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HST, Entropy and the “Dilaton”

I HST assigns Ad−2
screen “fermions” Per Causal Diamond.

I In d = 1 + 1, No Area, Need Scalar Field to Parametrize
Entropy of Diamonds. Asymptotically growing Entropy
Implies scalar profile, Poincare group broken to at most 1
generator, take to be time-like asymptotic Killing vector.

I Scattering theory: Entropy goes to infinity at infinite r . Must
be monotonic. Define r = 0 to be minimum entropy point.

I Finite Causal Diamonds Depend on Choice of Time-like
Trajectory. For the models we’ll study, we choose the
trajectory at rest at minimum entropy point.
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I ’t Hooft: Near Horizon Coordinates Satisfy
[h, u] = u, [h, v ] = −v , [u, v ] = −i .
HST1+1 : ψu(u) = F .T .ψv (v). H =

∫
ψ†L−1P (uv + vu)ψ. ψ

canonical fermion. v = p+λ√
2

. u = p−λ√
2

. Upside down oscillator

potential.

I Minkowski coordinate given asymptotically by r = t(λ) Time
of flight t(λ) = LP

∫
dx√
−v(x)

∼ LP ln λ. Fermion entropy∫
dpdxθ(p2 − x2) = λ2 = e

2r
LP : Linear dilaton!

I LEFT L =
√
−ge−2φ[R + 4(∇φ)2 + L−2P ].

I Has Only Linear Dilaton Vacuum and Black Hole Solutions

I CGHS: Black Hole Formed by Shock wave. 2D Analog of ’t
Hooft Dray Calculation. Near horizon limit of many different
dilaton black holes in string theory. Different numbers of
massless matter fields.
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Alexandrov Kazakov Kostov S-matrix

I One body operator uv + vu is first order. Eigenfunctions
singular at u or v = 0, leads to doubling ψi . Transformation
to lnu or ln(−v) (analogous to transformation between
conformal and ∂tφ = 0 gauges in LEFT): uv + vu → ± ∂

∂r
.

I AKK transforms Lagrangian to that of free left moving (ψ
(i)
u )

or right moving (ψ
(i)
v ) relativistic fermions! Computes

S-matrix.

I S = SinShorSout cf. ’t Hooft . Sin/out are just transformation
between near horizon and asymptotic coordinates.
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Relevant Perturbations, Large N and Black Holes

I Witten: umvn BRST invariant ops. in String Pert. Theory.

I Seiberg: Deformation of Model Rather Than States in the
same model cf. normalizable vs. non-normalizable modes in
AdS/CFT.

I These are all “irrelevant”: change space-time asymptotics.

I But combinations
∫
ψ†(λ)M(λ, κ)ψ(κ), with smooth M

concentrated near λ = κ = 0 ( Similar 4 fermi “double trace”
ops) leave u, v asymptotics untouched.

I Deformations of model in Planck regime, where interactions
take place.
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Large N and Black Holes

I If Deformed Potential is a Well or 4-fermi interactions
Attractive: meta-stable states . Life-times of order LP unless
extreme deformations.

I If we have N � 1 fermions, as in CGHS, we get meta-stable
states, with lifetimes and entropy of order N, but emission
rates and infall times Planck scale.

I These are the properties of classical linear dilaton black holes.



Large N and Black Holes

I If Deformed Potential is a Well or 4-fermi interactions
Attractive: meta-stable states . Life-times of order LP unless
extreme deformations.

I If we have N � 1 fermions, as in CGHS, we get meta-stable
states, with lifetimes and entropy of order N, but emission
rates and infall times Planck scale.

I These are the properties of classical linear dilaton black holes.



Large N and Black Holes

I If Deformed Potential is a Well or 4-fermi interactions
Attractive: meta-stable states . Life-times of order LP unless
extreme deformations.

I If we have N � 1 fermions, as in CGHS, we get meta-stable
states, with lifetimes and entropy of order N, but emission
rates and infall times Planck scale.

I These are the properties of classical linear dilaton black holes.



Black Hole Interiors as Image of Scrambling on Horizon
I TB and Fischler resolution of AMPS paradox. Drop mass

MP < m� M onto black hole → entropy increase
∼ mM/M2

P by the time the black hole equilibrates (4D). Sign
of constrained DOF that have to be “turned on” in order to
equilibrate mass with black hole. Off diagonal terms in HST
matrix models.

I Consistency of time evolution along two radially infalling
geodesics, one inside, one outside the horizon when mass falls
in, suggests experience behind horizon is ”mirage” of
scrambling on the horizon. No firewall.

I cf. also Mathur, Susskind (complexity conjecture. However,
note flat space black holes always evaporate before complexity
sets in.). Also consistent with classical geometry: in Novikov
frame, new low curvature space constantly created behind
horizon.

I Linear Dilaton Black Holes consistent with this picture. No
area, means scrambling on the horizon takes place on Planck
scale.
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General Lessons

I ’t Hooft commutators for near horizon null coordinates seem
more robust than their semi-classical derivation, but they
don’t capture most important parts of black hole physics.

I Relevant deformations of 1 + 1 string theory: what are the
rules? Repulsive potentials near the origin lead to causality
violation.

I N.B. We did not use weak string coupling, which would have
taken Fermi level far below the top of the potential, and
obscured black hole physics.

I Ignored leg poles. Mostly weak coupling string theory stuff,
but Polchinski argued leading order gravity interaction
between two pulses was also in leg poles.



General Lessons

I ’t Hooft commutators for near horizon null coordinates seem
more robust than their semi-classical derivation, but they
don’t capture most important parts of black hole physics.

I Relevant deformations of 1 + 1 string theory: what are the
rules? Repulsive potentials near the origin lead to causality
violation.

I N.B. We did not use weak string coupling, which would have
taken Fermi level far below the top of the potential, and
obscured black hole physics.

I Ignored leg poles. Mostly weak coupling string theory stuff,
but Polchinski argued leading order gravity interaction
between two pulses was also in leg poles.



General Lessons

I ’t Hooft commutators for near horizon null coordinates seem
more robust than their semi-classical derivation, but they
don’t capture most important parts of black hole physics.

I Relevant deformations of 1 + 1 string theory: what are the
rules? Repulsive potentials near the origin lead to causality
violation.

I N.B. We did not use weak string coupling, which would have
taken Fermi level far below the top of the potential, and
obscured black hole physics.

I Ignored leg poles. Mostly weak coupling string theory stuff,
but Polchinski argued leading order gravity interaction
between two pulses was also in leg poles.



General Lessons

I ’t Hooft commutators for near horizon null coordinates seem
more robust than their semi-classical derivation, but they
don’t capture most important parts of black hole physics.

I Relevant deformations of 1 + 1 string theory: what are the
rules? Repulsive potentials near the origin lead to causality
violation.

I N.B. We did not use weak string coupling, which would have
taken Fermi level far below the top of the potential, and
obscured black hole physics.

I Ignored leg poles. Mostly weak coupling string theory stuff,
but Polchinski argued leading order gravity interaction
between two pulses was also in leg poles.


	Quantum Models of Linear Dilaton Gravity
	Holographic Space Time and the Low Energy Action (CGHS)
	The 't Hooft Commutators
	Re-derivation of the Fermion Model
	The Alexandrov Kazakov Kostov S Matrix
	Relevant Perturbations and Large N - Black Holes


