-Shell Diagrams, Recursion Relations, (In Combinatorics

Jacob L. Bourjaily

Nordic Winter School on Cosmology and Particle Physics

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

A D D A B D A B D A

-Shell Diagrams, Recursion Relations, (In Combinatorics

Jacob L. Bourjaily

Nordic Winter School on Cosmology and Particle Physics

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

A D D A B D A B D A

Organization and Outline

- On-Shell Diagrams: Amalgamations of Scattering Amplitudes
 - Beyond (Mere) Scattering Amplitudes: On-Shell Functions
 - Systematics of Computation and the Auxiliary Grassmannian
 - Building-Up Diagrams with 'BCFW' Bridges
- 2 On-Shell, All-Order Recursion Relations for Scattering Amplitudes
 - Deriving Diagrammatic Recursion Relations for Amplitudes
 - Exempli Gratia: On-Shell Representations of Tree Amplitudes
- **3** Combinatorics, Classification, and Canonical Computation
 - A Combinatorial Classification of On-Shell Functions
 - Building-Up (Representative) Diagrams and Functions with Bridges
 - Asymptotic Symmetries of the S-Matrix: the Yangian

Paths Forward: Beyond the Leading Order of Perturbation Theory
On-Shell Representations of Loop-Amplitude Integrands

Tuesday, 6th January

(日)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

イロト 不得 とうほう 不良 とう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude,

$$\mathcal{A}_L(\ldots, \mathbf{I}) \times \mathcal{A}_R(\mathbf{I}, \ldots)$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states

 $\mathcal{A}_L(\ldots, \mathbf{I}) \times \mathcal{A}_R(\mathbf{I}, \ldots)$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*,

 $\mathcal{A}_L(\ldots, I) \times \mathcal{A}_R(I, \ldots)$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*,

$$\int d^{3} \text{LIPS}_{I} \ \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states

$$\int d^{3} \text{LIPS}_{I} \ \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\ldots, I) \times \mathcal{A}_R(I, \ldots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states (helicities, masses, colours, etc.).

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\ldots, I) \times \mathcal{A}_R(I, \ldots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states (helicities, masses, colours, etc.).

$$\sum_{\text{states } I} \int d^3 \text{LIPS}_I \ \mathcal{A}_L(\ldots, I) \times \mathcal{A}_R(I, \ldots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states (helicities, masses, colours, etc.).

$$\sum_{\text{states } I} \int \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\operatorname{vol}(GL_1)} \, \mathcal{A}_L(\dots, I) \times \mathcal{A}_R(I, \dots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states (helicities, masses, colours, etc.).

$$\int d^{4} \widetilde{\eta_{I}} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda_{I}}}{\operatorname{vol}(GL_{1})} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, and unitarity dictates that we marginalize over unobserved states—integrating over the Lorentz-invariant phase space ("LIPS") for each particle *I*, and summing over the possible states (helicities, masses, colours, etc.).

$$\int d^{4} \widetilde{\eta_{I}} \int \frac{d^{2} \lambda_{I} d^{2} \widetilde{\lambda_{I}}}{\operatorname{vol}(GL_{1})} \mathcal{A}_{L}(\ldots, I) \times \mathcal{A}_{R}(I, \ldots)$$

Tuesday, 6th January

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 n_{δ}

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$n_{\delta} \equiv 4 \times n_V$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$n_{\delta} \equiv 4 \times n_V - 3 \times n_I$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 $\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 =$ number of excess δ -functions

Tuesday, 6th January

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$ (= minus number of remaining integrations)

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$ (= minus number of remaining integrations)

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

 $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = \text{number of excess } \delta \text{-functions}$ (= minus number of remaining integrations)

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function}$$

Tuesday, 6th January

イロト イ得ト イヨト イヨウ
Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, A_v , connected by any number of internal particles, $i \in I$, forming a graph Γ called an "on-shell diagram".

$$f_{\Gamma} \equiv \prod_{i \in I} \left(\sum_{\substack{h_i, c_i, \\ m_i, \cdots}} \int d^3 \text{LIPS}_i \right) \prod_{\nu} \mathcal{A}_{\nu}$$

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\hat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints}$$

$$< 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

 $\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints}$ $< 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 = 0$$

$$< 0 = 0$$

 (\hat{n}_{δ}) kinematical constraints ordinary (rational) function $(-\hat{n}_{\delta})$ non-trivial integrations

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving **only** observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\hat{n}_{\delta} \equiv 4 \times n_V - 3 \times n_I - 4 = 0 \implies (\hat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\hat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies \text{ordinary (rational) function} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Tuesday, 6th January
Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Broadening the Class of Physically Meaningful Functions

We are interested in the class of functions involving only observable quantities

Counting Constraints:

$$\widehat{n}_{\delta} \equiv 4 \times n_{V} - 3 \times n_{I} - 4 = 0 \implies (\widehat{n}_{\delta}) \text{ kinematical constraints} \\ < 0 \implies (-\widehat{n}_{\delta}) \text{ non-trivial integrations}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

4 日 ト 4 冊 ト 4 三 ト 4 三 ト

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

(日)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

(日)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

apa

Tuesday, 6th January

イロト 人間 とくほ とくほ とう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Apr

イロト 人間 とくほ とくほ とう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

(日)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

イロト 不得 とくほ とくほとう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

On-shell diagrams built out of only **three-particle amplitudes** are well-defined to all orders of perturbation theory, generating a large class of functions:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Amalgamating Diagrams from Three-Particle Amplitudes

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to linearize momentum conservation at each three-particle vertex

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \widetilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \widetilde{\lambda})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \widetilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \widetilde{\lambda})$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \delta^{1\times2}(\lambda\cdot B^{\perp})$$

Tuesday, 6th January

(日)

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ 3 \\ \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \delta^{1\times2}(\lambda\cdot B^{\perp})$$
$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \delta^{1\times2}(\lambda\cdot B^{\perp})$$
$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\tilde{\eta})}{(1)(2)(3)} \delta^{1\times2}(W\cdot\tilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \delta^{1\times2}(\lambda\cdot B^{\perp})$$
$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\tilde{\eta})}{(1)(2)(3)} \delta^{1\times2}(W\cdot\tilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} 1 & 0 & b_3^1 \\ 0 & 1 & b_3^2 \end{pmatrix} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv \begin{pmatrix} 1 & w_2^1 & w_3^1 \end{pmatrix} \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \widetilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d b_{3}^{1}}{b_{3}^{1}} \wedge \frac{d b_{3}^{2}}{b_{3}^{2}} \delta^{2 \times 4} (B \cdot \widetilde{\eta}) \delta^{2 \times 2} (B \cdot \widetilde{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^{\perp})$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{dw_{2}^{1}}{w_{2}^{1}} \wedge \frac{dw_{3}^{1}}{w_{3}^{1}} \delta^{1\times4}(W\cdot\widetilde{\eta}) \ \delta^{1\times2}(W\cdot\widetilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

イロト 人間 とくほ とくほん

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & 1 & 0 \\ b_1^2 & 0 & 1 \end{pmatrix} \\ 3 \end{array} \right) = 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv \begin{pmatrix} w_1^1 & 1 & w_3^1 \end{pmatrix} \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \tilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \tilde{\lambda}) \equiv \int \frac{d b_{1}^{1}}{b_{1}^{1}} \wedge \frac{d b_{1}^{2}}{b_{1}^{2}} \, \delta^{2 \times 4} (B \cdot \tilde{\eta}) \, \delta^{2 \times 2} (B \cdot \tilde{\lambda}) \, \delta^{1 \times 2} (\lambda \cdot B^{\perp})$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{dw_{3}^{1}}{w_{3}^{1}} \wedge \frac{dw_{1}^{1}}{w_{1}^{1}} \delta^{1\times4}(W\cdot\widetilde{\eta}) \ \delta^{1\times2}(W\cdot\widetilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 0 & b_2^1 & 1 \\ 1 & b_2^2 & 0 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow \\ W \equiv \left(w_1^1 & w_2^1 & 1 \right) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2 \times 4} (\lambda \cdot \widetilde{\eta})}{\langle 12 \rangle \langle 23 \rangle \langle 31 \rangle} \delta^{2 \times 2} (\lambda \cdot \widetilde{\lambda}) \equiv \int \frac{d b_{2}^{1}}{b_{2}^{1}} \wedge \frac{d b_{2}^{2}}{b_{2}^{2}} \delta^{2 \times 4} (B \cdot \widetilde{\eta}) \delta^{2 \times 2} (B \cdot \widetilde{\lambda}) \delta^{1 \times 2} (\lambda \cdot B^{\perp})$$

$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{dw_{1}^{1}}{w_{1}^{1}} \wedge \frac{dw_{2}^{1}}{w_{2}^{1}} \delta^{1\times4}(W\cdot\widetilde{\eta}) \ \delta^{1\times2}(W\cdot\widetilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

イロト 人間 とくほ とくほん

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \,\,\delta^{1\times2}(\lambda\cdot B^{\perp}) \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \,\delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) = \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{\mathbb{I}_{3}^{(1)}} \mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\tilde{\eta})}{(1)(2)(3)} \delta^{1\times2}(W\cdot\tilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{pmatrix} \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}} \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Rightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Rightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\begin{aligned} \mathcal{A}_{3}^{(2)} &= \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \,\delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \\ \mathcal{A}_{3}^{(1)} &= \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \,\frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \,\delta^{1\times2}(W\cdot\widetilde{\lambda}) \,\delta^{2\times2}(\lambda\cdot W^{\perp}) \end{aligned}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{pmatrix} \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\tilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\tilde{\lambda})}_{\delta^{2\times2}(\lambda\cdot W^{\perp})} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{pmatrix} \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\tilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\tilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\tilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda}$$
$$\mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\tilde{\lambda}^{\perp}\cdot\tilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\tilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\tilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\tilde{\lambda})}_{W\mapsto W^{*}} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{pmatrix} \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\widetilde{\lambda})}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics
Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{array} \right) \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\widetilde{\lambda})}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of Three-Point Amplitudes

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex:

$$1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow B \equiv \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 \\ b_1^2 & b_2^2 & b_3^2 \end{pmatrix} \\ 3 \end{pmatrix} \qquad 1 - \left(\begin{array}{c} 2 \\ \Leftrightarrow W \equiv (w_1^1 & w_2^1 & w_3^1) \\ 3 \end{array} \right)$$

$$\mathcal{A}_{3}^{(2)} = \frac{\delta^{2\times4}(\lambda\cdot\widetilde{\eta})}{\langle 12\rangle\langle 23\rangle\langle 31\rangle} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{2\times3}B}{\operatorname{vol}(GL_{2})} \frac{\delta^{2\times4}(B\cdot\widetilde{\eta})}{(12)(23)(31)} \delta^{2\times2}(B\cdot\widetilde{\lambda}) \underbrace{\delta^{1\times2}(\lambda\cdot B^{\perp})}_{B\mapsto B^{*}=\lambda} \mathcal{A}_{3}^{(1)} = \frac{\delta^{1\times4}(\widetilde{\lambda}^{\perp}\cdot\widetilde{\eta})}{[12][23][31]} \delta^{2\times2}(\lambda\cdot\widetilde{\lambda}) \equiv \int \frac{d^{1\times3}W}{\operatorname{vol}(GL_{1})} \frac{\delta^{1\times4}(W\cdot\widetilde{\eta})}{(1)(2)(3)} \underbrace{\delta^{1\times2}(W\cdot\widetilde{\lambda})}_{W\mapsto W^{*}=\widetilde{\lambda}^{\perp}} \delta^{2\times2}(\lambda\cdot W^{\perp})$$

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \right) \qquad \begin{array}{c} C \in G(k,n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \right) \qquad \begin{array}{c} C \in G(k,n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \right| \qquad \begin{array}{c} C \in G(k,n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

4 日 ト 4 冊 ト 4 画 ト 4 画 ト

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k,n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k,n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad \begin{array}{c} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{array}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$\frac{1}{(1 \ w_2 \ w_I)} \qquad \frac{\mathbf{I'} \ 3 \ 4}{\begin{pmatrix} 1 \ 0 \ b_4^1 \\ 0 \ 1 \ b_4^2 \end{pmatrix}}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

イロト 不得 とくほ とくほとう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$\begin{pmatrix} 1 & 0 & b_1^1 \\ 0 & 1 & b_2^2 \end{pmatrix}$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

・ロット 御マ キョット キョン

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

< A > < > > <

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{pmatrix}$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{1}{W_2} & \frac{1}{W_1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & b_1^4 \\ 0 & 0 & 0 & 0 & 1 & b_4^2 \end{pmatrix}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{pmatrix}$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{1}{W_2} & \frac{1}{W_1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & b_1^4 \\ 0 & 0 & 0 & 0 & 1 & b_4^2 \end{pmatrix}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{pmatrix}$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{1}{W_2} & \frac{1}{W_1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & b_1^4 \\ 0 & 0 & 0 & 0 & 1 & b_4^2 \end{pmatrix}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \tilde{\eta}) \delta^{k \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I \end{pmatrix}$$

$$k \equiv 2n_B + n_W - n_I$$

$$k \equiv 2n_B + n_W - n_I$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{1}{W_2} & \frac{1}{W_1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & b_1^4 \\ 0 & 0 & 0 & 0 & 1 & b_4^2 \end{pmatrix}$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4}(C \cdot \tilde{\eta}) \delta^{k \times 2}(C \cdot \tilde{\lambda}) \delta^{2 \times (n-k)}(\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

・ロト ・ 理 ト ・ ヨ ト ・
Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Grassmannian Representations of On-Shell Functions

In order to **linearize** momentum conservation at each three-particle vertex, (and to specify *which* of the solutions to three-particle kinematics to use) we introduce **auxiliary** $B \in G(2,3)$ and $W \in G(1,3)$ for each vertex—allowing us to represent all on-shell functions in the form:

$$f \equiv \int \Omega_C \ \delta^{k \times 4} (C \cdot \widetilde{\eta}) \delta^{k \times 2} (C \cdot \widetilde{\lambda}) \delta^{2 \times (n-k)} (\lambda \cdot C^{\perp}) \qquad C \in G(k, n) \\ k \equiv 2n_B + n_W - n_I$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

а

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \lambda_I \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \lambda_I \widetilde{\lambda}_I$,

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \lambda_I \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \lambda_I \widetilde{\lambda}_I$,

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \alpha \lambda_a \widetilde{\lambda}_I$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_I$,

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a \widetilde{\lambda}_a - \alpha \lambda_a \widetilde{\lambda}_b$$
 and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_b$,

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b) \quad \text{and} \quad \lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = \lambda_b \widetilde{\lambda}_b + \alpha \lambda_a \widetilde{\lambda}_b,$$

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

$$\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b) \quad \text{and} \quad \lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b,$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

 $\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b)$ and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b$, introducing a new parameter α , in terms of which we may write:

Tuesday, 6th January

イロト 不得 とくほ とくほとう

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

 $\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b)$ and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b$, introducing a new parameter α , in terms of which we may write:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

 $\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b)$ and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b$, introducing a new parameter α , in terms of which we may write:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Tuesday, 6th January

Beyond (Mere) Scattering Amplitudes: On-Shell Functions Systematics of Computation and the Auxiliary Grassmannian Building-Up Diagrams with 'BCFW' Bridges

Building-Up On-Shell Diagrams with "BCFW" Bridges

Very complex on-shell diagrams can be constructed by successively adding "BCFW" bridges to diagrams (an **extremely** useful tool!):

Adding the bridge has the effect of shifting the momenta p_a and p_b flowing into the diagram f_0 according to:

 $\lambda_a \widetilde{\lambda}_a \mapsto \lambda_{\widehat{a}} \widetilde{\lambda}_{\widehat{a}} = \lambda_a (\widetilde{\lambda}_a - \alpha \widetilde{\lambda}_b)$ and $\lambda_b \widetilde{\lambda}_b \mapsto \lambda_{\widehat{b}} \widetilde{\lambda}_{\widehat{b}} = (\lambda_b + \alpha \lambda_a) \widetilde{\lambda}_b$, introducing a new parameter α , in terms of which we may write:

$$f(\ldots,a,b,\ldots) = \frac{d\alpha}{\alpha} f_0(\ldots,\widehat{a},\widehat{b},\ldots)$$

Tuesday, 6th January

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude

Tuesday, 6th January

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude:

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha o 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

A D D A B D A B D A

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

15 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

• • • • • • • • • • • • •

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

• • • • • • • • • • • • •

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin:

• • • • • • • • • • • • •

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha o 0) \propto \oint egin{array}{c} rac{dlpha}{lpha} \ \widehat{\mathcal{A}}_n(lpha) \ lpha = 0 \end{cases}$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types:

イロト イ得ト イヨト イヨウ

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels

イロト イポト イヨト イヨト

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

ヘロト ヘ戸 ト ヘ ヨ ト ヘ ヨ

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

The Analytic Boot-Strap: All-Loop Recursion Relations

Consider adding a BCFW bridge to the full *n*-particle scattering amplitude the undeformed amplitude A_n is recovered as the **residue** about $\alpha = 0$:

$$\mathcal{A}_n = \widehat{\mathcal{A}}_n(lpha
ightarrow 0) \propto \oint rac{dlpha}{lpha} \,\, \widehat{\mathcal{A}}_n(lpha)$$

We can use **Cauchy's theorem** to trade the residue about $\alpha = 0$ for (minus) the sum of residues away from the origin—these come in two types: factorization-channels and forward-limits

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\operatorname{vol}(GL_1)} d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\operatorname{vol}(GL_1)} d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = \frac{d^2 \lambda_I d^2 \widetilde{\lambda}_I}{\operatorname{vol}(GL_1)} d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

The Analytic Boot-Strap: All-Loop Recursion Relations

Forward-limits and loop-momenta:

$$\ell \equiv \lambda_I \widetilde{\lambda}_I + \alpha \lambda_1 \widetilde{\lambda}_n$$
 with $d^4 \ell = d^3 LIPS_I d\alpha \langle 1 I \rangle [n I]$

015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$!

イロト イ押ト イヨト イヨト

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト 不得 とうほう イヨン

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

$$A_4^{(2)} =$$

イロト 不得 とうほう イヨン

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト イポト イヨト イヨト

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト イ押ト イヨト イヨト

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト イポト イヨト イヨト

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

$$A_5^{(2)} =$$

Tuesday, 6th January

イロト 不得 とうほう イヨン

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト イポト イヨト イヨト
Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

イロト 不得 とうほう イヨン

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

5 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

5 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

5 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! The **only** (non-vanishing) contribution to $\mathcal{A}_n^{(2)}$ is $\mathcal{A}_{n-1}^{(2)} \bigotimes \mathcal{A}_3^{(1)}$:

5 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes

イロト イポト イラト イラト

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

4 日 ト 4 冊 ト 4 画 ト 4 画 ト

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

4 日 ト 4 冊 ト 4 画 ト 4 画 ト

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

• varying recursion 'schema' can generate many 'BCFW formulae'

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

Deriving Diagrammatic Recursion Relations for Amplitudes Exempli Gratia: On-Shell Representations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of Amplitudes

The BCFW recursion relations realize an incredible fantasy: they **directly** produces the **Parke-Taylor** formula for all amplitudes with k=2, $\mathcal{A}_n^{(2)}$! And it generates **very concise** formulae for all other amplitudes—*e.g.* $\mathcal{A}_6^{(3)}$:

Observations regarding recursed representations of scattering amplitudes:

- varying recursion 'schema' can generate many 'BCFW formulae'
- on-shell diagrams can often be related in surprising ways

Is there any way to invariantly characterize the on-shell functions associated with on-shell diagrams?

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

On-shell diagrams can be altered without changing their associated functions

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨ

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- chains of equivalent three-particle vertices can be arbitrarily connected
- any four-particle 'square' can be drawn in its two equivalent ways

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg *a*, turn:

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg a, turn:

• *left* at each white vertex;

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths': Starting from any leg *a*, turn:

- *left* at each white vertex;
- *right* at each blue vertex.

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Tuesday, 6th January

NBIA Nordic Winter School 2015

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

イロト イポト イヨト イヨト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

These moves leave invariant a permutation defined by 'left-right paths'. Recall that different contributions to $\mathcal{A}_6^{(3)}$ were related by rotation:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant.

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

イロト イポト イヨト イヨト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion':

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

イロト イ理ト イヨト イヨト
A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion': Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

• it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Combinatorial Characterization of On-Shell Diagrams

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 トイヨト イヨト

Combinatorial Characterization of On-Shell Diagrams

Notice that the merge and square moves leave the number of 'faces' of an on-shell diagram invariant. Diagrams with different numbers of faces can be related by 'reduction'—also known as 'bubble deletion': Bubble-deletion does not, however, relate 'identical' on-shell diagrams:

- it leaves behind an overall factor of $d\alpha/\alpha$ in the on-shell function
- and it alters the corresponding left-right path permutation

Such factors of $d\alpha/\alpha$ arising from bubble deletion encode loop integrands!

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams.

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とうほう 不良 とう

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Conveniently, adding a BCFW bridge acts very nicely on permutations: it merely transposes the images of σ !

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way,

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way,

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

Recall that attaching 'BCFW bridges' can lead to very rich on-shell diagrams. Read the other way, we can 'peel-off' bridges and thereby decompose a permutation into transpositions according to $\sigma = (a b) \circ \sigma'$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

(日)

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

(日)

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

-

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

ヘロト ヘアト ヘリト ヘリト

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ押ト イヨト イヨト

э

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

(日)

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January
A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 トイヨト イヨト 三日

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 トイヨト イヨト 二日

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 トイヨト イヨト 三日

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

◆□→ ◆□→ ◆□→ ◆□→ □□

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

-

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 'Bridge' Decomposition $1 \ 2 \ 3 \ 4 \ 5 \ 6$ $1 \ 4 \ 4 \ 4 \ 4 \ 7$

*f*₈ {7 8 3 10 5 6 }

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

 $f_0 = \frac{d\alpha_1}{\alpha_1} \frac{d\alpha_2}{\alpha_2} \frac{d\alpha_3}{\alpha_3} \frac{d\alpha_4}{\alpha_4} \frac{d\alpha_5}{\alpha_5} \frac{d\alpha_6}{\alpha_6} \frac{d\alpha_7}{\alpha_7} \frac{d\alpha_8}{\alpha_8} f_8$

$$f_8 = \prod_{a=\sigma(a)+n} \left(\delta^4(\widetilde{\eta}_a) \delta^2(\widetilde{\lambda}_a) \right) \prod_{b=\sigma(b)} \left(\delta^2(\lambda_b) \right)$$

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{8} = \prod_{a=\sigma(a)+n} \left(\delta^{4}(\tilde{\eta}_{a}) \delta^{2}(\tilde{\lambda}_{a}) \right) \prod_{b=\sigma(b)} \left(\delta^{2}(\lambda_{b}) \right)$$

$$C = \left(\begin{array}{cccc} \frac{1}{2} & \frac{2}{3} & \frac{3}{4} & \frac{5}{5} & \frac{6}{6} \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array} \right)$$

$$f_{8} \left\{ 7 \ 8 \ 3 \ 10 \ 5 \ 6 \right\}$$

< 4 P ►

-

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

ヘロト ヘ戸 ト ヘ ヨ ト ヘ ヨ

Canonical Coordinates for Computing On-Shell Functions

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{8} = \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{2}{3} & \frac{4}{5} & \frac{5}{6} \\ \frac{1}{0} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$f_{8} \{7 \ 8 \ 3 \ 10 \ 5 \ 6 \}$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

ヘロト ヘ戸 ト ヘ ヨ ト ヘ ヨ

Canonical Coordinates for Computing On-Shell Functions

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{8} = \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{2}{3} & \frac{4}{5} & \frac{5}{6} \\ \frac{1}{0} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$f_{8} \{7 \ 8 \ 3 \ 10 \ 5 \ 6 \}$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{7} = \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{3}{2} & \frac{4}{2} & \frac{5}{6} & \frac{6}{2} \\ \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \alpha_{8} \end{pmatrix}$$

$$(46): c_{6} \mapsto c_{6} + \alpha_{8} c_{4}$$

$$f_{7} \{7 \ 8 \ 3 \ 6 \ 5 \ 10\}_{\{46\}}$$

不得下 イヨト イヨト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{0} = \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$C = \begin{pmatrix} \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{3}{2} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{3}{2} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{3}{2} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{2} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{3}{\alpha_{8}} & \frac{4}{\beta} & \frac{5}{\beta} & \frac{6}{\beta} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2$$

不得下 イヨト イヨト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{5} = \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$C \equiv \begin{pmatrix} \frac{1}{2} & \frac{3}{\alpha_{8}} \frac{4}{\alpha_{8}} 5 & \frac{6}{\alpha_{8}} \frac{1}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp}) \\ 0 & 1 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 1 & 0 & \alpha_{7} & \alpha_{6} \alpha_{7} & 0 \\ 0 & 0 & 1 & \alpha_{6} & \alpha_{8} \end{pmatrix}$$

$$(45): c_{5} \mapsto c_{5} + \alpha_{6} c_{4}$$

Bridge' Decomposition

$$\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \tau \\ f_{5} \{7 & 6 & 3 & 5 & 8 & 10\} (45) \\ f_{6} \{7 & 6 & 3 & 8 & 5 & 10\} (24) \\ f_{7} \{7 & 8 & 3 & 6 & 5 & 10\} (24) \\ f_{8} \{7 & 8 & 3 & 10 & 5 & 6\} (46) \end{array}$$

・ 伺 ト ・ ヨ ト ・ ヨ ト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{4} = \frac{d\alpha_{5}}{\alpha_{5}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$F_{4} = \frac{d\alpha_{5}}{\alpha_{5}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{4} \{6 \ 7 \ 3 \ 5 \ 8 \ 10\} (12)$$

$$f_{5} \{7 \ 6 \ 3 \ 5 \ 8 \ 10\} (12)$$

$$f_{6} \{7 \ 6 \ 3 \ 8 \ 5 \ 10\} (45)$$

$$f_{6} \{7 \ 6 \ 3 \ 8 \ 5 \ 10\} (24)$$

$$f_{7} \{7 \ 8 \ 3 \ 6 \ 5 \ 10\} (24)$$

$$f_{8} \{7 \ 8 \ 3 \ 10 \ 5 \ 6\} (46)$$

イロト イポト イヨト イヨト

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{4}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{3} = \frac{d\alpha_{4}}{\alpha_{5}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{4} = \frac{d\alpha_{4}}{\alpha_{5}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{4} = \frac{d\alpha_{4}}{\alpha_{5}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{4 \times 5} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{5} = \frac{d\alpha_{4}}{\alpha_{5}} \delta^{5 \times 10} \delta^{4 \times 5} (C \cdot \tilde{\lambda}) \delta^{4 \times 5} (C \cdot \tilde{\lambda})$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{2} = \frac{d\alpha_{3}}{\alpha_{3}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{2} = \frac{d\alpha_{3}}{\alpha_{3}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{2} \{5 \ 6 \ 3 \ 7 \ 8 \ 10\} (12)$$

$$f_{3} \{6 \ 5 \ 3 \ 7 \ 8 \ 10\} (12)$$

$$f_{3} \{6 \ 5 \ 3 \ 7 \ 8 \ 10\} (12)$$

$$f_{4} \{6 \ 7 \ 3 \ 5 \ 8 \ 10\} (12)$$

$$f_{5} \{7 \ 6 \ 3 \ 5 \ 8 \ 10\} (12)$$

$$f_{6} \{7 \ 6 \ 3 \ 8 \ 5 \ 10\} (24)$$

$$f_{6} \{7 \ 6 \ 3 \ 8 \ 5 \ 10\} (24)$$

$$f_{7} \{7 \ 8 \ 3 \ 6 \ 5 \ 10\} (24)$$

$$f_{7} \{7 \ 8 \ 3 \ 6 \ 5 \ 10\} (24)$$

$$f_{8} \{7 \ 8 \ 3 \ 10 \ 5 \ 6\}$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3 \times 4} (C \cdot \tilde{\eta}) \delta^{3 \times 2} (C \cdot \tilde{\lambda}) \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\alpha_{1} + \alpha_{3} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{2} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{4} + \alpha_{7}} \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\alpha_{1} + \alpha_{3} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{2} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{4} + \alpha_{7}} \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\alpha_{1} + \alpha_{3} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{2} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{4} + \alpha_{7}} \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\alpha_{1} + \alpha_{3} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{2} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6} + \alpha_{7}} \delta^{2 \times 3} (\lambda \cdot C^{\perp})$$

$$f_{2} = \frac{d\alpha_{1}}{\alpha_{1} + \alpha_{3} + \alpha_{5}} \frac{d\alpha_{6}}{\alpha_{2} + \alpha_{7}} \frac{d\alpha_{6}}{\alpha_{6} + \alpha_{7}} \frac{d\alpha_{6}}{\alpha_{7}} \frac{d\alpha_{6}}{\alpha_{7}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{8}}{\alpha_{8}} \frac{d\alpha_{7}}{\alpha_{8}} \frac{d\alpha_{8}}{\alpha_{8}} \frac{d\alpha_{$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

A (10) × (10) × (10)

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\delta} = \frac{\delta^{3}}{\delta} = \frac{\delta^{3}$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

A (10) × (10) × (10)

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \frac{d\alpha_{2}}{\alpha_{2}} \frac{d\alpha_{3}}{\alpha_{3}} \frac{d\alpha_{4}}{\alpha_{4}} \frac{d\alpha_{5}}{\alpha_{5}} \frac{d\alpha_{6}}{\alpha_{6}} \frac{d\alpha_{7}}{\alpha_{7}} \frac{d\alpha_{8}}{\alpha_{8}} f_{8}$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{0} = \frac{d\alpha_{1}}{\alpha_{1}} \cdots \frac{d\alpha_{8}}{\alpha_{8}} \delta^{3\times4} (C \cdot \tilde{\eta}) \delta^{3\times2} (C \cdot \tilde{\lambda}) \delta^{2\times3} (\lambda \cdot C^{\perp})$$

$$f_{1} = \frac{d\alpha_{1}}{\delta} = \frac{\delta^{3}}{\delta} = \frac{\delta^{3}$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

8 10

8 10

э

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

8 3 10 5 6

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イポト イヨト イヨト

8 10

8 10

э

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

- 7

イロト イポト イヨト イヨト

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5 8 10

イロト イポト イヨト イヨト

8 10 7

5 8 10

8 5 10

6 5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

8

イロト イ理ト イヨト イヨト

8 10

8 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト イ理ト イヨト イヨト

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 7 8

5

8 10

8 10

46

5 8 10

8 5 10

6 5 10

10 5 6

イロト イ理ト イヨト イヨト

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

< □ > < 同 > < 回 > < 回 >

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

ヘロト ヘ戸ト ヘヨト ヘヨ

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

ヘロト ヘ戸ト ヘヨト ヘヨ

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

ヘロト ヘ戸ト ヘヨト ヘヨ
A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

6 3

6 3

8 8 10

5 8 10

8 10 5

5 10 8

46

6 5 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 8 8 10

5 8 10

8

8 10 5

5 10

46

6 5 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

> 8 8 10

8 10

8 10

5 10

46

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

Tuesday, 6th January
A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

There are many ways to decompose a permutation into transpositions—*e.g.*, always choose the first transposition $\tau \equiv (a b)$ such that $\sigma(a) < \sigma(b)$:

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

On-Shell, All-Order Recursion Relations for Scattering Amplitudes Combinatorics, Classification, and Canonical Computation A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

7

7

8 10

8 10

э

5 8 10

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

Canonical Coordinates for Computing On-Shell Functions

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

ヘロト ヘアト ヘリト ヘリト

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

ヘロト ヘアト ヘリト ヘリト

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \dots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \big(C(\vec{\alpha}) \cdot \widetilde{\eta} \big) \delta^{k \times 2} \big(C(\vec{\alpha}) \cdot \widetilde{\lambda} \big) \delta^{2 \times (n-k)} \big(\lambda \cdot C(\vec{\alpha})^{\perp} \big)$$

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

(日)

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \dots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \big(C(\vec{\alpha}) \cdot \widetilde{\eta} \big) \delta^{k \times 2} \big(C(\vec{\alpha}) \cdot \widetilde{\lambda} \big) \delta^{2 \times (n-k)} \big(\lambda \cdot C(\vec{\alpha})^{\perp} \big)$$

Measure-preserving diffeomorphisms leave the function invariant

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 不得 とくほ とくほとう

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \dots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \big(C(\vec{\alpha}) \cdot \widetilde{\eta} \big) \delta^{k \times 2} \big(C(\vec{\alpha}) \cdot \widetilde{\lambda} \big) \delta^{2 \times (n-k)} \big(\lambda \cdot C(\vec{\alpha})^{\perp} \big)$$

Measure-preserving diffeomorphisms leave the function invariant, but via the δ -functions—can be recast variations of the kinematical data.

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 人間 とくほ とくほ とう

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \dots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \big(C(\vec{\alpha}) \cdot \widetilde{\eta} \big) \delta^{k \times 2} \big(C(\vec{\alpha}) \cdot \widetilde{\lambda} \big) \delta^{2 \times (n-k)} \big(\lambda \cdot C(\vec{\alpha})^{\perp} \big)$$

Measure-preserving diffeomorphisms leave the function invariant, but via the δ -functions—can be recast variations of the kinematical data. The *Yangian* corresponds to those diffeomorphisms that simultaneously preserve the measures of *all* on-shell diagrams.

A Combinatorial Classification of On-Shell Functions Building-Up (Representative) Diagrams and Functions with Bridges Asymptotic Symmetries of the S-Matrix: the Yangian

イロト 人間 とくほ とくほ とう

Canonical Coordinates and the Manifestation of the Yangian

All on-shell diagrams, in terms of canonical coordinates, take the form:

$$f = \int \frac{d\alpha_1}{\alpha_1} \wedge \dots \wedge \frac{d\alpha_d}{\alpha_d} \, \delta^{k \times 4} \big(C(\vec{\alpha}) \cdot \widetilde{\eta} \big) \delta^{k \times 2} \big(C(\vec{\alpha}) \cdot \widetilde{\lambda} \big) \delta^{2 \times (n-k)} \big(\lambda \cdot C(\vec{\alpha})^{\perp} \big)$$

Measure-preserving diffeomorphisms leave the function invariant, but via the δ -functions—can be recast variations of the kinematical data. The *Yangian* corresponds to those diffeomorphisms that simultaneously preserve the measures of *all* on-shell diagrams.

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

Tuesday, 6th January

イロト イポト イヨト イヨト

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

Tuesday, 6th January

イロト イポト イヨト イヨト

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion.

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$:

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_{4}^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_{6}^{(3),0}$: $\int_{\ell \in \mathbb{R}^{3,1}} d^{4}\ell \iff \int_{\ell \in (\lambda_{1}\tilde{\lambda}_{1} + \alpha\lambda_{1}\tilde{\lambda}_{4}) \in \mathbb{R}^{3,1}} \frac{d^{2}\lambda_{1}d^{2}\tilde{\lambda}_{1}}{\operatorname{vol}(GL_{1})} d\alpha \langle II \rangle [nI]$

$$\mathcal{A}_{4}^{(2),0} \times \int d\log\left(\frac{\ell^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1}+p_{2})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_$$

Tuesday, 6th January

NBIA Nordic Winter School 2015 Part II: On-Shell Diagrams, Recursion Relations, and Combinatorics

イロト 不得 とくほ とくほ とう

On-Shell Representations of Loop-Amplitude Integrands

On-Shell Recursion of Loop-Amplitude Integrands

Let's look at an example of how loop amplitudes are represented by recursion. For $\mathcal{A}_4^{(2),1}$, the only terms come from the 'forward limit' of the tree $\mathcal{A}_6^{(3),0}$: 2 3

$$\mathcal{A}_{4}^{(2),0} \times \int d\log\left(\frac{\ell^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1}+p_{2})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right)$$

$$= \mathcal{A}_{4}^{(2),0} \times \int d^{4}\ell \frac{(p_{1}+p_{2})^{2}(p_{3}+p_{4})^{2}}{\ell^{2}(\ell+p_{1})^{2}(\ell+p_{1}+p_{2})^{2}(\ell-p_{4})^{2}}$$

Tuesday, 6th January

イロト 不得 とくほ とくほ とう