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General	Overview
N massless particles, momenta ka, a ∈ A = {1, 2, . . . , N}.

Scattering Equations:∑
b∈A
b ̸=a

ka · kb
za − zb

= 0, za ∈ C, a ∈ A.

N equations in N variables, but Moebius invariant, so there
must be 3 relations between the equations and so, after fixing
3 of the za , there areN−3 equations inN−3 variables.

Typically there are (N−3)! solutions.
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equivalent to the polynomial form:∑
S⊂A
|S|=m

k2S zS = 0, 2 ≤ m ≤ N − 2,

where for S ⊂ A, kS =
∑
b∈S

kb, zS =
∏
a∈S

za,

N−3 equations in N variables, but Moebius invariant, so
after fixing 3 of the za , there areN−3 equations inN−3 variables.

Then have polynomials of degree 1 toN−3 implying (N−3)! solns.

Note the coefficients in the polynomials are exactly all the
Mandelstam variables k2S .

• Linear in each za separately, facilitating solution.



General Objective:

Cachazo, He and Yuan and others have found expressions

for tree amplitudes in massless theories as integrals of rational

functions of the za and themomenta, around poles at solutions of

the scattering equations. These integrals are hence just sums

over the solutions and thus, necessarily, rational functions of

the coefficients in the scattering equations.

The prescription is fundamentally one of attaching an algebraic

expression to the scattering equations, or the zero-dimensional

variety that they describe. The integral is somewhat illusory.

Our objective is to understand the CHY expressions, etc.,

in this sense, in terms of natural algebraic objects attached to

this "scattering variety''.
[3]
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The Scattering Equations

massless momenta ka labelled by a ∈ A. k2a = 0

|A| = N A = {1, 2, . . . , N}
∑
a∈A

ka = 0

Scattering Equations:∑
b∈A
b ̸=a

ka · kb
za − zb

= 0, a ∈ A. [SE]

N equations in N variables za ∈ C,

but [SE] are Moebius invariant, so solutions determined up to

za 7→
αza + β

γza + δ

and onlyN−3 of the [SE] are independent.

[5]



Moebius Invariance
After fixing Moebius invariance (e.g. z1 = ∞, z2 = 1, zN = 0 ),

typically the [SE] have (N−3)! solutions. Tree amplitudes are
expressed effectively as a sum over the solutions to the [SE].

Consider za 7→ αza+β
γza+δ

U(z, k) =
∏
a<b

(za − zb)
−ka·kb

is Moebius invariant, provided that k2a = 0,
∑

a∈A ka = 0.

∂U

∂za
= −faU, fa(z, k) =

∑
b∈A
b ̸=a

ka · kb
za − zb

implying that the system of equations fa = 0, a ∈ A [SE]

is Moebius invariant, and subject to the 3 relations:∑
a∈A

fa = 0,
∑
a∈A

zafa = 0,
∑
a∈A

z2afa = 0.
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Tree Amplitudes

AN =

∫
ΨN(z, k, ϵ)

∏
a∈A

′
δ (fa(z, k))

∏
a∈A

dza
(za − za+1)2

/
dω,

=

∮
O
ΨN(z, k, ϵ)

∏
a∈A

′ 1

fa(z, k)

∏
a∈A

dza
(za − za+1)2

/
dω

[Cachazo He Yuan]

∏
a∈A

′
δ (fa(z, k)) = (z1 − z2)(z2 − zN)(z1 − zN)

N−1∏
a=2

δ (fa(z, k)) , dω =
dz1dz2dzN

(z1 − z2)(z2 − zN)(z1 − zN)

O encircles the solutions of fa(z, k) = 0 and ΨN is Moebius invariant.

[Note that we have fixed an order on A ; we have to sum over orderings.]

CHY proposed forms of ΨN for massless scalar ϕ3, Yang-Mills and gravity

in arbitrary space-time dimension. For massless ϕ3, ΨN = 1.

These have been proved for ϕ3 and Yang-Mills, using a BCFW approach,

and extended tomassive ϕ3. [DG]
[7]



Tree Amplitudes

AN =

∮
O
ΨN(z, k, ϵ)

∏
a∈A

′ 1

fa(z, k)

∏
a∈A

dza
(za − za+1)2

/
dω

For massless ϕ3,

ΨN = 1.

For Yang-Mills and gravity, ΨN is a polynomial in

ka · kb
za − zb

,
ϵa · kb
za − zb

,
ϵa · ϵb
za − zb

,

where ϵa are polarizations, and which can be described quite

simply in terms of a Pfaffian, multiplied by∏
a∈A

(za − za+1)
n,

where n = 1 for Yang-Mills, and n = 2 for gravity.
[8]



Four-point Scalar Tree Amplitude
N = 4 z1 = ∞, z2 = 1, z3 = z, z4 = 0.

f3(z, k) =
k3 · k2
z − 1

+
k3 · k4
z

A4 =

∮
O

dz

f3(z, k)(1− z)2z2

=

∮
z=z∗

dz

[k3 · k2z + k3 · k4(z − 1)](z − 1)z
, z∗ = −k3 · k4

k3 · k1

=
k3 · k1

k3 · k4 k3 · k2
= −2

(
1

s
+

1

t

)
,

s = (k3+k4)
2, t = (k2+k3)

2

[9]



History: string theory

Xµ(z) = xµ − ipµ log z + i
∑
n ̸=0

aµn
n
z−n,

P µ(z) = i
dXµ(z)

dz
=
∑
n

aµnz
−n−1, aµ0 = pµ,

⟨: P (z)2 :⟩ = constant [Virasoro conditions]

Fairlie and Roberts [1972]

xµ(z) = −i
∑
a∈A

kµa log(z − za),

pµ(z) = i
dxµ(z)

dz
=
∑
a∈A

kµa
z − za

.

p(z)2 =
∑
a,b∈A

ka · kb
(z − za)(z − zb)

= 0. [identically]

[10]





If p(z)2 =
∑
a,b∈A

ka · kb
(z − za)(z − zb)

= 0 identically,

k2a = 0 a ∈ A [no double poles]

fa(z, k) =
∑
b∈A
b ̸=a

ka · kb
za − zb

= 0 a ∈ A [no single poles]

These conditions are equivalent to p(z)2 = 0. [Liouville]

Gross andMende [1987]

fa(z, k) = 0, a ∈ A, are stationary phase conditions for string

integrand

U(z, k) =
∏
a<b

(za − zb)
−ka·kb, fa(z, k) = −U−1∂U

∂za

determining high-energy behavior. [11]



Polynomial Form for the Scattering Equations

For a subset S ⊂ A, define

kS =
∑
b∈S

kb, zS =
∏
a∈S

za,

then the scattering equations

∑
b∈A
b ̸=a

ka · kb
za − zb

= 0, a ∈ A. [SE]

are equivalent to the homogeneous polynomial equations∑
S⊂A
|S|=m

k2S zS = 0, 2 ≤ m ≤ N − 2, [PSE]

where the sum is over all N !
m!(N −m)!

subsets S ⊂ A with m

elements.
[12]



Proof of the Polynomial Form for the Scattering Equations

The scattering equations are equivalent to p(z)2 = 0, and so to
the vanishing of

F (z) = 2p(z)2
∏
c∈A

(z − zc) =
∑
a,b∈A

2ka · kb
∏
c∈A
c̸=a,b

(z − zb)

=

N−2∑
m=0

zN−m−2
∑
U⊂A
|U |=m

zU
∑
S⊂U
|S|=2

k2S

where U = {b ∈ A : b /∈ U}. So the [SE] are equivalent to the

vanishing of

h̃m =
∑
S⊂A
|S|=m

k2S zS = 0, 2 ≤ m ≤ N − 2,

since
∑
S⊂U
|S|=2

k2S = k2
U
= k2U .

[13]



Polynomial Form: partially fixing Moebius invariance

Set z1 → ∞, zN → 0, using that h̃m is linear in each za individually,

hm = lim
z1→∞

h̃m+1

z1
=

∑
S⊂A′
|S|=m

k2S1zS S1 = S ∪ {1}

=
1

m!

∑
a1,a2,...,am∈A′

ai uneq.

k21a1...am za1za2 . . . zam,

A′ = {a ∈ A : a ̸= 1, N}, k1a1a2...am = k1+ka1+ka2+. . .+kam,

hm is a homogeneous polynomial of degree m in z2, z3, . . . , zN−1,

linear in each of the za individually. The scattering equations are

are equivalent to the N−3 equations hm = 0, 1 ≤ m ≤ N−3.

Typically, they determine (N−3)! solutions for the ratios of the za.
[Bezout's Theorem]
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Amplitudes in terms of Polynomial Constriants

AN =

∮
O
ΨN(z, k)

N−2∏
m=2

1

h̃m(z, k)

∏
a<b

(za − zb)
∏
a∈A

dza
(za − za+1)2

/
dω.

Taking z1 → ∞, z2 fixed, zN → 0 ,

AN =

∮
O
ΨN(z, k)

z2
zN−1

N−3∏
m=1

1

hm(z, k)

∏
2≤a<b≤N−1

(za − zb)

N−2∏
a=2

zadza+1

(za − za+1)2

=
∑

solutions

ΨN(z, k)

zN−1J(z, k)

∏
2≤a<b≤N−1

(za − zb)

N−2∏
a=2

za
(za − za+1)2

J(z, k) =
1

z2
det

[
∂hm

∂za

]
1≤m≤N−3
3≤a≤N−1

.

[15]



Solutions to the Scattering Equations

• N = 4

h1 = k212z2 + k213z3 = 0, z3/z2 = −k212/k
2
13 = −k3 · k4/k3 · k1 = z∗.

• N = 5 write (x, y, z) = (z2, z3, z4)

h1 = k212x + k213y + k214z = 0,

h2 = k2123xy + k2124xz + k2134yz = 0.

Eliminating x yields a quadratic for y/z,

with equal roots iff the five momenta lie in a 3-space

(i.e. the 3-momenta are coplanar).



N = 5

h1 = ax + by + cz = 0,

h2 = Ayz +Bxz + Cxy = 0.

eliminating x yields the quadratic:

Cby2 + (Bb + Cc− Aa)yz +Bcz2 = 0.

h1 = a x + by + cz = 0,

h2 = (Bz + Cy)x + Ayz = 0.

∣∣∣∣ a by + cz
Bz + Cy Ayz

∣∣∣∣ = ∣∣∣∣ a ax + by + cz
Bz + Cy Ayz +Bxz + Cxy

∣∣∣∣ = ∣∣∣∣hx
1 h1

hx
2 h2

∣∣∣∣
where hx

m =
∂hm

∂x
, etc. Note hxx

m =
∂2hm

∂x2
= 0.

∂

∂x

∣∣∣∣hx
1 h1

hx
2 h2

∣∣∣∣ = ∣∣∣∣hx
1 hx

1

hx
2 hx

2

∣∣∣∣ + ∣∣∣∣hxx
1 h1

hxx
2 h2

∣∣∣∣ = 0.

[16]



• N = 6 write (x, y, z, u) = (z2, z3, z4, z5)

h1 = k212x + k213y + k214z + k215u = 0,

h2 = k2123xy + k2124xz + k2134yz + k2125xu + k2135yu + k2145zu = 0.

h3 = k21234xyz + k21235xyu + k21245xzu + k21345yzu = 0.

eliminating x, y yields a sextic for z/u. This can be written∣∣∣∣∣∣∣∣∣∣∣∣

hxy
1 hx

1 hy
1 h1 0 0

hxy
2 hx

2 hy
2 h2 0 0

hxy
3 hx

3 hy
3 h3 0 0

0 0 hxy
1 hx

1 hy
1 h1

0 0 hxy
2 hx

2 hy
2 h2

0 0 hxy
3 hx

3 hy
3 h3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, hxy

m =
∂2hm

∂x∂y
.

compare
∣∣∣∣hx

1 h1

hx
2 h2

∣∣∣∣ = 0 for N = 5.

[17]



Write hm = amxy+bmx+cmy+dm, m = 1, 2, 3, for N = 5.

xh1 = a1x
2y + b1x

2 + c1y + d1
xh2 = a2x

2y + b2x
2 + c2y + d2

xh3 = a3x
2y + b3x

2 + c3y + d3
h1 = a1xy + b1x + c1y + d1
h2 = a2xy + b2x + c2y + d2
h3 = a3xy + b3x + c3y + d3

x3

∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1 0 0
a2 b2 c2 d2 0 0
a3 b3 c3 d3 0 0
0 0 a1 b1 c1 d1
0 0 a2 b2 c2 d2
0 0 a3 b3 c3 d3

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

hxy
1 hx

1 hy
1 h1 0 0

hxy
2 hx

2 hy
2 h2 0 0

hxy
3 hx

3 hy
3 h3 0 0

0 0 hxy
1 hx

1 hy
1 h1

0 0 hxy
2 hx

2 hy
2 h2

0 0 hxy
3 hx

3 hy
3 h3

∣∣∣∣∣∣∣∣∣∣∣∣
[18]



1 h1 h2 h3 h4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x hx
1 hx

2 hx
3 hx

4 h1 h2 h3 h4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y hy
1 hy

2 hy
3 hy

4 0 0 0 0 h1 h2 h3 h4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z hz
1 hz

2 hz
3 hz

4 0 0 0 0 0 0 0 0 h1 h2 h3 h4 0 0 0 0 0 0 0 0 0 0 0 0

xy hxy
1 hxy

2 hxy
3 hxy

4 hy
1 hy

2 hy
3 hy

4 hx
1 hx

2 hx
3 hx

4 0 0 0 0 h1 h2 h3 h4 0 0 0 0 0 0 0 0

xz hzx
1 hzx

2 hzx
3 hzx

4 hz
1 hz

2 hz
3 hz

4 0 0 0 0 hx
1 hx

2 hx
3 hx

4 0 0 0 0 h1 h2 h3 h4 0 0 0 0

yz hyz
1 hyz

2 hyz
3 hyz

4 0 0 0 0 hz
1 hz

2 hz
3 hz

4 hy
1 hy

2 hy
3 hy

4 0 0 0 0 0 0 0 0 h1 h2 h3 h4

xyz h∗
1 h∗

2 h∗
3 h∗

4 hyz
1 hyz

2 hyz
3 hyz

4 hzx
1 hzx

2 hzx
3 hzx

4 hxy
1 hxy

2 hxy
3 hxy

4 hz
1 hz

2 hz
3 hz

4 hy
1 hy

2 hy
3 hy

4 hx
1 hx

2 hx
3 hx

4

x2 0 0 0 0 hx
1 hx

2 hx
3 hx

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y2 0 0 0 0 0 0 0 0 hy
1 hy

2 hy
3 hy

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

z2 0 0 0 0 0 0 0 0 0 0 0 0 hz
1 hz

2 hz
3 hz

4 0 0 0 0 0 0 0 0 0 0 0 0

x2y 0 0 0 0 hxy
1 hxy

2 hxy
3 hxy

4 0 0 0 0 0 0 0 0 hx
1 hx

2 hx
3 hx

4 0 0 0 0 0 0 0 0

x2z 0 0 0 0 hzx
1 hzx

2 hzx
3 hzx

4 0 0 0 0 0 0 0 0 0 0 0 0 hx
1 hx

2 hx
3 hx

4 0 0 0 0

y2x 0 0 0 0 0 0 0 0 hxy
1 hxy

2 hxy
3 hxy

4 0 0 0 0 hy
1 hy

2 hy
3 hy

4 0 0 0 0 0 0 0 0

y2z 0 0 0 0 0 0 0 0 hyz
1 hyz

2 hyz
3 hyz

4 0 0 0 0 0 0 0 0 0 0 0 0 hy
1 hy

2 hy
3 hy

4

z2x 0 0 0 0 0 0 0 0 0 0 0 0 hzx
1 hzx

2 hzx
3 hzx

4 0 0 0 0 hz
1 hz

2 hz
3 hz

4 0 0 0 0

z2y 0 0 0 0 0 0 0 0 0 0 0 0 hyz
1 hyz

2 hyz
3 hyz

4 0 0 0 0 0 0 0 0 hz
1 hz

2 hz
3 hz

4

x2yz 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4 0 0 0 0 0 0 0 0 hzx
1 hzx

2 hzx
3 hzx

4 hxy
1 hxy

2 hxy
3 hxy

4 0 0 0 0

xy2z 0 0 0 0 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4 0 0 0 0 hyz
1 hyz

2 hyz
3 hyz

4 0 0 0 0 hxy
1 hxy

2 hxy
3 hxy

4

xyz1 0 0 0 0 0 0 0 0 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4 0 0 0 0 hyz
1 hyz

2 hyz
3 hyz

4 hzx
1 hzx

2 hzx
3 hzx

4

x2y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 hxy
1 hxy

2 hxy
3 hxy

4 0 0 0 0 0 0 0 0

x2z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 hzx
1 hzx

2 hzx
3 hzx

4 0 0 0 0

y2z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 hyz
1 hyz

2 hyz
3 hyz

4

x2y2z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4 0 0 0 0 0 0 0 0

x2yz2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4 0 0 0 0

xy2z2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h∗
1 h∗

2 h∗
3 h∗

4

1



Moebius Transformations and the Polynomial Form

It is straightforward to show that

h̃m(za − ϵ) =

m−2∑
r=0

(N −m + r − 2)!

r!(N −m− 2)!
(−ϵ)r h̃m−r(za),

h̃m(λza) = λmh̃m(za),

h̃m(1/za) = h̃N−m(za)/zA.

Combining translations and inversions:

h̃m

(
za

1 + ϵza

)
=

N−m−2∑
r=0

(m + r − 2)!

r!(m− 2)!
ϵr h̃m+r(za)

∏
a∈A

1

1 + ϵza
.

Generators of these Moebius transformations:

Ln =
∑
a∈A

[
−zn+1

a

∂

∂za
+
n + 1

2
zna

]
, n = 0,±1,

[L1, L−1] = 2L0, [L0, L±1] = ∓L±1 [19]



Ln =
∑
a∈A

[
−zn+1

a

∂

∂za
+
n + 1

2
zna

]
, n = 0,±1, (∗)

is theN-fold tensor product of the single variable representation

Ln = −zn+1 d

dz
+
n + 1

2
zn, n = 0,±1,

which, acting on polynomials in z, has Moebius spin 1
2, and is

reducible but not decomposable; it has a two-dimensional
invariant subspace consisting of functions ggg in z.

Correspondingly, the representation (∗), acting on polynomials
in the za, has a 2N-dimensional invariant subspace consisting of
polynomials linear in the zataken separately, which is its largest
finite-dimensional invariant subspace. This subspace decomposes
into: one representation of spin 1

2N ; N−1 representations of
spin 1

2N−1; 1
2N(N−3) representations of spin 1

2N−2, etc. [20]



It is the 1
2N(N−3) representations of spin 1

2N−2 that provide
exactly the right number of equations, N−3 , to determine a finite
set of solutions, up toMoebius invariance, typically (N−3)! .
The representation of spin 1

2N and theN−1 representations of spin
1
2N−1 are over-determined so that, typically, there are no solutions;
the remaining representations of spin 1

2N−n, 3 ≤ n ≤ 1
2N, determine

varieties of dimension 2n−4 .

The representations of spin 1
2N−2 all correspond to scattering

equations for some light-like momenta. That is, if

φm =
∑
U⊂A
|U |=m

φUzU , 2 ≤ m ≤ N − 2,

is a basis for a Moebius representation of spin 1
2N−2 , then

φU = k2U , for some ka, a ∈ A,with k2a = 0,
∑
a∈A

ka = 0

[21]



If
φm =

∑
U⊂A
|U |=m

φUzU , 2 ≤ m ≤ N − 2,

is a basis for a Moebius representation of spin 1
2N−2 , then

φU = k2U , for some ka, a ∈ A, with k2a = 0,
∑
a∈A

ka = 0,

where ka ∈ R1,D−1 for some sufficiently largeD , e.g. D ≥ N−1 .
The invariants for such ka have exactly 1

2N(N−3) degrees of freedom.
which is the number of Moebius spin representations 1

2N−2.

• It is unclear whether the representation of Moebius spin 1
2N−n

and dimensionN−2n+1, n > 2 , have interesting interpretations.

• We can also consider representing Moebius transformations by

Ln =
∑

a∈A

[
−zn+1

a
∂
∂za

+M n+1
2 zna

]
, for someM > 1 corresponding to

polynomials in the za of degreeM . Interpetation unclear. [22]



n = 3 Moebius spin 1
2N−3.

Multiplet is φm = Lm−3
1 φ3/(m−3)! , 3 ≤ m ≤ N−3 , where

φ3 =
∑
a<b<c

λabczazbzc

λabc = λacb = λbca, λaab = 0,
∑
a

λabc = 0.

φm =
∑
S⊂A
|S|=m

λSzS, λS =
∑
U⊂S
|U |=3

λU .

The equations φm = 0, 3 ≤ m ≤ N−3, are equivalent to∑
a,b,c

λabc

(z − za)(z − zb)(z − zc)
= 0,

and so also equivalent to∑
b,c

λabc

(za − zb)(za − zc)
= 0, a ∈ A

[23]



One-Loop Scattering Equations

P µ(ν, τ ) = pµ +
∑
a∈A

kµaζ(ν − νa)

ζ(ν + 1) = ζ(ν) + 2η(τ); ζ(ν + τ) = ζ(ν)− 2πi+ 2η(τ)τ.

P µ(ν, τ ) is defined on the torus provided that
∑

a∈A ka = 0

P µ(ν + 1, τ) = P µ(ν, τ), P µ(ν + τ, τ) = P µ(ν, τ).

In terms of theWeierstrass function ℘

P µ(ν, τ ) = pµ +
∑
a∈A

kµaζ(ν − νa) = kµ +
1

2

∑
a∈A

kµa
℘′(ν) + ℘′(νa)

℘(ν)− ℘(νa)

P (ν, τ )2 has no double poles provided that k2a = 0 , and no single
poles provided that the genus scattering equations hold:

2k · ka +
∑
b̸=a

ka · kb
℘′(νa) + ℘′(νb)

℘(νa)− ℘(νb)
= 0, a ∈ A.

[24]



In that case, P (ν, τ )2 = k2 and so vanishes if, additionally, k2 = 0 .

These equations also have a polynomial form in terms of ℘(νa), ℘′(νa),

∑
|S|=1

k · kS℘S = 0,
∑
|S|=m

k · kS℘S =
1

2

∑
|S|=m−1

∑
a∈S

ka · kS℘′
a℘S, 2 ≤ m ≤ N − 1,

where S is the complement of S in A .

These equations, together with momentum conservation,
are equivalent to a second polynomial form:

∑
|U |=m

∑
a∈U

k · ka℘′
a℘U = −

∑
|U |=m+2

k2U℘U +
g2
4

∑
|U |=m

k2U℘U − g3
4

∑
|U |=m−1

k2U℘U

+
1

4

∑
|U |=m−1

∑
a,b∈U

ka · kb℘′
a℘

′
b℘U , 0 ≤ m ≤ N − 1.

[25]



Four-Dimensional Space-Time [after CHY unpublished]

pµ(z) =
∑
a∈A

kµa
z − za

p̂µ(z) = pµ(z)
∏
a∈A

(z − za) =
∑
a∈A

kµa
∏
b∈A
b ̸=a

(z − zb)

p̂(z) = p̂µ(z)σµ =

[
p̂0−3(z) −p̂1−i2(z)
−p̂1+i2(z) p̂0+3(z)

]
p̂0±3(z) = p̂0(z)± p̂3(z), p̂1±i2(z) = p̂1(z)± ip̂2(z)

p(z)2 = 0 implies p̂0−3(z)p̂0+3(z) = p̂1−i2(z)p̂1+i2(z).

p̂0−3(z)

p̂1+i2(z)
=

p̂1−i2(z)

p̂0+3(z)
= −π1(z)

π2(z)
, say,

where π1(z), π2(z) are polynomials with no common factor. Then
p̂0−3(z) = π1(z)π̄1(z), −p̂1−i2(z) = π1(z)π̄2(z),

p̂0+3(z) = π2(z)π̄2(z) −p̂1+i2(z) = π2(z)π̄1(z),
[26]



p̂µ(z) = pµ(z)
∏
a∈A

(z − za) =
∑
a∈A

kµa
∏
b∈A
b ̸=a

(z − zb)

p̂µ(z)σµ =

[
p̂0−3(z) −p̂1−i2(z)
−p̂1+i2(z) p̂0+3(z)

]
=

[
π1(z)
π2(z)

] [
π̄1(z) π̄2(z)

]
= π(z)π̄(z)T

p̂µ(z) is a polynomial of degreeN−2 [momentum conservation]

πµ(z) is a polynomial of degree n−1 , say, n−1 ≤ N−2 ;

π̄µ(z) is a polynomial of degree N−n−1 .

n is a topological attribute of the solution, and is the number of

negative helicities in the gauge theory context.

IfN ⊂ A is any subset with |N | = n , and ka = πaπ̄
T
a , then for some λa

πr =
∑
s∈N

λr

λs(zr − zs)
πs, π̄s = −

∑
r∈P

π̄r
λr

λs(zr − zs)
, r ∈ P = N , s ∈ N ,

equations of twistor string theory for n − andN−n + heliticities. [27]



IfD ≥ N , the (N−3)! solutions to the scattering equations∑
b∈A
b ̸=a

ka · kb
za − zb

= 0, a ∈ A, [SE]

or, equivalently,∑
S⊂A
|S|=m

k2S zS = 0, 2 ≤ m ≤ N − 2, [PSE]

can be continued into one another by deformation of the momenta, ka
But forD = 4 , they split intoN−3 classes, corresponding to the

solutions of the twistor equations

πr =
∑
s∈N

λr

λs(zr − zs)
πs, π̄s = −

∑
r∈P

π̄r
λr

λs(zr − zs)
, r ∈ P = N , s ∈ N ,

where n = |N | and 2 ≤ n ≤ N−2 . The number of solutions is given by

the Eulerian number
⟨N − 3

n− 2

⟩
,

N−2∑
n=2

⟨N − 3

n− 2

⟩
= (N − 3)!

[28]


