0}}{\frac{r}{R_{s}}\left(1+\frac{r}{R_{s}}\right)^{2}}
$$

The Fermi Line

- An analysis by Weniger of FermiLAT data(arxiv:1204.2797v2) showed a line feature in the spectrum at 130 GeV from the galactic center, with a 3.2σ significance.
- The feature corresponded to a cross section of $\langle\sigma v\rangle=1.27 \mathrm{e}-27$ cm^3/s (NFW)
- Su and Finkbeiner (arxiv: 1206.1616) located the signal at 1.5° west of the galactic center, and found a 5σ detection.
- The significance has been seen to be decreasing with more data.

A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

The HESS telescope

- The High Energy Stereoscopic System is an Air Cherenkov Telescope located in the Namibian Khomas Highlands.
- Four 10-meter telescopes collect Cherenkov light of showers from high energy particles impacting the atmosphere
- The HESS array detect gamma rays from 200 GeV to $>30 \mathrm{TeV}$ for energy spectrum analysis.

The HESS 1 Line search

1301.1173v1

- A HESS search for a spectral line was published in 2012
- For a fixed line mass, a gaussian with the width of the energy dispersion was fit to the data together with a modified power law using a binned likelihood:

$$
\begin{gathered}
\frac{\mathrm{d} N}{\mathrm{~d} E_{\gamma}}=a_{0}\left(\frac{E_{\gamma}}{1 \mathrm{TeV}}\right)^{-2.7}[P(x)+\beta G(x)] \\
\exp \left(a_{1} x+a_{2} x^{2^{2}}+a_{3} x^{3}\right) \\
\ln \mathcal{L}=\sum_{i=1}^{\sum_{\text {Number of reconstructed counts in bin } i} n_{i}} \begin{array}{l}
\text { Gaussian }\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}\right)
\end{array} \\
\log _{10}\left(E_{\gamma} / 1 \mathrm{TeV}\right)
\end{gathered}
$$

HESS 1 results

1301.1173v1

- The HESS collaboration published a limit based on 112 hours of data.
- Below, the computed limit from HESS (red points) and Fermi-LAT are shown.

The HESS 2 telescope

- The HESS 2 telescope is an additional, larger (28m) telescope located in the center of the HESS array
- The larger telescope (6X the area) collects more light from fainter air showers, allowing HESS 2 to reach lower energies- below 100 GeV for a spectrum analysis.
- The camera features 2000 photomultipliers, which may be read out at 3600 images/secondten times the speed of HESS1
- This allows HESS 2 to complement the Fermi line search.

Cherenkov telescope background estimation

- The largest background in Cherenkov telescopes is cosmic rays that are misidentified as gamma rays
- As the atmosphere, as well as the background from e.g. star and moonlight changes, it is necessary to have background (OFF) regions.
- One may either define separate OFF pointings, or point the telescope at an offset, and define on and off regions in the camera field of view
- The first method allows for larger signal regions, up to the size of the FOV, at
 the expense of using $2 / 3$ of the time off the signal region

"True" ON-OFF

Computing Sensitivities

- A simplified sensitivity procedure has been made to a full likelihood method.
- The method uses sidebands both spatially, as well as in energy to compute an estimate of the background.

$\log _{1} \mathbf{1 0 (E)}$	-1.1 to -1	-1 to -0.8	-0.8 to 0		
ON	Lower Energy	Signal Region	Upper Energy		
OFF	Sideband				Background
:---:					
Sideband					
Reaion					

Computing Sensitivities

- In the energy sidebands, the program fits a power-law (convolved with the instrument response) to any broad-spectrum excess.
- Together with the OFF-counts in the energy search region, an estimate of the expected number log_10(E) of events in the signal region is computed:

$$
\begin{array}{r}
n_{O N b k g \text { estimate }}=n_{O N-O F F f i t}\left(E_{\text {search }}\right)+n_{O F F b k g}\left(E_{\text {search }}\right) / \beta \\
\sigma_{\text {estimate }}=\sqrt{\sigma_{O N-O F F f i t}^{2}+n_{O F F}\left(E_{\text {search }} / \beta^{2}\right.}
\end{array}
$$

The Model (Mono) Reconstruction

- Reconstructing shower events from a single telescope image is a challenge
- HESS-2 results have so far been produced with Model Mono
- The Model reconstruction uses a semi-analytical shower model, that is then fitted to the image

- The efficiency of HESS is expressed as the effective area it presents to gamma-rays
- HESS-2 is expected to give a marked improvement in the energy threshold from $\sim 300 \mathrm{GeV}$, down to $\sim 80 \mathrm{GeV}$.
- In addition to Mono and HESS-1 effective area curves, a hybrid reconstruction, with CT5 plus one or more of the smaller telescopes for a stereoscopic reconstruction.

Plots from H.E.S.S. Highlights TevPa talk by Christian Stegeman

- In addition to the acceptance, the bias (right) and dispersion in energy need to be taken into account.
- Spatial resolution (lower right).
- Radial acceptance- the reduction in effective area with increasing distance to the center of the telescope
- Lastly, all instrument response functions are a function of pointing, zenith angle and night-sky background

The HESS 2 Line search

- A new line search using the HESS 2 telescope is underway
- Since 2013, data from the galactic center has been collected. A total of ~ 670 hours are available for observation at zenith angles belove 35°
- Two main sources of background:
- hadrons that may be estimated from off-regions
- Diffuse sources of gamma-rays, as well as contamination from known sources

$$
\mathcal{L}\left(N_{E S T}, M(\theta) \mid N_{O B S}, E_{1}, \ldots, E_{N_{O B S}}\right)=\frac{N_{E S T} N_{O B S}}{N_{O B S}!} e^{-N_{E S T}} \times \prod_{i-1}^{N_{O B S}} \mathcal{P}\left(E_{t} ; M(\theta)\right)
$$

Conclusions

- The HESS 2 line paper will extend the HESS limits to lower energies.
- Based on Monte Carlo and OFF data, the choices of ROI are made to minimize the expected upper limit.
- The HESS data comprises galactic center data, as well as data on the Fermi Hotspot. There are around 600 hours of possible dark-time for the Galactic Center every summer, which is attenuated by both the instrument uptime and weather. In addition, this is the most requested observation period
- The analysis has an expected significance of over 5 sigma for a benchmark signal with the mass and flux as reported by Weniger.

