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Broadening the Class of Physically Meaningful Functions
We are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states

—integrating

over the Lorentz-invariant phase space (“LIPS”)

for each particle I, and

summing over the possible states

(helicities, masses, colours, etc.).

AL(. . . , I)×AR(I, . . .)

≡ 4×nV

3×nI

4

= number of excess δ-functions
(= minus number of remaining integrations)

> 0

⇒ (n̂δ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( n̂δ) non-trivial integrations
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Amalgamating Diagrams from Three-Particle Amplitudes
On-shell diagrams built out of only three-particle amplitudes are well-defined

to all orders of perturbation theory

, generating a large class of functions:

=
(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×4

(
λ·η̃
)
δ2×2

(
λ·λ̃
)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉
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,
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we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:
allowing us to represent all on-shell functions in the form:
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)
⇔ W
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3
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A(2)
3 =

δ2×4(λ·η̃)
〈12〉〈23〉〈31〉 δ

2×2(λ·λ̃)
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∫

d2×3B
vol(GL2)

δ2×4(B·η̃)
(12)(23)(31)
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A(1)
3 =
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[12][23][31]

δ2×2(λ·λ̃) ≡∫ d1×3W
vol(GL1)

δ1×4(W ·η̃)
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λ·C⊥
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C ≡


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I’ 3 4
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)
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4
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Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams

(an extremely useful tool!):

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Systematics of Computation and the Auxiliary Grassmannian
Building-Up Diagrams with ‘BCFW’ Bridges

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Systematics of Computation and the Auxiliary Grassmannian
Building-Up Diagrams with ‘BCFW’ Bridges

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Systematics of Computation and the Auxiliary Grassmannian
Building-Up Diagrams with ‘BCFW’ Bridges

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Systematics of Computation and the Auxiliary Grassmannian
Building-Up Diagrams with ‘BCFW’ Bridges

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Beyond (Mere) Scattering Amplitudes: On-Shell Functions
Systematics of Computation and the Auxiliary Grassmannian
Building-Up Diagrams with ‘BCFW’ Bridges

Building-Up On-Shell Diagrams with “BCFW” Bridges
Very complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta pa and pb
flowing into the diagram f0 according to:

λaλ̃a 7→ λâλ̃â = λaλ̃a −

α

λI λ̃I and λbλ̃b 7→ λb̂λ̃b̂ = λbλ̃b +

α

λI λ̃I ,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =
dα
α

f0(. . . , â, b̂, . . .)
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(
λ̃a−αλ̃b

)
and λbλ̃b 7→ λb̂λ̃b̂ =

(
λb +αλa

)
λ̃b,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =
dα
α

f0(. . . , â, b̂, . . .)
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Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude
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The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = Ân(α→0) ∝
∮
α=0

dα
α
Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin

—these come in two types:
factorization-channels and forward-limits
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An = Ân(α→0) ∝
∮
α=0

dα
α
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin:

—these come in two types:
factorization-channels and forward-limits

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin—these come in two types:
factorization-channels

and forward-limits

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:
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Ân(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)
the sum of residues away from the origin—these come in two types:
factorization-channels and forward-limits

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

Deriving Diagrammatic Recursion Relations for Amplitudes
Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations
Consider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = Ân(α→0) ∝
∮
α=0

dα
α
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And it generates very concise formulae for all other amplitudes

—e.g. A(3)
6 :

A(3)
6 =

+ +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways
Is there any way to invariantly characterize the on-shell functions

associated with on-shell diagrams?
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on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions
associated with on-shell diagrams?
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Recall that different contributions to A(3)
6 were related by rotation:

left-right permutation σ

σ :
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3 5 6 1

2 4
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Combinatorial Characterization of On-Shell Diagrams
Notice that the merge and square moves leave the number of ‘faces’ of an

on-shell diagram invariant.

Diagrams with different numbers of faces
can be related by ‘reduction’

—also known as ‘bubble deletion’:

Bubble-deletion does not, however, relate ‘identical’ on-shell diagrams:

it leaves behind an overall factor of dα/α in the on-shell function
and it alters the corresponding left-right path permutation

Such factors of dα/α arising from bubble deletion encode loop integrands!
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Canonical Coordinates for Computing On-Shell Functions
Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.
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Canonical Coordinates for Computing On-Shell Functions
Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Conveniently, adding a BCFW bridge acts very nicely on permutations:

it merely transposes the images of σ!
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Canonical Coordinates for Computing On-Shell Functions
Recall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Read the other way,

we can ‘peel-off’ bridges and thereby decompose
a permutation into transpositions according to σ = (a b) ◦ σ′
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Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions

—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

fσ
fσ
fσ
fσ
fσ
fσ
fσ
fσ
fσ

(1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{

3 5 6 7 8 10

}

{

5 3 6 7 8 10

}
{

5 6 3 7 8 10

}
{

6 5 3 7 8 10

}
{

6 7 3 5 8 10

}
{

7 6 3 5 8 10

}
{

7 6 3 8 5 10

}
{

7 8 3 6 5 10

}
{

7 8 3 10 5 6

}

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f8 =δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0



‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6
f7

f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}

{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f7 =
dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 α8


(4 6) : c6 7→ c6 + α8 c4

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5
f6

f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}

{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)

(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f6 =
dα7

α7

dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4
f5

f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}

{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)

(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f5 =
dα6

α6

dα7

α7

dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8


(4 5) : c5 7→ c5 + α6 c4

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3
f4

f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}

{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)

(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f4 =
dα5

α5
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 α5 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8


(1 2) : c2 7→ c2 + α5 c1

‘Bridge’ Decomposition

σ :
f0
f1
f2
f3

f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}

{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)

(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f3 =
dα4

α4
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 α5 0 α4α5 0 0
0 1 0 (α4 +α7)α6α7 0
0 0 0 1 α6 α8


(2 4) : c4 7→ c4 + α4 c2

‘Bridge’ Decomposition

σ :
f0
f1
f2

f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}

{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)

(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f2 =
dα3

α3
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α3+α5) 0 α4α5 0 0
0 1 0 (α4 +α7)α6α7 0
0 0 0 1 α6 α8


(1 2) : c2 7→ c2 + α3 c1

‘Bridge’ Decomposition

σ :
f0
f1

f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}
{5 3 6 7 8 10}

{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)

(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f1 =
dα2

α2
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α3+α5) α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8


(2 3) : c3 7→ c3 + α2 c2

‘Bridge’ Decomposition

σ :
f0

f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

{3 5 6 7 8 10}

{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)

(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8


(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8



(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8



(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8



(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
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)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 α8


(4 6) : c6 7→ c6 + α8 c4

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):
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dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6
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· · · dα8
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δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 α8


(4 6) : c6 7→ c6 + α8 c4

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):
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· · · dα8
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δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):
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· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡
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1 2 3 4 5 6
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0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
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(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):
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C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8
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1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1
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· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1
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· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
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f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 0 0
0 0 0 1 0 α8


(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8


(4 5) : c5 7→ c5 + α6 c4

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 0 0 0 0 0
0 1 0 α7 α6α7 0
0 0 0 1 α6 α8


(4 5) : c5 7→ c5 + α6 c4

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
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1 (α3+α5) α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
0 0 0 1 α6 α8
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(2 3) : c3 7→ c3 + α2 c2
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{6 7 3 5 8 10}
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{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
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· · ·

dα8
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=
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vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8
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(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,
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
(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8


(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions
There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—e.g.,
L6,3 ≡

dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·

dα8

α8

=
d3×6C

vol(GL(3))

1
(123)(234)(345)(456)(561)(612)

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =
dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8
f8

f0 =
dα1

α1
· · · dα8

α8
δ3×4(C·η̃)δ3×2(C·λ̃)δ2×3(λ·C⊥)

C≡


1 2 3 4 5 6
1 (α1+α3 +α5)α2(α3+α5) α4α5 0 0
0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
{3 5 6 7 8 10}
{5 3 6 7 8 10}
{5 6 3 7 8 10}
{6 5 3 7 8 10}
{6 7 3 5 8 10}
{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)

Tuesday, 6th January NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics



On-Shell Diagrams: Amalgamations of Scattering Amplitudes
On-Shell, All-Order Recursion Relations for Scattering Amplitudes

Combinatorics, Classification, and Canonical Computation

A Combinatorial Classification of On-Shell Functions
Building-Up (Representative) Diagrams and Functions with Bridges
Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—e.g.,

L6,3 ≡
dα0

α0
· · ·
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vol(GL(3))

1
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α3

dα4
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1 2 3 4 5 6
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0 1 α2 (α4 +α7)α6α7 0
α0α8 0 0 1 α6 α8



(6 1) : c1 7→ c1 + α0 c6

‘Bridge’ Decomposition

σ :

f0
f1
f2
f3
f4
f5
f6
f7
f8

(

1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓
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{7 6 3 5 8 10}
{7 6 3 8 5 10}
{7 8 3 6 5 10}
{7 8 3 10 5 6 }

)

τ

(1 2)
(2 3)
(1 2)
(2 4)
(1 2)
(4 5)
(2 4)
(4 6)
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Canonical Coordinates and the Manifestation of the Yangian
All on-shell diagrams, in terms of canonical coordinates, take the form:

f =

∫
dα1

α1
∧· · ·∧dαd

αd
δk×4(C(~α)·η̃

)
δk×2(C(~α)·λ̃

)
δ2×(n−k)

(
λ·C(~α)⊥

)
Measure-preserving diffeomorphisms leave the function invariant

, but—
via the δ-functions—can be recast variations of the kinematical data.

The Yangian corresponds to those diffeomorphisms that simultaneously
preserve the measures of all on-shell diagrams.
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On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands
Let’s look at an example of how loop amplitudes are represented by recursion.

For A(2),1
4 , the only terms come from the ‘forward limit’ of the tree A(3),0

6 :

A(2),0
4 ×

∫
`∈R3,1

dlog
(

`2

(` `∗)2

)
dlog

(
(`+p1)2

(` `∗)2

)
dlog

(
(`+p1+p2)2

(` `∗)2

)
dlog

(
(` p4)2

(` `∗)2

)

= A(2),0
4 ×

∫
`∈R3,1

d4`
(p1+p2)2(p3+p4)2

`2(`+p1)2(`+p1+p2)2(` p4)2
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