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* ultraviolet democracy of parameters

* couplings are generated by running
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enhanced radiative

“naturalness”
c; = 0 — c;, < 1
(folklore)
e.g. chiral symmetry, e.g. electron mass,
supersymmetry, Higgs mass,

Logically, this “naturalness” is equivalent to

“anything goes™
no symmetry ——> |
C; n
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Radiative stability without symmetry???



standard model
effective field theory



Standard model effective theory is defined by

L=Lsy+ AL

AL — Z c; O,

where {O;| = 6 and B and L are assumed.



Caveat: operator basis { O, } is not unique.

Inserting equations of motion is equivalent to
a field redefinition at leading order, e.g.

eq of motion

ox () —> Vi) x()

field redef
6 —> o+ ()

However, the S-matrix is left invariant.
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Manohar et. al computed the leading RG,
encoded in the anomalous dimension matrix.

dCZ‘
(47)° — Z VijCj
d log 1 ;

Here 7ijis a dimensionless matrix made of
the marginal couplings in the theory.

Alonso, Jenkins, Manohar, Trott (1308.2627, 1309.0819, 1310.4838, 1312.2014, 1409.0868)



one-loop Z
: — Cj
amplitude .
]
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For convenience, express Lorentz covariance
in terms of spinor indices, [t <> &, (.

scalars: @

fermions: wa,lzd
vectors: FadﬁB = L'ap€yp T F-BEaﬁ

derivatives: D,



Mod Lorentz and flavor structures, reduce to
|4 operator classes split into 3 groups.

holomorphic < «, 5, . ..

OW = F°, F2¢?, Fy?¢, 4, ¢°¢°

anti-holomorphic <« &, 3, . ..

O = F%, F*¢*, FyP¢, ¢, ¥*¢°

non-holomorphic < o, &, 3, 5, . ..

O™ = 4*p?, Py¢’D, ¢*D?, ¢°
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X = no diagram
X = cancels!

(h)
Oj

(B)
Oj

(n)
Oj

X | X | X | X .
x| x holomorphic
o) : e
i non-renormalization
X | X X
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— X | X
O .
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X X
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X X X | YuYde| X X X | YuYde| X X X
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A critical clue for the underlying mechanism:

“impurities” in

holomorphic a YuYd, YulYe
non-renormalization

which are spurions for holomorphy violation,

Lsm D Yuqhu® + yagh'd® + ylhle



With no obvious symmetry, Manohar et. al
conjectured “hidden” holomorphy of the SM.



With no obvious symmetry, Manohar et. al
conjectured “hidden” holomorphy of the SM.

As we will see, this is simply the result of:

) unitarity
&

ii) helicity



With no obvious symmetry, Manohar et. al
conjectured “hidden” holomorphy of the SM.

As we will see, this is simply the result of:

) unitarity
&
ii) helicity (4D + on-shell)!
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We derive one-loop hon-renormalization
theorems for general 4D QFTs.

Our proof centers on a gauge invariant, field
reparameterization invariant observable:

A — on-shell amplitude!
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total number total helicity
of particles of particles

w(A



W, W monotonically increase when tacking
onh new vectors, fermions, and scalars.

An =1
l 1< AR<1

0 < Aw, Aw < 2
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definition of operator weight
w(O) = min{w(A)} = n(O) — h(O)

W(O) = min{w(A)} = n(O) + h(O)

/ 7N

marginalize total number total helicity
over all A¥0 of particles of particles
involving O created by O created by O



field operator
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new non-renormalization theorem

Leading irrelevant deformation of a 4D QFT
with marginal interactions satisfies:

O; cannot be renormalized by O; of
greater weight or anti-weight.

%j:() if w; <w; or w; < W,




dimension 6

dimension 5
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proof of new non-
renormalization theorems



) unitarity

loop

running
coupling

!

physical

discontinuity

No cut means no running.



ii) helicity

>:< ><+\ o
g - g / \

— ()  (on-shell, renormalizable)

Feynman diagrams exist, but vanish on-shell!



tree amplitudes

At renormalizable level, nearly every n -point
tree amplitude A,, satisfies

Wy, Wy, >4  for n >4

Weights monotonically increase, so it suffices
to consider all w4 < 4 amplitudes.



Most w4 = 1, 3 amplitudes do not have any
corresponding Feynman diagrames.

0 = A(FTFTFYg) = A(FTFTyEyt)
= A(FTF Y TyT) = A(FTy Ty~ ¢)
= A(WpT TP,

Most w4 = 0, 2 amplitudes have Feynman
diagrams but vanish on-shell.

0=A(FtFYFYF®) = A(FTFHyty)
= A(FTF*¢ ¢) = A(FryTtg).



Lastly, we have three non-zero “exceptional”
diagrams with wy < 4 .

ATy TpTyT) =

AW P o) =

AF*609) = ol m-d
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In SM, exceptional diagram is generated...

q q



... but not in the holomorphic 2HDM.

q q



... but not in the holomorphic 2HDM.

q q

C C
U o d
mass insertion renders

divergence finite



Since weights cannot decrease from adding
particles, we find that

Wy, Wy, >4 for n >4

mod the exceptional amplitudes discussed.

Next, we consider one-loop amplitudes...



one-loop amplitudes

divergent

piece 1 \/\/
e

¢ /\/\

Al.oop Az
unitarity
l cut TLf,;:TLj—FTLk—ZL
hi = hj + hy

w; = w; + wg — 4






tree amplitude with tree amplitude with
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tree amplitude
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tree amplitude with tree amplitude with
insertion of (O insertion of O

renormalizable

Ws: = W QED. tree amplitude
Y (wy, > 4)



Caveat: we've dropped 3-point contributions,
which vanish in dim reg but are IR divergent.

So cyv = CIR, but we can show cig = 0
since there aren’t IR divergent real emission
diagrams for w; < w; or w; < W .



(back to)
standard model
effective field theory
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X = no diagram
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X = no diagram

X = cancels! (h) (h) (n)
O; O; O;
() - X non-renormalization
O; theorems
o™ | i =0 A A
if i : ‘
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X | x x| x| x x| |x




What about higher loop order?

Helicity selection rules fail at finite one-loop.

Non-renormalization should fail at two-loop!



conclusions

* New non-renormalization theorems arise
from unitarity and helicity in 4D QFTs.

* Fully explains curious zeros in the RG of
the SM EFT, all without off-shell symmetry.

* Our proof strongly suggests that observed
non-renormalization will fail at higher loop!



thank you!



