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The anomalous dimensions of dimension-six operators in the Standard Model Effective Field
Theory (SMEFT) respect holomorphy to a large extent. The holomorphy conditions are reminiscent
of supersymmetry, even though the SMEFT is not a supersymmetric theory.

I. INTRODUCTION

The Standard Model (SM) is the most general renor-
malizable SU(3)× SU(2)× U(1) gauge theory built out
of ng = 3 families of fermions and a single Higgs doublet
H , and it has been experimentally tested in all its funda-
mental aspects. In view of the absence of extra particles
at the electroweak scale, new physics effects can be in-
cluded naturally by adding higher dimensional operators
built with SM fields [1, 2]. This generalization of the SM
defines the SMEFT built out of SM fields, which consists
of the SM Lagrangian and arbitrary higher dimension op-
erators suppressed by the scale Λ of new physics. Elec-
troweak symmetry is broken spontaneously by the usual
Higgs mechanism. Any model of new physics maps to
the SMEFT with specific coefficients for energies E < Λ,
as long as there are no new particles present at the elec-
troweak scale. For energies E < Λ, the dominant new
physics operators are mass dimension d = 6.1

In a series of papers [4–8], we have computed the one-
loop anomalous dimensions of the dimension-six oper-
ators, as well as their contributions to the anomalous
dimensions of the SM d ≤ 4 parameters. The renormal-
ization group equations (RGE) preserve gauge and flavor
symmetries. Surprisingly, the one-loop RGE also pre-
serve a holomorphic structure reminiscent of supersym-
metry, even though the SMEFT is not supersymmetric.
In Ref. [7], we pointed out that the anomalous dimensions
of the magnetic dipole operators preserved holomorphy.
In this paper, we summarize the non-trivial anomalous
dimension conditions that are satisfied which preserve
holomorphy. We have been unable to come up with a
general explanation for this holomorphic structure. How-
ever, the large number of holomorphy relations which are
satisfied suggests that this structure is not purely acci-
dental.
Our calculations are done using the non-redundant op-

erator basis of Ref. [2], and using the equations of motion

1 The single d = 5 lepton-violating operator in the SMEFT [3]
leads upon spontaneous symmetry breakdown to light Majo-
rana masses for neutrinos which couple to the W± and Z gauge
bosons. The extreme lightness of these neutrinos required by
neutrino oscillation data implies that the energy scale of the
d = 5 operator Λ5 ≫ Λ. Approximate lepton number symmetry
suffices to maintain this hierarchy of new physics scales. A sim-
ilar hierarchy applies for d = 6 operators which violate baryon
number.

(i.e. field redefinitions) to reduce the operators to this
standard basis. The calculation can be thought of as a
computation of S-matrix elements, since we are comput-
ing on-shell amplitudes. The holomorphic structure only
appears after this is done, with non-holomorphic direct
contributions being cancelled by non-holomorphic indi-
rect contributions from equation of motion terms.
There have also been recent efforts to understand the

form of the anomalous dimension matrix based on a
tree/loop operator classification scheme [9, 10].

II. HOLOMORPHY

The 59 dimension-six operators can be divided into dif-
ferent classes depending on field content. Let X denote
a field-strength tensor, ψ a fermion field which can be
either left-handed (L) or right-handed (R), and D a co-
variant derivative. Then the operator classes are denoted
by X3, H6, H4D2, X2H2, ψ2H3, ψ2HX , ψ2H2D, and
ψ4 operators, using the notation of Refs. [2, 5–7]. It is
convenient to separate the ψ4 operators into three sub-
classes: (LR)(LR), (LR)(RL), and current-current op-
erators JJ , which consist of (LL)(LL), (RR)(RR), and
(LL)(RR).
To specify what we mean by holomorphic operators,

we introduce the “complex” field strengths

X±
µν =

1

2

(
Xµν ∓ iX̃µν

)
, X̃±

µν = ±iX±
µν , (1)

where X̃µν = ϵµναβXαβ/2, and ϵ0123 = +1. The self-
duality condition in Minkowski space is complex because
˜̃
Xµν = −Xµν .
The holomorphic part of the Lagrangian, Lh, is the La-

grangian constructed from the fields X+, R, L, but none
of their hermitian conjugates. The Lagrangian contains
also the hermitian conjugate of the holomorphic piece,
Lh̄, which is built from the fields X−, R and L. We re-
fer to this part of the Lagrangian as anti-holomorphic.
The remaining terms in the Lagrangian are deemed non-
holomorphic.
A few comments:

1. Under the Lorentz group SU(2)R × SU(2)L, the
fields in Lh transform under SU(2)R, {X+, R,
L} ∼ {(1, 0), (12 , 0), (

1
2 , 0)}, while the fields in Lh

transform under SU(2)L.

At renormalizable level, operators not 
protected by symmetry have          running. O(1)

At non-renormalizable level, though, a puzzle:
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dimensions of the SM d ≤ 4 parameters. The renormal-
ization group equations (RGE) preserve gauge and flavor
symmetries. Surprisingly, the one-loop RGE also pre-
serve a holomorphic structure reminiscent of supersym-
metry, even though the SMEFT is not supersymmetric.
In Ref. [7], we pointed out that the anomalous dimensions
of the magnetic dipole operators preserved holomorphy.
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dimension conditions that are satisfied which preserve
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dental.
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number.

(i.e. field redefinitions) to reduce the operators to this
standard basis. The calculation can be thought of as a
computation of S-matrix elements, since we are comput-
ing on-shell amplitudes. The holomorphic structure only
appears after this is done, with non-holomorphic direct
contributions being cancelled by non-holomorphic indi-
rect contributions from equation of motion terms.
There have also been recent efforts to understand the

form of the anomalous dimension matrix based on a
tree/loop operator classification scheme [9, 10].

II. HOLOMORPHY

The 59 dimension-six operators can be divided into dif-
ferent classes depending on field content. Let X denote
a field-strength tensor, ψ a fermion field which can be
either left-handed (L) or right-handed (R), and D a co-
variant derivative. Then the operator classes are denoted
by X3, H6, H4D2, X2H2, ψ2H3, ψ2HX , ψ2H2D, and
ψ4 operators, using the notation of Refs. [2, 5–7]. It is
convenient to separate the ψ4 operators into three sub-
classes: (LR)(LR), (LR)(RL), and current-current op-
erators JJ , which consist of (LL)(LL), (RR)(RR), and
(LL)(RR).
To specify what we mean by holomorphic operators,

we introduce the “complex” field strengths

X±
µν =

1

2

(
Xµν ∓ iX̃µν

)
, X̃±

µν = ±iX±
µν , (1)

where X̃µν = ϵµναβXαβ/2, and ϵ0123 = +1. The self-
duality condition in Minkowski space is complex because
˜̃
Xµν = −Xµν .
The holomorphic part of the Lagrangian, Lh, is the La-

grangian constructed from the fields X+, R, L, but none
of their hermitian conjugates. The Lagrangian contains
also the hermitian conjugate of the holomorphic piece,
Lh̄, which is built from the fields X−, R and L. We re-
fer to this part of the Lagrangian as anti-holomorphic.
The remaining terms in the Lagrangian are deemed non-
holomorphic.
A few comments:

1. Under the Lorentz group SU(2)R × SU(2)L, the
fields in Lh transform under SU(2)R, {X+, R,
L} ∼ {(1, 0), (12 , 0), (

1
2 , 0)}, while the fields in Lh

transform under SU(2)L.

At renormalizable level, operators not 
protected by symmetry have          running. O(1)

At non-renormalizable level, though, a puzzle:

Radiative stability without symmetry???
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Choose a basis of 59 operators, mod flavor.



X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)
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Manohar et. al computed the leading RG, 
encoded in the anomalous dimension matrix.

(4⇡)2
dci

d logµ
=

X

j

�ijcj

Here      is a dimensionless matrix made of 
the marginal couplings in the theory.

�ij

Alonso, Jenkins, Manohar, Trott (1308.2627, 1309.0819, 1310.4838, 1312.2014, 1409.0868) 



X

j

cj

1

(4⇡)2✏

X

ij

�ijcj

Oj

Oj

Oi

one-loop 
amplitude =

= + finite



For convenience, express Lorentz covariance 
in terms of spinor indices,                  .µ $ ↵, ↵̇

�

 ↵,  ̄↵̇

F↵↵̇��̇ = F↵� ✏̄↵̇�̇ + F̄↵̇�̇✏↵�

scalars:

fermions:

vectors:

derivatives: D↵↵̇



holomorphic ⟷

anti-holomorphic ⟷

non-holomorphic ⟷

Mod Lorentz and flavor structures, reduce to 
14 operator classes split into 3 groups.

↵,�, . . .

↵̇, �̇, . . .

↵, ↵̇,�, �̇, . . .

O(h) = F 3, F 2�2, F 2�,  4,  2�3

O(h) = F̄ 3, F̄ 2�2, F̄  ̄2�,  ̄4,  ̄2�3

O(n) =  ̄2 2,  ̄ �2D, �4D2, �6



O(h)
jO(h)

j O(n)
j

O(h)
i

O(h)
i

O(n)
i



Hermitian conjugation

O(h)
jO(h)

j O(n)
j

O(h)
i

O(h)
i

O(n)
i



O(h)
jO(h)

j O(n)
j

O(h)
i

O(h)
i

O(n)
i



x x x x x x x x x x
x x x x x x

x x x
x x x x x x x x x x
x x

x x x x x x x x x x
x x x x x x
x x x

x x x x x x x x x x
x x

x x x x x x
x

x x x x
x x x x x x x

X = no diagram

O(h)
jO(h)

j O(n)
j

O(h)
i

O(h)
i

O(n)
i



x x x x x x x x x x x x x
x x x x x x x x x x x

x x x x x x x x x x
x x x x x x x x x x x
x x x x x x
x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x x
x x x x x x
x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x

X = no diagram
X = cancels! O(h)

jO(h)
j O(n)

j

O(h)
i

O(h)
i

O(n)
i



x x x x x x x x x x x x x
x x x x x x x x x x x

x x x x x x x x x x
x x x x x x x x yuyd,e x x x
x x x x x yuyd,e x
x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x yuyd,e x x x
x x x x yuyd,e x x
x x x yuyd,e x x x x yuyd,e x x x
x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x

X = no diagram
X = cancels! O(h)

jO(h)
j O(n)

j

O(h)
i

O(h)
i

O(n)
i



x x x x x x x x x x x x x
x x x x x x x x x x x

x x x x x x x x x x
x x x x x x x x yuyd,e x x x
x x x x x yuyd,e x
x x x x x x x x x x x x x
x x x x x x x x x x x
x x x x x x x x x x
x x x x x x x x yuyd,e x x x
x x x x yuyd,e x x
x x x yuyd,e x x x x yuyd,e x x x
x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x

X = no diagram
X = cancels!

holomorphic 
non-renormalization?

O(h)
jO(h)

j O(n)
j

O(h)
i

O(h)
i

O(n)
i



“impurities” in 
holomorphic

non-renormalization

LSM � yuqhu
c + ydqh

†dc + ye`h
†ec

yuyd, yuye

which are spurions for holomorphy violation,

A critical clue for the underlying mechanism:

⇠



With no obvious symmetry, Manohar et. al 
conjectured “hidden” holomorphy of the SM.



As we will see, this is simply the result of:

i) unitarity

ii) helicity

&

With no obvious symmetry, Manohar et. al 
conjectured “hidden” holomorphy of the SM.



As we will see, this is simply the result of:

i) unitarity

ii) helicity

&

With no obvious symmetry, Manohar et. al 
conjectured “hidden” holomorphy of the SM.

(4D + on-shell)!



statement of new non-
renormalization theorems



We derive one-loop non-renormalization 
theorems for general 4D QFTs.

Our proof centers on a gauge invariant, field 
reparameterization invariant observable:

A = on-shell amplitude!



(weight)w(A) = n(A)� h(A)

w(A) = n(A) + h(A) (anti-weight)

definition of amplitude weight



(weight)w(A) = n(A)� h(A)

w(A) = n(A) + h(A) (anti-weight)

total number 
of particles

total helicity 
of particles

definition of amplitude weight



w,w

�n = 1

�1  �h  1

0  �w,�w  2

         monotonically increase when tacking 
on new vectors, fermions, and scalars.



w(O) = min{w(A)} = n(O) + h(O)

w(O) = min{w(A)} = n(O)� h(O)

definition of operator weight



w(O) = min{w(A)} = n(O) + h(O)
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marginalize 
over all A≠0 
involving O

definition of operator weight



w(O) = min{w(A)} = n(O) + h(O)

w(O) = min{w(A)} = n(O)� h(O)

marginalize 
over all A≠0 
involving O

total number 
of particles

created by O

total helicity 
of particles

created by O

definition of operator weight
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      cannot be renormalized by       of 
greater weight or anti-weight.
Oi Oj

�ij = 0 wi < wj wi < wj      if                     or

Leading irrelevant deformation of a 4D QFT 
with marginal interactions satisfies:

new non-renormalization theorem
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proof of new non-
renormalization theorems



running
coupling

physical 
discontinuity

Oj

 i) unitarity

loop

tree tree

No cut means no running.



Feynman diagrams exist, but vanish on-shell!

= + + . . .

g�

g�

g�

g�

= 0

 ii) helicity

(on-shell, renormalizable)



wn, w̄n � 4 n � 4

Weights monotonically increase, so it suffices 
to consider all               amplitudes.

for

tree amplitudes

At renormalizable level, nearly every    -point 
tree amplitude       satisfies

n
An

w4 < 4



Most                  amplitudes have Feynman 
diagrams but vanish on-shell.

2

1 3 5

5

3

1

dimension 5

0 2 4 6

6

4

2

0

dimension 6

w

w

w w

�6F 3

F̄ 3

�̄2�3

�2�3

�5�2�2

�̄2�2

F 2�2

F�2�
�4

F̄ 2�2

F̄ �̄2�
�̄4

�̄��2D
�̄2�2

�4D2

F 2�
F�2

F̄ 2�
F̄ �̄2

Figure 1. Weight lattice for dimension five and six operators,
suppressing flavor and Lorentz structures, e.g. on which fields
derivatives act. Our non-renormalization theorems permit
mixing of operators into operators of equal or greater weight.
Pictorially, this forbids transitions down or to the left.

Because our analysis hinges on unitarity and helic-
ity rather than o�-shell symmetry principles, the result-
ing non-renormalization theorems are general. More-
over, they explain the ubiquitous and surprising cancel-
lations [2] in the one-loop renormalization of dimension
six operators in the standard model [3–6]. Absent an
explanation from power counting or spurions, the au-
thors of [2] conjectured a hidden “holomorphy” enforc-
ing non-renormalization among holomorphic and anti-
holomorphic operators. We show here that this classifi-
cation simply corresponds to w < 4 and w < 4, so these
cancellations follow immediately from Eq. (6), as shown
in Tab. II .

WEIGHING TREE AMPLITUDES

To begin, we compute the holomorphic and anti-
holomorphic weights (wn, wn) of a general n-point on-
shell tree amplitude in a renormalizable theory of mass-
less particles. We start at lower-point and apply induc-
tion to extend to higher-point.

The three-point amplitude is

A(1h12h23h3) = g

; È12Ír3È23Ír1È31Ír2 ,
q

i hi Æ 0
[12]r3 [23]r1 [31]r2 ,

q
i hi Ø 0 (7)

where g is the coupling and each case corresponds to
MHV and MHV kinematics, |1] Ã |2] Ã |3] and |1Í Ã
|2Í Ã |3Í. Lorentz invariance fixes the exponents to be
ri = ≠ri = 2hi ≠ q

j hj and
q

i ri =
q

i ri = 1 ≠ [g]
by dimensional analysis [7]. According to Eq. (7), the
corresponding weights are

(w
3

, w
3

) =
;

(4 ≠ [g], 2 + [g]),
q

i hi Æ 0
(2 + [g], 4 ≠ [g]),

q
i hi Ø 0 (8)

In a renormalizable theory, [g] = 0 or 1, so we obtain

w
3

, w
3

Ø 2, (9)

for the three-point amplitude.
The majority of four-point tree amplitudes satisfy

w
4

, w
4

Ø 4 because w
4

< 4 and w
4

< 4 require a non-
zero total helicity which is typically forbidden by helicity
selection rules. To see why, we enumerate all possible
candidate amplitudes with w

4

< 4. Analogous argu-
ments will apply for w

4

< 4.
Most four-point tree amplitudes with w

4

= 1 or 3
vanish since they have no Feynman diagrams, so

0 = A(F +F +F ±„) = A(F +F +Â±Â±)
= A(F +F ≠Â+Â+) = A(F +Â+Â≠„)
= A(Â+Â+Â+Â≠).

Furthermore, most amplitudes with w
4

= 0 or 2 vanish
due to helicity selection rules, so

0 = A(F +F +F +F ±) = A(F +F +Â+Â≠)
= A(F +F +„ „) = A(F +Â+Â+„).

While Feynman diagrams exist, they vanish on-shell for
the chosen helicities. This leaves a handful of candidate
non-zero amplitudes,

0 ”= A(Â+Â+Â+Â+), A(F +„ „ „), A(Â+Â+„ „),

with w
4

= 2, 3, 3, respectively. These “exceptional am-
plitudes” are the only four-point tree amplitudes with
w

4

< 4 that do not vanish identically.
The exceptional amplitudes all require internal or

external scalars, so they are absent in theories with
only gauge bosons and fermions, e.g. QCD. The sec-
ond and third amplitudes involve super-renormalizable
cubic scalar interactions, which we do not consider here.
The first amplitude arises from Yukawa couplings of non-
holomorphic form: that is, „Â2 together with „̄Â2, which
in a supersymmetric theory would violate holomorphy of
the superpotential. In the standard model, Higgs dou-
blet exchange generates an exceptional amplitude pro-
portional to the product up-type and down-type Yukawa
couplings. This diagram will be important later when we
consider the standard model. In summary,

w
4

, w
4

Ø 4, (10)

for the four-point amplitude, modulo exceptional ampli-
tudes.

Finally, consider a general higher-point tree ampli-
tude, Ai, which on a factorization channel equals a prod-
uct of amplitudes, Aj and Ak,

fact[Ai] = i

¸2

ÿ

h

Aj(¸h)Ak(≠¸≠h), (11)
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suppressing flavor and Lorentz structures, e.g. on which fields
derivatives act. Our non-renormalization theorems permit
mixing of operators into operators of equal or greater weight.
Pictorially, this forbids transitions down or to the left.

Because our analysis hinges on unitarity and helic-
ity rather than o�-shell symmetry principles, the result-
ing non-renormalization theorems are general. More-
over, they explain the ubiquitous and surprising cancel-
lations [2] in the one-loop renormalization of dimension
six operators in the standard model [3–6]. Absent an
explanation from power counting or spurions, the au-
thors of [2] conjectured a hidden “holomorphy” enforc-
ing non-renormalization among holomorphic and anti-
holomorphic operators. We show here that this classifi-
cation simply corresponds to w < 4 and w < 4, so these
cancellations follow immediately from Eq. (6), as shown
in Tab. II .

WEIGHING TREE AMPLITUDES

To begin, we compute the holomorphic and anti-
holomorphic weights (wn, wn) of a general n-point on-
shell tree amplitude in a renormalizable theory of mass-
less particles. We start at lower-point and apply induc-
tion to extend to higher-point.

The three-point amplitude is

A(1h12h23h3) = g

; È12Ír3È23Ír1È31Ír2 ,
q

i hi Æ 0
[12]r3 [23]r1 [31]r2 ,

q
i hi Ø 0 (7)

where g is the coupling and each case corresponds to
MHV and MHV kinematics, |1] Ã |2] Ã |3] and |1Í Ã
|2Í Ã |3Í. Lorentz invariance fixes the exponents to be
ri = ≠ri = 2hi ≠ q

j hj and
q

i ri =
q

i ri = 1 ≠ [g]
by dimensional analysis [7]. According to Eq. (7), the
corresponding weights are

(w
3

, w
3

) =
;

(4 ≠ [g], 2 + [g]),
q

i hi Æ 0
(2 + [g], 4 ≠ [g]),

q
i hi Ø 0 (8)

In a renormalizable theory, [g] = 0 or 1, so we obtain

w
3

, w
3

Ø 2, (9)

for the three-point amplitude.
The majority of four-point tree amplitudes satisfy

w
4

, w
4

Ø 4 because w
4

< 4 and w
4

< 4 require a non-
zero total helicity which is typically forbidden by helicity
selection rules. To see why, we enumerate all possible
candidate amplitudes with w

4

< 4. Analogous argu-
ments will apply for w

4

< 4.
Most four-point tree amplitudes with w

4

= 1 or 3
vanish since they have no Feynman diagrams, so

0 = A(F +F +F ±„) = A(F +F +Â±Â±)
= A(F +F ≠Â+Â+) = A(F +Â+Â≠„)
= A(Â+Â+Â+Â≠).

Furthermore, most amplitudes with w
4

= 0 or 2 vanish
due to helicity selection rules, so

0 = A(F +F +F +F ±) = A(F +F +Â+Â≠)
= A(F +F +„ „) = A(F +Â+Â+„).

While Feynman diagrams exist, they vanish on-shell for
the chosen helicities. This leaves a handful of candidate
non-zero amplitudes,

0 ”= A(Â+Â+Â+Â+), A(F +„ „ „), A(Â+Â+„ „),

with w
4

= 2, 3, 3, respectively. These “exceptional am-
plitudes” are the only four-point tree amplitudes with
w

4

< 4 that do not vanish identically.
The exceptional amplitudes all require internal or

external scalars, so they are absent in theories with
only gauge bosons and fermions, e.g. QCD. The sec-
ond and third amplitudes involve super-renormalizable
cubic scalar interactions, which we do not consider here.
The first amplitude arises from Yukawa couplings of non-
holomorphic form: that is, „Â2 together with „̄Â2, which
in a supersymmetric theory would violate holomorphy of
the superpotential. In the standard model, Higgs dou-
blet exchange generates an exceptional amplitude pro-
portional to the product up-type and down-type Yukawa
couplings. This diagram will be important later when we
consider the standard model. In summary,

w
4

, w
4

Ø 4, (10)

for the four-point amplitude, modulo exceptional ampli-
tudes.

Finally, consider a general higher-point tree ampli-
tude, Ai, which on a factorization channel equals a prod-
uct of amplitudes, Aj and Ak,

fact[Ai] = i

¸2

ÿ

h

Aj(¸h)Ak(≠¸≠h), (11)

Most                  amplitudes do not have any 
corresponding Feynman diagrams.

w4 = 0, 2

w4 = 1, 3



Lastly, we have three non-zero “exceptional” 
diagrams with              . w4 < 4
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not in SM
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In SM, exceptional diagram is generated…
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dc

yu yd

… but not in the holomorphic 2HDM.

hu hd
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uc

q

dc

yu yd

… but not in the holomorphic 2HDM.

hu hd

mass insertion renders 
divergence finite



wn, w̄n � 4 n � 4

mod the exceptional amplitudes discussed.

for

Since weights cannot decrease from adding 
particles, we find that

Next, we consider one-loop amplitudes…



Aj Ak

Aloop

i
Ai

divergent 
piece

 unitarity 
cut ni = nj + nk � 4

hi = hj + hk

wi = wj + wk � 4

one-loop amplitudes

1

✏



Aj Ak
Ai

1

✏

wi = wj + wk � 4



tree amplitude with
insertion of___Oj

Aj Ak
Ai

1

✏

renormalizable
tree amplitude

tree amplitude with
insertion of___Oi

(wk � 4)

wi = wj + wk � 4



tree amplitude with
insertion of___Oj

Aj Ak
Ai

1

✏

tree amplitude with
insertion of___Oi

wi = wj + wk � 4

wi � wj

renormalizable
tree amplitude
(wk � 4)

QED.



So                   , but we can show
since there aren’t IR divergent real emission 
diagrams for                 or                .

cUV = cIR cIR = 0

wi < wj

Caveat: we’ve dropped 3-point contributions, 
which vanish in dim reg but are IR divergent.

Aj Ak

cUV

✏
� cIR

✏
+ finite=

wi < wj



(back to)
standard model 

effective field theory
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What about higher loop order?

Helicity selection rules fail at finite one-loop.

Non-renormalization should fail at two-loop!

6= 0



• New non-renormalization theorems arise 
from unitarity and helicity in 4D QFTs.

conclusions

• Fully explains curious zeros in the RG of 
the SM EFT, all without off-shell symmetry.

• Our proof strongly suggests that observed 
non-renormalization will fail at higher loop!



thank you!


