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General Overview

N massless particles, momenta k,, a € A={1,2,...,N}.

Scattering Equations:

k, -k

E . b:O, 2, € C, a€A.
Za_Zb

be A

b#a

N equationsin N variables, but Moebius invariant, so there

mustbe 3 relations between the equations and so, after fixing
3 ofthe z,, thereare N—3 equationsin N—3 variables.

Typically there are (N—3)! solutions.

2]



equivalent to the polynomial form:

Y kizs=0, 2<m<N-2

SCA
|S[=m

where for S C A, kg = Z kb, Zg = H Zas

besS acS

N—3 equationsin N variables, but Moebius invariant, so
after fixing 3 ofthe z,, thereare N—3 equationsin N—3 variables.

Then have polynomials of degree 1 to N—3 implying (N—3)! solns.

Note the coefficients in the polynomials are exactly all the
Mandelstam variables #7%.

® Linearin each 2, separately, facilitating solution.



General Obijective:

Cachazo, He and Yuan and others have found expressions

for tree amplitudes in massless theories as integrals of rational
functions of the 2, and the momenta, around poles at solutions of
the scattering equations. These integrals are hence just sums
over the solutions and thus, necessarily, rational functions of
the coefficients in the scattering equations.

The prescription is fundamentally one of attaching an algebraic
expression to the scattering equations, or the zero-dimensional
variety that they describe. The integral is somewhat illusory.
Our objective is to understand the CHY expressions, etc.,

in this sense, in terms of natural algebraic objects attached to

this "scattering variety".
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The Scattering Equations

massless momenta k, labelled by a € A.

Al =N A=1{1,2,...,N}

Scattering Equations:

k, -k
E . b:O, a € A.
be A “a 7 b
b#a

N equationsin N variables z, € C,

[SE]

but [SE] are Moebius invariant, so solutions determined up to

az, + 0
VZg + 0

2o

and only N—3 of the [SE] areindependent.

[5]



Moebius Invariance
After fixing Moebius invariance (e.g. 21 = 00,20 = 1,2y =0),

typically the [SE] have (N—3)! solutions. Tree amplitudes are
expressed effectively as a sum over the solutions to the [SE].

Consider 2y Ot
Uz, k) = H(Za — Zb)_ka'kb “7 vzato

a<b

is Moebius invariant, provided that k; =0, > _,k,=0.

o — _faU7 fa(zv k) - Z b fo

0z, —~ 2o — 2
b+#a

implying that the system of equations f, =0,a € A [SE]

is Moebius invariant, and subject to the 3 relations:

Zfa:(), Zzafa:O, ZZCQL]CQZO.

acA acA acA



Tree Amplitudes

An = /\IJN(Z,/{7€>H’5 (fu(2, k) H O _CZZH)?/dw,

acA acA

R ACGLR Sl 145 e

acA
[Cachazo He Yuan]

dz1dzodzy

(21 — 22)(22 — 2n) (21 — 2n)

N-1
H5 fa(z,k)) = (21 — 22) (22 — 2n) (21 — 2N H5 fa(z,k)) dw =
a=2

O encircles the solutions of f,(z,k) =0 and ¥, is Moebius invariant.
[Note that we have fixed an order on A ; we have to sum over orderings.]
CHY proposed forms of ¥y for massless scalar ¢°, Yang-Mills and gravity
in arbitrary space-time dimension. For massless ¢°, ¥y = 1.

These have been proved for ¢* and Yang-Mills, using a BCFVV approach,

. 7
and extended to massive ¢°. [DG] .



Tree Amplitudes

| dz,
AN B jé(:)qjN<Zv k7 €>g fa<za k) H (Za o Za+1)2/dw

acA

For massless ¢°,
Uy =1.

For Yang-Mills and gravity, ¥ isa polynomialin

ka'kb Ea'kb €q * €p

20 — 21 20 — 21 20 — 21
where ¢, are polarizations, and which can be described quite

simply in terms of a Pfaffian, multiplied by

H(Za — Za+1>n7

acA

where n =1 for Yang-Mills, and n = 2 for gravity.



Four-point Scalar Tree Amplitude

N =4 21=00, 20=1, z3 =12, 24 = 0.

ks ko k3-k
3 K2 | Ry F

z—1 z

fg(Z, k) —

dz
A= 7{9 f3(z, k)(1 — 2)22°

B ]{ dz
N o [kg ckoz + k3 - k’4(2 — 1)](2 — 1)Z’

ks - kq 1 1
= =-2(-+=>],
k3°k4]€3°]€2 S t

ks ky
ks - ki

oy —

s = (kz+ky)?, t = (ko+ks3)?



History: string theory

14
XH(z) =a" —ipflog z + i %z_”,
n=#0 "
AXH(z .
Prz) =i B St =

n

(: P(2)*:) = constant [Virasoro conditions]
Fairlie and Roberts [1972]
o (z) = —i Z ktlog(z — z,),

acA
dxh(z) K
1 _ _ a
Piz) =i dz Z z— 2
acA
ko -k
p(z)P =Y " —0. [identically]

[10]



DUAL MODELS WITHOUT TACHYONS -

A NEW APPROACH

D.B.Fairlie and D.E.Roberts

Department of Mathematics, University of Durham, England.

ABSTRACT

The intrinsic surface Lagrangian for the dual model is investigated.
Solutions to the minimisation problem are found in which the ground state
scalars have zero mass. The connection between coordinates on the suriface
and the momenta of the particles is explicit in this model, and manifests
the homogeneous Lorentz transformations on the momenta as SL(2,C)

transformations on the coordinates.




If  pz)?*= Z Ko K =0 identically,

AR CE)

kz =0 a € A [no double poles]
k, -k
falz, k) = Z 2 =0 ac A [no single poles]
giA Za " b

These conditions are equivalentto p(z)? = 0. [Liouville]
Gross and Mende [1987]

fu(z,k) =0,a € A, are stationary phase conditions for string

integrand

Uz, k) = [ [(za = 2) "%, fulz k)= -U"

a<b

oU
0z,

determining high-energy behavior.

[11]



Polynomial Form for the Scattering Equations

Forasubset S C A, define

]CSZZ]%, ZS:HZaa

be S acsS

then the scattering equations

k, -k

y =0, ac€A [SE]
Za - Zb

be A

b#a

are equivalent to the homogeneous polynomial equations

Y kizs=0, 2<m<N-2 [PSE]
SCA
|S|=m
where the sum is over all N subsets S C A with m
m!(N —m)!

elements.

[12]



Proof of the Polynomial Form for the Scattering Equations

The scattering equations are equivalent to p(z)> = 0,and so to

the vanishing of

F(z)=2p(=) [z = 2) = > 2ka-ko [ [ (- — 2)

ceA a,be A ccA

c#a,b
N-—2
= E LV —m—2 E 2U E ]{%
m=0 UCA ScU
Ul=m 15]=2

where U = {b € A:b¢ U}. Sothe [SE] are equivalent to the
vanishing of

=Y kizs=0, 2<m<N-2

SCA
|S|=m

; 2 1.2 1.2
since E kg = ki = k.
ScU
51=2

[13]



Polynomial Form: partially fixing Moebius invariance

Set 2 — o0, zy — 0, using that h,, is linear in each z, individually,

.l
By = lim —= = Z k%lzg S1=SU{l}
aTee A ScAl
|S|=m
1
2
- % Z klal...am caray -+ - Ram)

ai1,a9,..., ameA’
G; uneq.

A/ = {a ~ A . a ?é ]-, N}’ klalag...am — k1+ka1+ka2+‘ : ‘—i_kam’

h,, isa homogeneous polynomial of degree m in 2, z3,...,2y_1,
linear in each of the 2, individually. The scattering equations are
are equivalent to the N—3 equations h,, =0, 1 <m < N-3.
Typically, they determine (N—3)! solutions for the ratios of the z,.
[Bezout's Theorem]

[14]



Amplitudes in terms of Polynomial Constriants

N-2

1 dz
An = 7{ Un(z, k . (24 — 2p) = /dw.
0 ( >%_[2 hon(2, k) 1:[5 1;[4 (20 = Zat1)?
Taking z; — oo, 2 fixed, zy — 0,
N | N2 dz
Ay — 7{ Uy (2, k)2 (20 — ) o0at1
o “N-1 m=1 hm(Z, k> 2<a<1b_£]\7 1 a=2 <Za N Za+1)

Za+1

\PN Z,]{ i
n Z le(J(z,)k) H o« 112 Za

solutions 2<a<b<N-1

J(z, k) = —de

1 Oh,,
aZa/ 1§m§N—3 .
3<a<N-1

[15]



Solutions to the Scattering Equations

o N =14
h1:k222—|—k1323 O, 23/22: 2//{?13— k3°k4/k3'k1 = Zx-
e N=5) write (z,y,2) = (29, 23, 24)

h1:k2:1:+k3y+k z:O,

Eliminating z yields a quadratic for y/z,
with equal roots iff the five momenta lie in a 3-space

(i.e. the 3-momenta are coplanar).



hi =ax 4+ by + cz =0,
hy = Ayz + Bxz + Cxy = 0.

eliminating z yields the quadratic:
Cby* 4 (Bb + Cc — Aa)yz + Bez* = 0.

hi=ax+by+cz=0,
hy = (Bz + Cy)x + Ayz = 0.

a by +cz| a ax + by + cz RGO
Bz+Cy Ayz | |Bz+Cy Ayz+ Bxz+ Cxy| |hY hy
Oh, 0?h,,
where h; = . etc. Note h, ' = 9 0.
O |t h| _[ng ng| (B b
9z W% ho| — |hg hz| T {hzr by T

[16]



o N=6 write (x,y,z,u) = (22, 23, 24, 25)

hi = k22:13 + k23y + ki + /-c2 u = 0,

hs = k1234xyz + k1235:z:yu + k1245xzu + k1345yzu = 0.

eliminating z,y yields a sextic for z/u. This can be written

K b hY hy 0 0
he kS K hy 0 0
he hE hY hy O 0
0 0 K™ ht B h
0 0 K hi K hy
0 0 hi¥ KRl h

he hy

compare |, ,
2 2

[17]



Write h,, = a,2y+b,a+cy+d,, m=1,23, for N =5.

Zlﬁhl = a1x2y + bliCQ +cy  + d1
rhy = a2x2y + b2$2 + oy 4 doy
J?hg = a3x2y + bg$2 + c3y  + dg

hi = amry + br + iy + dy

ho = asxry + box + coy + do

hs = asry + bsx + c3y + ds

ai b1 C1 d1 0 0 hfy h‘f h?{ hl 0 0

a9 bQ Co dg 0 0 hmy hx hy h2 0 0

3 (a3 bg C3 dg 0 0 o hxy hx hy h 0 0

100 a by dy| T oowmwh1
0 0 a9 bQ (&) d2 0 0 hxy hx hy h2

0 0 as b3 C3 d3 0 0 hxy hx hy hg

18]
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Moebius Transformations and the Polynomial Form

It is straightforward to show that

Z i"\'me ;7”_—2? (—e)" ﬁm—r(za%
hm(Aza) — )\mhm(za),
ﬁm(l/za) — ;LN_m<Za>/ZA.

Combining translations and inversions:

3 Za N_m—Qﬁn—%T-—Qﬂ " ( )II 1
m — § € Nm4r(Za .
1+ ez, rl(m — 2)! " 1+ ez,

r=0 acA

Generators of these Moebius transformations:

0 n+l1
L, — — " =0, +1
> [+ tta|. o

acA

Ly, L] = 2Ly, (Lo, L+1) = FL4y

[19]



0 1
Ly, = Z [—zﬁ}“aza + n; 2, n=0,4+1, ()

acA
is the V-fold tensor product of the single variable representation

|
N =041,

L - _Zn+1di +
which, acting on polynomials in z, has Moebius spin 3, and is
reducible but not decomposable; it has a two-dimensional
invariant subspace consisting of functions ggg in .

Correspondingly, the representation (x), acting on polynomials

in the z,, has a 2"¥-dimensional invariant subspace consisting of
polynomials linear in the z,taken separately, which is its largest
finite-dimensional invariant subspace. This subspace decomposes
into: one representation of spin ;V; N—1 representations of

spin sN—1; N (N -3) representations of spin 1N -2, etc. 20)



Itis the ;N (N —3) representations of spin N —2 that provide
exactly the right number of equations, N—3, to determine a finite
set of solutions, up to Moebius invariance, typically (N—3)!.

The representation of spin NV and the N—1 representations of spin

1N -1 are over-determined so that, typically, there are no solutions;
the remaining representations of spin ;N—n,3 < n < i{N, determine
varieties of dimension 2n—4.

The representations of spin N—2 all correspond to scattering

equations for some light-like momenta. Thatis, if
SOmZZSOUZU, 2<m< N =2,
|U|=m

is a basis for a Moebius representation of spin {N—2, then

oy = k?], for some k,,a € A, with kg =0, Z k,=0

acA 21]



If

is a basis for a Moebius representation of spin :N—2, then

oy = k?], for some k,,a € A, with kﬁ =0, Z k, =0,

acA

where k, € R~ for some sufficiently large D,e.g. D > N—1.
The invariants for such k, have exactly :N(N—3) degrees of freedom.

which is the number of Moebius spin representations ;N —2.

e Itis unclear whether the representation of Moebius spin {N—n
and dimension N—2n+1,n > 2, have interesting interpretations.

e We can also consider representing Moebius transformations by
Ly=> cu [ A O Mt ”} for some M > 1 corresponding to

polynomials in the z, of degree M . Interpetation unclear. 22



n=3 Moebius spin 1 N-3.

Multipletis ¢,, = L ?p3/(m—3)!, 3 <m < N-3,where

Y3 = E Aabczazbzc

a<b<c

)\abc — )\acb — )\bcaa )\aab — O; Z )\abc = 0.

om= Y Aszs,  As= Y Au.

SCA ucs
|S|=m |U[=3

The equations ¢,, =0, 3 <m < N-3, are equivalent to

Z )\abc _ 07

a,b,c (Z - Za) <Z o Zb)(z — Zc)

and so also equivalent to

)\abc
= 0, a €A
; (20 — 2)(2a — 2c)

[23]



One-Loop Scattering Equations

Pi(v,m) = p'+ > kiC(v — va)

acA
C(v+1)=C((v)+2n(r); C(v+7)=C((v) —2mi+ 2n(7)T.

P*(v, 1) is defined on the torus provided that > =0

aEA
Pt(v+1,7)= P (v,7), Pt (v +71,7) = P (v, 7).

In terms of the Weierstrass function ¢

=P+ K — ) = R+ = Zkﬂp” o)

acA aeA Z/ ( a)

P(v,7)* has no double poles provided that k? = 0, and no single
poles provided that the genus scattering equations hold:

/ !/
zk.ka+2ka-kb@(”a>+p<”b> 0, acA
2 G — o)

[24]



In that case, P(v,7)* = k* and so vanishes if, additionally, &> = 0.

These equations also have a polynomial form in terms of p(v,), '(v.),

1
Zk'ksm:(), Zk'ks*m:§ y S;/fa'/%*@;@s, 2<m < N-—1,
|15|=1 |Sl=m |S|=m—1 aeS

where S is the complementof S in A.

These equations, together with momentum conservation,
are equivalent to a second polynomial form:

S kekaghor=— Y kou+Z Y ke =2 > ke

\Ul=m qeU |U|=m+2 \U|=m |U|=m—1

1
+ >N keckglolor, 0<m<N-1
Ul=m—1 apel

[25]



Four-Dimensional Space-Time [after CHY unpublished]

ky
pi(z) = Zz_z

acA

ﬁ”(z)zp“(z)H z— 2, Zk“H z— z)

acA acA be A
b#a

e [ P3(2) —ﬁl‘”(?«’)]

_pl—l—iQ(Z) ﬁ(H—B(Z)

PP0(2) = P(2) £9°(2), 97P(2) =0 (2) £ip*(2)

=

&
|

3>

() =0 implies P (2)p"(z) = pI(2)pt(2).

PPz _ PR m(2)

f— e say,

pir(z)  pP(z)  m(2)
where 7!(z),7%(z) are polynomials with no common factor. Then

) =), ) = 7))

P’ (z) =7 (2)7(2) —p T (z) = m(2)7 (), 126]




p(z) = pl(2) Hz—za Zk“Hz—zb

acA acA be A

b#a
~0—3 ~1—12 1
. pC(z) =D (Z)] [W (2)
"2)o, = NER, . =
p ( ) It [_p1+ 2(2) p0+3(z)
p"(z) is a polynomial of degree N—2 [momentum conservation]
m'(z) is a polynomial of degree n—1,say, n—1 < N-2;
7/ (z) is a polynomial of degree N—n—1.
n is a topological attribute of the solution, and is the number of

negative helicities in the gauge theory context.

If ' C A isany subset with |[N| =n,and k, = 7,7l , then for some )\,

ZA _Zs Zm’

> 9
seN repP

equations of twistor stringtheoryforn — and N—n + heliticities. @27

reP=N,seN,



If D > N, the (N-3)! solutions to the scattering equations

ka ¢ k

Y =0, a€A [SE]
Za - Zb

be A

b#a

or, equivalently,
Y kizg=0, 2<m<N-2 [PSE]
SCA
|S|=m
can be continued into one another by deformation of the momenta, %,

But for D = 4, they splitinto N—3 classes, corresponding to the

solutions of the twistor equations

A, B B A\, =
Wrzz)\ T, WS__ZWT)\,S(ZT_ZS), reP=N,seN,

seN s(2r = 2) reP

wheren = |N| and 2 <n < N—2. The number of solutions is given by
N-2

the Eulerian number <N ; 3>, Z <N ; 3> = (N —3)! -

n — n— 2
n:



