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Chapter 1

Track reconstruction

The data recorded by hadron collider experiments are very complex due to the high track den-
sity, the fact that several hadron collisions take place at each bunch crossing (pile-up), the need
to cover basically all particle momenta and directions and the unavoidable amount of passive
material in the tracking volume. Therefore, highly sophisticated and error-tolerant track finders
and track fitters are needed. This chapter covers the various steps in the tracking process:

• Translating the raw digits from the detector elements to space points.

• Associating a subset of space-points to a reconstructed track (pattern recognition).

• Momentum measurement.

• Track fitting.

• Vertex finding.

• Constrained fits.

• Alignment.

1.1 Space-point formation

1.1.1 The barycenter
Detector elements register hits from signals on pick-up electrodes induced by an electron cloud.
If the cloud induces a signal on only one electrode, the space-point precision is ∆/

√
12, where ∆

is the electrode size. It is better if the hit signal is distributed over two electrodes as illustrated in
Figure 1.1. In that case the space-point can be determined very accurately - if the pulse-heights,
Pi, on the electrodes are measured and if the width of the electron cloud is well-known.

If the signal is distributed over several electrodes, the barycenter, x = ∑xiPi/∑Pi, is a popular
estimate of the space-point. Due to the finite size electrodes, this estimate has a bias for purely
geometric reasons (the bias is largest for true impacts half way between the edge and the middle
of the electrode), but this bias can be corrected for.
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6 CHAPTER 1. TRACK RECONSTRUCTION

Figure 1.1: The geometry of a detector “hit”

1.1.2 Stereo angles

Another geometric problem is that often the hit information is provided by strips or wires where
the coordinate along the wire (the second coordinate) is unknown. A solution could be to
have every second layer of wires or strips oriented perpendicularly as illustrated in Figure 1.2
(left). This leads, however, to many “ghost hits” in a dense track environment. An often used

Figure 1.2: Ghost reduction using a small stereo angle

compromise is the choice of a small stereo angle of 20-80 mrad (Figure 1.2 right). This removes
most of the ghosts while allowing some moderate precision in the determination of the second
coordinate. Of course, the high precision coordinate is chosen in the bending plane so as to
optimize the momentum measurement.

1.1.3 Calibrations
In order to accurately reconstruct a space-point, we must know the response function, the prob-
ability distribution of induced pulse-heights for a given track impact on the surface of a detector
module. This response function can be measured with test beam probes and with the real data
themselves. However, it may vary from channel to channel and may also vary over time for a
given channel. Continuous calibrations of all the individual response functions must therefore
be carried out during the data taking.

A few examples of response functions, or parameters of those, are:

• The relationship between the measured drift time and the track distance to the wire in a
drift tube
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• The correction due to the magnetic field to the barycenter of a silicon pixel cluster

• The electronic noise level (called the pedestal) in each channel.

• The list of dead or too noisy channels.

In order to establish the R-t relation in a drift tube, the average distance, R between a track
hitting the tube and the central wire of the tube is plotted against the drift time, t, and an
appropiate function R(t) is fitted to these data.

In order to determine the Lorentz angle, the angle between the electric field and the direction of
drift of electrons and holes in a silicon strip or pixel detector submerged in a magnetic field, the
cluster size is plotted against the incident track angle and the angle at minimum size is found.

The pedestal is determined by reading out the detector without beam. Beam-induced noise is
determined by recording unpaired bunch crossings in colliders.

The list of dead or noisy channels is determined by finding holes or peaks in a histogram of hit
channels filled during a run. Such channels should be ignored, but their presence still taken into
account in clustering algorithms.

In the following, we will assume that a set of well-calibrated space-points have been measured
in the detector, and we will concentrate on interpreting them in terms of charged tracks, each
with a certain momentum and a certain production point or vertex.

1.2 Momentum measurement
The Lorentz force from a homogeneous magnetic field, B, on a moving charge, q, will bend the
charge into circular motion with a radius of curvature, ρ , in the plane perpendicular to the field.
The momentum component transverse to the field is given by:

pT = 0.3Bρ

if the momentum is measured in GeV/c, the magnetic field in Tesla and ρ in meters. This is the
basic equation of a spectrometer.

In 3D, the particle trajectory will be a helix. If the field is confined to a stretch, L, the momentum
projected on the bending plane can be found by a measurement of the bending angle, θ , or
alternatively of the sagitta, s, of the trajectory piece of arc inside the field region. This is argued
in Figure 1.3.

Let us assume that we have three measurement stations inside the magnet: One at the entrance,
one in the middle and one at the exit. They measure the coordinate x with a resolution of σ(x).
Thus the estimate of the sagitta is s = x2− x1+x3

2 and the resulting relative uncertainty on the
measured momentum due to measurement resolution is:

σ(pT )

pT
=

σ(s)
s

=

√
3
2σ(x)8pT

0.3 ·BL2
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Figure 1.3: Principle of a magnetic spectrometer. (From Christian Jorams summer student
lectures at CERN)

with pT in GeV/c, B in Tesla and L in meters. So the most important parameter is the lever arm,
L, and hereafter follows the position resolution, σ(x) and the field strength, B. Note that the
relative momentum uncertainty due to measurement resolution increases linearly with momen-
tum. So that is actually 1/p that is measured with a gaussian error. Note also that the number
of space-point measurements enters only with a square root in the momentum resolution.

Another reason for not adding too many measurement stations is that they add material in the
path of the charged particle. In a spectrometer of length L, made of a material with radiation
length X0, multiple scattering (MS) will smear the particle direction and thus contribute an
uncertainty in the transverse momentum of

∆pMS = psinθMS ≈ p ·0.0136
1
p

√
L
X0

with p in GeV/c. Since the pT -kick that the particle receives from the magnetic field is ∆pT =
0.3 ·BL, the relative momentum uncertainty due to multiple scattering is [1]:

σMS(pT )

pT
=

∆pMS

∆pT
=

0.0136
√

L
X0

0.3 ·BL
= 0.045

1
B
√

LX0

Note that this contribution is independent of p.

Thus we have the situation illustrated in Figure 1.4 where the uncertainty is dominated by
multiple scattering at low momentum and by measurement errors at high momentum. In the
ATLAS Inner Detector (which has an average of about 1 radiation length of material), the
transition happens at a transverse momentum of around 30 GeV/c.

1.3 Track parameters
The task of track reconstruction is to find the collection of hits created by the passage of each
track and to estimate its track parameters. As an example, consider a charged particle in a
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Figure 1.4: Relative momentum uncertainty. (From Christian Jorams summer student lectures
at CERN)

homogeneous magnetic field. Here the trajectory that satisfies the equations of motion is a
helix, characterized by the radius, R, the position at an arbitrary point on the helix (x0,y0,z0),
the tangential direction at the same point (given by the angles λ and α0) and a sign h indicating
which way the particle moves. Moving along the helix away from the arbitrary point by the
path length, s, we trace out the positions: x

y
z

=

 x0 +R · (cos(α0 +
hs
R · cosλ )− cosα0)

y0 +R · (sin(α0 +
hs
R · cosλ )− sinα0)

z0 + s · sinλ


The helix parameters could, however, be chosen differently and a particular point could be
chosen to start from. A popular choice is the perigee parameters, where the perigee is the point
on the helix of closest approach to the beam-axis ( z-axis) as illustrated in Figure 1.5. The

Figure 1.5: Perigee parameters. Figure by A. Salzburger.

chosen parameters are:
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• The signed distance of closest approach, d0, where the sign gives the sense of rotation.

• The coordinate along the z-axis at this point.

• The azimuthal angle, φ0, of the tangent at this point.

• The polar angle, θ , of the track to the z-axis.

• The charge over momentum, q/p, since this is in principle measured with a universal
Gaussian uncertainty, as we saw in the previous section.

The vector
x̄ = (d0,z0,φ0,θ ,

q
p
)

is called the state vector of the track at the perigee.

The beam axis is a particular choice. We may replace it by an axis of some detector element
and quote the state vector with respect to this axis. In fact, one can say that a “track” is a
collection of state vectors, supplemented with their covariance matrices, one for each of the
detector surfaces where the track has an associated hit. In the end, however, it is the track state
at its production vertex which are the parameters of interest.

1.4 Covariance matrix - quick recap
Let us recall that for any two random variables xi and x j, the covariance matrix is

Vi j = E
(
(xi−E(xi))× (x j−E(x j))

)
where E(x) is the expectation value of x. By construction, Vi j is symmetric and the diagonal
elements are the variances of the x’s. The off-diagonal elements reflect the degree of correlation
between the x’s.

For the primary measurements, m̄ in the different detector planes, we expect no correlations.
But for the derived track parameters, which depend on m̄, we do expect correlations.

Any set of functions fi of the x’s has (to first order in a Taylor expansion) the covariance matrix:

C f
i j = ∑

kl

∂ fi

∂xk

∂ f j

∂xl
Vkl = (FV FT )i j (1.1)

This is called the chain rule.

1.5 The projection matrix
So what are the measurements, m̄, expected for some track state, x̄? This is given by a function
h̄(x̄), or, assuming linearity, by the projection matrix H = δ m̄/δ x̄. As an example, the measure-
ment could be the hit strip number in Figure 1.2 for the case of a small stereo angle α . This strip
number is counted along the y′-axis which is tilted by the angle α with respect to the y-axis. So,
to arrive at the y′ in the “measurement frame” for a given track state (x,y), we do
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y′ = H
[

x
y

]
=
[
−sinα cosα

][ x
y

]
Let us consider another example that we shall meet again in the exercises. It is a simple spec-
trometer consisting of four silicon pixel planes with a dipole magnet at the center as shown in
Figure 1.6. The momentum of a traversing particle is determined from the up/down angular

Figure 1.6: A simple spectrometer

deflection, ∆φ , caused by the field, Bz :

tan∆φ = 0.3
∫

Bzdx
q
p
= bq

We choose the track state at the first plane to be x̄ = (z,z′,y,y′,q/p)T , where z′ = dz/dx, and the
measurement vector to be m̄ = (z1,z2,z3,z4,y1,y2,y3,y4)

T . The predicted m̄ is then Hx̄, where

H =



1 0 0 0 0
1 d 0 0 0
1 2d 0 0 0
1 3d 0 0 0
0 0 1 0 0
0 0 1 d 0
0 0 1 2d bqd/2
0 0 1 3d 3bqd/2


1.6 The Kalman filter
The idea of the Kalman filter [5] is to determine the track state dynamically moving from one
detector surface to the next as shown in Figure 1.7. The track state at A is propagated to B using
the equations of motion. The predicted measurement at surface B from the propagated track
state is compared with the actual measurement. Based on this comparison, the measurement can
be discarded or accepted. In the latter case, the track state at B can be updated and extrapolated
further to detector surface C.

This has several advantages. Since only one measurement is considered at a time, only small
covariance matrices need to be inverted (for “dividing by the error squared”), which makes the
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Figure 1.7: A Kalman filter step. The vector represents the track state and the cone its covari-
ance matrix. Figure from S. Fleischmann’s thesis.

algorithm fast. Second, pattern recognition (the sorting out which hits belongs to which tracks)
is integrated in the track fit. Finally, the algorithm can easily take into account extra effects such
as multiple scattering, energy-loss and noise, which makes the algorithm efficient.

Several extensions of the algorithm exist to cope with special situations. For example to deal
with very densely populated track environments. Another important limitation of the simple
algorithm is that the errors must be gaussian distributed around zero for the algorithm to work.
This calls for special treatment of electron tracks suffering bremsstrahlung, which will be cov-
ered later.

Let us now step through the Kalman filter track finding and fitting algorithm in some detail.
Clearly, we have to start with a track seed. Various strategies have been used to select a track
seed. In experiments with precision pixel layers close to the interaction region, the seed is often
a combination of two or three pixel hits, approximately pointing back to the interaction region
and starting with those seeds with the highest density of extrapolations to the z-axis.

Starting with a track seed at the k−1’th detector plane, we then need to propagate it to the k’th
plane and, again, we linearize the problem with a propagator matrix, F :

x̃k = Fkxk−1

where x̃k means the state extrapolated to plane k. In fact, the propagation matrix, F , in a
detector, is exactly the same thing as the transfer matrix in accelerator physics.

Also the covariance matrix of the x’s needs to be propagated. Here we use the chain rule, eq.
1.1, and at the same time we take the opportunity to add multiple scattering and other random
fluctuations involved in the step:

Ck−1
k = FkCk−1FT

k +Qk

A very simple example is the propagation of z ( unaffected by the field) over the distance d from



1.6. THE KALMAN FILTER 13

the second to the third plane in the example spectrometer of Figure 1.6:

z̃3 =

[
1 d
0 1

][
z2
z′2

]
C2

3 =

[
1 d
0 1

]
C2

[
1 0
d 1

]
+Q

C2 =

[
σ2 σ2/d

σ2/d 2σ2/d2

]
Q =

[
θ 2

MSd2 θ 2
MSd

θ 2
MSd θ 2

MS

]
where σ is the coordinate measurement resolution, and θMS is the rms multiple scattering angle
in a single detector plane.

In general, propagation through an inhomogeneous field is needed. The preferred method is
a numerical technique called Runge-Kutta integration. When propagating the trajectory from
surface A to surface B, the most naive approach would be to move along the tangent sampled at
surface A. In the Runge-Kutta step, the derivatives (directions) are instead sampled at a number
of intermediate positions and a weighted average is taken. Consider a coordinate y with value
yn = y(tn) and with a time derivative y′ = f (t,y) given by the equations of motions. We now
take a short step h in time the following way:

k1 = f (tn,yn)

k2 = f (tn +
h
2
,yn +

h
2

k1)

k3 = f (tn +
h
2
,yn +

h
2

k2)

k4 = f (tn +h,yn +hk3)

yn+1 = yn +
h
6
(k1 +2k2 +2k3 + k4)

This holds true up to a h5 term. You can check it, for example, on the very nonlinear case
y = et . In the spectrometer application, however, y′′ is given by the Lorentz force from a
parametrized B-field and we thus need two Runge-Kutta integrations to arrive at F . All of
this can be parametrized before data taking.

After propagating the trajectory to a new surface, k, the track state is x̃k. The predicted mea-
surement, Hkx̃k, is now compared with the nearest actual measurement, mk, yielding a residual,
r, together with its covariance matrix, R:

rk−1
k = mk−Hkx̃k (1.2)

Rk−1
k = Vk +HkCk−1

k HT
k (1.3)

where Vk is the covariance matrix of the measurement, which may have more than one com-
ponent but is normally diagonal. At this point, the measurement mk may be rejected if the
chi-squared, χ2

k = r2
k/Rkk, exceeds at certain value.
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If mk is an acceptable hit, it is used to update the track state. The updated state is the weighted
average of the propagated state and the state suggested by the new hit:

xk = Ck

(
(Ck−1

k )−1x̃k +HT
k V−1

k Hkmk

)
C−1

k = (Ck−1
k )−1 +HT

k V−1
k Hk

The updated state is shown as a solid black cone at plane B in Figure 1.7.

Once the last hit is added to the track, a procedure called smoothing starts. Here, the Kalman
filter is repeated backwards, updating again the track states at each surface, but this time using
information from all the n hits. The step from surface k+1 to k can be written:

C−1
k|n = C−1

k|k +C−1
k|k+1

xk|n = Ck|n

(
C−1

k|k xk|k +C−1
k|k+1xk|k+1

)
where xk|k is the current state, xk,k+1 is the state propagated from surface k + 1 and xk|n is
the updated, smoothed state. It is at this point possible to exclude outliers from the fit, hits
contributing a large χ2, while still having them associated with the track.

If the track at the end of this stage fulfills certain quality criteria (based on the number of
hits used in the track fit, the χ2 and the fitted parameters), a new entry is added to the list of
reconstructed tracks. The entry contains the track state extrapolated to the perigee and also
contains each hit with its associated track state at the hit surface. After all seeds have been
tested, the yet unused hits may then be available for a second pass trying to reconstruct more
tracks with more relaxed quality criteria, such as a lower pT cut. Also, while the first pass
is usually done inside-out, starting from the innermost planes, a subsequent outside-in pass is
often added, starting from a seed in the outer layers. This is especially useful to pick up tracks
from secondary vertices such as K0 decays or γ-conversions.

This procedure is the preferred one in most applications.

1.7 The Newton-Raphson fit
If the list of hits associated with a track is known in advance, an alternative, but mathematically
equivalent, track fitting algorithm is the well-known Newton-Raphson or global least-squares
fit. The procedure is to minimize χ2 = ∑(mi−hi(x̄))2/σ(mi)

2, varying the track state x̄, where
hi(x̄) is the physics model predicting the ith measurement.

In the linear approximation, hi(x̄)≈ Hx̄, we can write

χ
2 = (m̄−Hx̄)TV−1(m̄−Hx̄)

which is readily minimized by the track state

x̄ = (HTV−1H)−1HTV−1m̄ (1.4)

having the covariance matrix (using the chain rule):

Cov(x) = (HTV−1H)−1 =
1
2

(
∂ 2χ2

∂ x̄2

)−1

(1.5)
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If the projection h(x) is not linear, it can be forced linear by Taylor expansion around an initial
value x0 and the derivatives of χ2 can be found:

dχ2

dx
(x0) = −2HTV−1(m−h(x0))

d2χ2

dx2 (x0) = 2HTV−1H

In the next iteration, if dχ2

dx (x0) is not already zero, x0 is replaced by the better value:

x1 = x0− (
d2χ2

dx2 (x0))
−1 dχ2

dx
(x0)

and this continues until convergence of the x’s.

In the global least-squares fit, a multiple scattering angle can be introduced as an extra track
parameter at each scattering surface, giving an extra contribution of (θMS/θ0)

2 to χ2. You can
avoid these extra parameters at the cost of introducing correlations, non-diagonal elements, in
the measurement covariance matrix by making the substitution:

V →V +ST
Θ0S

where S = δ r̄/δ θ̄ (for a straight track Si j would be equal to the distance between planes i and
j) and Θ0 is θ 2

0 times the diagonal unit matrix.

1.8 Vertex finding

1.8.1 Kalman filter
During LHC runs there will in the future be up to 200 beam particle collisions happening during
a single bunch crossing. The location in space of each collision is called a vertex. The collision
that triggered the recording of the bunch crossing event (normally the most violent collision) is
called the primary vertex and the rest are pile-up vertices. We would like to reconstruct all of
them.

The reconstruction of the vertices can be accomplished by a Kalman filter as illustrated in Figure
1.8. The interaction region, also called the beam spot, is known in advance from the distribution
of vertices in previous bunch crossings and from beam diagnostic equipment. Already a seed
of two tracks crossing each other within the beam spot locates the vertex much better than the
beam spot (the vertex labeled n = 2 in the Figure). The algorithm then proceeds exactly as for
track finding, adding one track at a time, if more tracks are found consistent with this vertex,
and updating the vertex to higher and higher precision. The vertex labeled n = 3 shows both an
accepted an a rejected third track.

Obviously, the first choice of two seed tracks is a crucial step. Typically one first looks at
the spot with the highest density of tracks crossing the beam line and from here selects two
seed tracks (for example the two with the closest perigees). More elaborate extensions to this
algorithm exist that use adaptive and iterative techniques aiming to minimize the global chi-
squared for all possible associations of N tracks to an arbitrary number of vertices [5].
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Figure 1.8: Reconstruction of a vertex

1.8.2 Billoir fit

Just as for track fitting, the Newton-Raphson method (called the Billoir fit in the vertex fitting
application) is an alternative, if the tracks associated with a given vertex are known in advance.
This could be performed after the Kalman Filter and is equivalent to the Kalman Smoother
step. Not only the vertex position is refitted here, but also the track momenta, this time using
the constraint that they must all origin from a common vertex point.

Let v̄ be the vertex position, p̄i the 3-momentum of the i’th associated track at the vertex and
x̄i be the state vector of the i’th track at some reference surface. Evidently, this track state can
be predicted from the vertex and the momentum, so we have x̄i = F(v̄, p̄i). Let now v̄0 and p̄0i
be the first rough estimates of the vertex and the i’th momentum. A Taylor expansion of the
predicted track state around these parameters gives

F = F(v̄0, p̄0i)+Dδ v̄+Eiδ p̄i

Let then δ x̄i
meas = x̄i

meas−F(v̄0, p̄0i) be the residual and Vi be its covariance matrix. We can
then write down the chi-squared:

χ
2 = ∑(δ x̄i

meas−Dδ v̄−Eiδ p̄i)
TV−1

i (δ x̄i
meas−Dδ v̄−Eiδ p̄i)

Since we have now linearized the track model, we can analytically find the parameters mini-
mizing χ2 by solving the linear equations dχ2/d(δ v̄) = 0 and dχ2/d(δ p̄i) = 0 [7]:

v̄ = v̄0 +
(
A−∑BiC−1

i BT
i
)−1 (

t̄−∑(BiC−1
i )T ūi

)
p̄i = p̄0i +C−1

i (ūi−BT
i δ v̄)
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where

A = ∑DTV−1
i D

B = DTV−1
i Ei

Ci = ET
i V−1

i Ei

t̄ = ∑DTV−1
i δ x̄i

meas

ūi = ET
i V−1

i δ x̄i
meas

δ v̄ = v̄− v̄0

Now we can replace v̄0 with v̄ and p̄0i with p̄i and repeat the exercise until convergence. The
3×3 covariance matrices of the fitted parameters are given by:

Cov(v̄) =
(
A−∑BiC−1

i BT
i
)

Cov(p̄i) = C−1
i +

(
BiC−1

i
)T

Cov(v̄)BiC−1
i

Cov(v̄, p̄i) = −Cov(v̄)DE−1
i

Cov(p̄i, p̄ j) = δi jE−1
j −E−1

i DTCov(v̄, p̄i)

While the machinery above is reasonably straight forward to code, the hard work for the “fit-
designer” is to find the track model, or projection matrix, F , and a good initial guess for v̄0.
These depend on the detailed geometry and magnetic field map of the setup.

1.8.3 Constrained fits
How can a priori knowledge be exploited in the fits to increase precision? For example, the
beam spot could be known in advance to be b̄ with some variance Vb. In that case one could add
an extra piece to the χ2:

δ χ
2 = (v̄− b̄)TV−1

b (v̄− b̄)

which would modify the χ2 derivatives with respect to v.

In another example, a neutral particle created at the primary vertex propagates to a secondary
vertex where it decays into, say, the 5 tracks in Figure 1.9 at “SV”. We want to fit the secondary

Figure 1.9: Event with a secondary and a tertiary vertex

vertex and at the same time exploit that the sum of the momenta should point back to the primary
vertex. Note that in this case we know the constraint to be exactly true. In this case, one could
use Lagrange multipliers and add a piece:

δ χ
2 =−λ̄ · d̄( ¯vPV , ¯vSV ,∑ p̄i)
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where λ̄ are three new arbitrary fit parameters and d̄ is the directed distance between the primary
vertex and the extrapolation from the secondary vertex using minus the summed momentum at
the secondary vertex. This d̄ should be zero if all particles are well measured.

In general, the Lagrange multiplier method expresses the constraints in terms of some functions
of the fit parameters that are, in principle, exactly zero, H(x) = 0. As a third example, consider
a photon conversion in the detector. In addition to the constraint that the e+e− pair should point
back to the primary vertex, there is also the constraint that they should emerge parallel from a
common secondary vertex (since the photon has zero mass). This can be expressed as

H̄(p̄1, p̄2, r̄1, r̄2) = (
p̄1

E1
− p̄2

E2
, r̄1− r̄2) = 0

where the p’s and r’s of the two tracks refer to their starting point. Again we make a good guess
about the momenta and the starting point, x̄A, and Taylor expand H around that:

H̄(x̄)≈ D∆x̄+ H̄(x̄A) = 0

In this case, with x̄ = ( p̄1
E1
, ...)T , the derivative, D, would be just a diagonal matrix with ±1’s.

Then a piece is added to the χ2:

χ
2 = (x̄− x̄0)

TV−1
0 (x̄− x̄0)+2λ̄

T (D(x̄− x̄A)+H(x̄A)) (1.6)

Here “0” refers to the unconstrained solution, in this case the two independently fitted track
parameters with their block-diagonal covariance matrix. The requirement that χ2 should be at
minimum is again a set of linear equations and thus exactly solvable for the track parameters x
and the Lagrange multipliers λ . The multipliers are not used for anything other than a calcula-
tional tool. If the constraints were not linear functions from the start, iterations with xA replaced
by x are necessary. At each iteration, the explicit solutions to the χ2 minimization are

λ = VD(D(x0− xA)+H(xA))

x = x0−V0DT
λ

VD = (DV0DT )−1

Vx = V0−V0DTVDV0

1.9 Global optimization
Track finding and fitting has up to now been done by considering one track candidate at a
time. In very dense track environments, however, we are faced with the problem where several
track candidates compete for the same hit. What is the globally optimal assignment of hits to
tracks (or maybe to noise)? The nearest track candidate is not necessarily always the optimal
choice. This is a variant of the travelling salesman’s problem. Several approaches have been
established to solve this problem, see e.g. [6] for a review. They typically minimize some global
“energy function” using methods borrowed from statistical physics. For the traveling salesman
the energy function results in two competing forces, one attracting the route to the cities on his
list and one trying to minimize the length of travel. In track reconstruction we want as many
hits as possible with as small residuals as possible associated with the tracks.
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1.9.1 Combinatorial Kalman Filter
In the combinatorial Kalman filter [5] a track seed is as usual propagated to the first layer. If
this contains several hits compatible with the track, several branches of the filter is created and
propagated in parallel to the next layer where they each may multiply again. A branch is allowed
to have no hit in a detector layer, to have a hole, but if that happen consecutive times (and the
planes are not known to be dead), the branch is dropped. In the end, only the branch with the
highest quality, in terms of total number of hits, number of holes and total χ2, is included in the
final list of tracks.

1.9.2 Gaussian Sum Filter
The Gaussian Sum Filter is designed to cope with material effects that sometimes can create
large changes in the track state. The prime example is bremsstrahlung of electrons that occa-
sionally causes an energy loss by a fraction 1− z. The probability distribution is given by the
distinctly non-gaussian Bethe-Heitler law [2]:

f (z) = (−lnz)c−1/Γ(c)

where c = X/ln2 and X is the thickness in radiation lengths of the current detector layer. In
the Gaussian Sum Filter this distribution is modelled by a sum of n Gaussians, each carrying
a certain weight determined beforehand by simulation. At each detector layer, the Kalman
filter branches out in n branches that are each propagated to the next layer. Here they are up-
dated by the hits, whereby also an assignment weight is multiplied on the total weight of the
branch, according to the distance from the hit to the branch. Then the branches multiply again
and eventually a “component reduction” is neccesary to limit CPU consumption, removing the
branches with the smallest total weights. In the end, the surviving branches are collapsed into
one weighted mean. This procedure has been proven to significantly improve electron recon-
struction in the ATLAS and CMS experiments, but it is also very computational demanding.

1.9.3 Elastic Arms
A truly global approach is called the elastic arms algorithm that works with a fixed number of
“deformable track templates”. The energy function would be of the form:

E =
Tracks

∑
a

Hits

∑
i

SiaMia +λ ∑
i
(∑

a
Sia−1)2

where Mia is typically the χ2 of the hit and Sia is an assignment strength, to be understood as
the probability for the hit to belong to track a. The second term imposes a penalty for the case
where the hit is not assigned to any track. We can get rid of that term if the a’s also include a
“noise template” to which a hit can be associated if it is too far from any track.

If S is chosen to be either zero or one (either the hit belongs to the track or not), the energy
landscape can become very spiky with lots of local minima. This may be amended by a fuzzy
assignment probability:

Sia =
e−βMia

e−βλ +∑
Tracks
a=1 e−βMia
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where track number 0 is the “noise template”. The parameter λ = Mi0 acts as a χ2 cut-off so
that for Mia > λ , the assignment strength to the “noise template”, Si0, dominates.

The β is analogous to the inverse temperature appearing in the Boltzmann distribution. A
process called “annealing” starts at a high temperature (small β ) where Sia is relative large,
even for distant hits. This irons out the local minima. The energy function is then iterated
to its global minimum using its derivatives with respect to the track parameters, similar to the
Newton-Raphson fit. Note, that this requires a parametric track model. In a next iteration, the
temperature is lowered by 5-10% and the procedure repeated with a new initial track states for
the fixed number of tracks, and these iterations continue until the assignment strengths all take
approximately the discrete values 0 or 1. This algorithm has proven useful, for example in
the HERA-B experiment, which was a fixed target experiment resulting in a very dense track
environment in the forward region [5].

1.9.4 Deterministic Annealing Filter
A weakness of the elastic arms method is that it needs a parametric track model and does not
cope with effects of the detector material. It also needs a fixed number of tracks. The Kalman
filter has a convenient way of incorporating detector effects, including inhomogeneous magnetic
fields, and to dynamically determine the number of tracks. A way to recover the advantages of
the Kalman filter in the elastic arms is provided by the Deterministic Annealing Filter [6].
Here, the Kalman filter is used with an assignment strength for each hit in a given detector
plane, instead of just choosing the closest hit. The assignment strength is simply the Gaussian
likelihood for the current extrapolated track candidate to produce the hit, but using an error on
the hit measurement inflated by a temperature factor T. In order to allow for the possibility that
no hit was produced at this detector surface, the assignment strength for hit mi in plane k may
be normalised as follows:

Sk
i =

φ i
k

∑
n j
j (Λ

j
k +φ

j
k )

where, as explained above,

φ
i
k = Gauss(mi,Hkxk,TVi +HkCkHT

k )

and Λ is proportional to e−
λ

2T so that λ again serves as a χ2 cut-off, exiling too far away hits to
the noise hypothesis.

This means that when the track state is updated at plane k, it is not done by adding one particular
hit, but a weighted average of all the hits in the neighbourhood of the track in that plane. Again
the procedure is repeated with a lower temperature for the tracks that have survived the quality
criteria, now replacing their seeds, and this continues until again the assignment strengths have
stabilized around 0 or 1 ( it may, however, always be discussed whether or not to allow hits
being shared between two tracks).

The Deterministic Annealing Filter (DAF) has proven especially good at determining the right
hit association for a given track, for example in the case of drift tubes where the measurement
itself does not tell whether the track passed the anode wire left or right. Therefore the possi-
blity has been studied of using the DAF for track fitting, instead of the conventional Kalman
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Smoother, while keeping the Kalman Filter, possibly the Combinatorial Kalman Filter, for track
finding. These studies have been carried out for different setups and different track density and
noise environments, and they consistently show improvements in tracking efficiency and pre-
cision when using the DAF [6]. The DAF has also been extended to an efficient algorithm for
finding and fitting multiple pile-up vertices [6].

1.10 Alignment

In order to achieve unbiased, high-resolution tracking, alignment of the detector elements is of
great importance. The challenge of controlling the positions to the micron level of hundreds of
millions of channels over a volume of thousands of cubic meters must be addressed in the ex-
periment design at all stages. First, it is of utmost importance to maintain very tight mechanical
tolerances in the manufacturing of detector elements and their support structures and to keep
the temperature constant throughout operations. Second, all the detector elements are surveyed
optically, both before and after assembly. Often laser based systems are used to trace changes in
relative positions after assembly. The ultimate alignment precision, however, is obtained from
the fitted track data themselves and this is the main subject of this section which closely follows
Reference [8] where many more details can be found.

Consider our example spectrometer from Figure 1.6. The measured vertical coordinates yi
are predicted by the track model y = h(x̄, ᾱ), where x̄ are the track parameters and α are the
alignment corrections to the position and orientation of each detector plane. Let us just consider
the y-position of the planes. The most straight forward estimate of ᾱ is then a vector of vertical
displacements given by the average residuals, < ri = yi− h(x,α) > over a large sample of
reconstructed tracks.

This approach is called local alignment, because each alignment correction is regarded as in-
dependent of the other corrections. Therefore, this method in general requires many iterations.
Actually, there is no guarantee of convergence, because of the correlations introduced by the
track fit between the planes, but the method might still work well.

In the global alignment approach, a total chi-squared is defined over a large sample of recon-
structed tracks:

χ
2 = ∑

tracks
rR−1rT

r(x,α,m) = m−h(x,α)

where r are the residuals, m the measurements, and α the alignment parameters. Assume, for
example, that we have many strip modules each forming a piece of plane in space. Then the
α parameters would be corrections to the coordinates of the midpoint of each module plus
corrections to its three Euler angles. The ambitious idea is to minimize simultaneously the total
χ2 with respect to all the track states, x̄, in the large sample and with respect to the 6 alignment
corrections, ᾱ , for each little module in the detector.

If the χ2 is at minimum wrt. x̄ for the current alignment parameters, we have for the total
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derivative of χ2 wrt. ᾱ:
dχ2

dᾱ
= 2 ∑

tracks
(

∂ r̄
∂ ᾱ

)R−1r̄T

The desired condition, dχ2/dᾱ = 0, leads to M equations for the M alignment parameters, ᾱ .
These equations are in general nonlinear in ᾱ . Therefore we again force them linear by Taylor
expanding χ2 around the current estimate of α and express the desired condition as:

−dχ2

dᾱ
(α0)≈

d2χ2

dᾱ2 (α0)∆ᾱ (1.7)

The idea is now to solve these equations, then to correct α0 by ∆α and then iterate until conver-
gence. If the residuals are linear in α , there is no reason to iterate, since the solution is exact.
The solution to the equations at each iteration step is:

∆αi =−

[
∑

tracks

∂ r̄
∂αi

R−1
(

∂ r̄
∂α j

)T
]−1

∑
tracks

[
∂ r̄

∂α j
R−1r̄T

]
(1.8)

where summation over j is implicit and R=V−HCHT is the covariance matrix of the residuals,
r (here there is a minus instead of the plus seen in Eq. 1.3, because the particular measurement
has participated in the track fit).

Let us define

b̄ =−2
dχ2

dᾱ
A = 2

d2χ2

dᾱ2

The inverse of A is the covariance matrix, C, of the fitted alignment parameters according to
Eq. 1.5. If indeed A has an inverse, we can diagonalize A and find the M eigenvectors u( j) with
eigenvalues d j. The inverse has the same eigenvectors with eigenvalues 1/d j:

C(α)
kl (∆ᾱ) =

M

∑
j=1

1
d j

u( j)
k u( j)

l (1.9)

In the case at hand, the fitted parameters are corrections to the alignment parameters and the
eigenvectors describe orthogonal collective distortions of the modules making up the tracking
detector. If the eigenvalues are sorted after decreasing absolute value, the eigenvector decom-
position has the name principal component analysis.

The alignment corrections minimizing χ2 can be expanded in eigenvectors:

∆ᾱ = ∑
j

u( j)T b
d j

u( j)

Clearly, Eq. 1.9 predicts exploding uncertainties when some of the eigenvalues get close to
zero. Such eigenvalues belong to collective distortions that more or less preserve the helical
shape of the tracks and go under the name weak modes. The χ2 track fit has no chance of
spotting those distortions because the derivative of χ2 with respect to the weak modes becomes
zero. Therefore they creep under the radar. The most trivial example is a translation of the
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entire detector. That can of course not be seen in the χ2 of the track fits. But there are many
other collective distortions (twists, compressions etc of the detector) that are invisible to the χ2.

The only way to identify misalignment contributions from weak modes is to use external con-
straints. Let us express the constraints as functions ḡ(ᾱ) that ought to be zero within the preci-
sion given by the covariance G. This will contribute an extra term in the χ2:

χ
2
g = gT G−1g

which will change the first and second derivative in Eq. 1.7.

The trivial example of an overall translation or rotation of the entire detector could be resolved
by an external optical survey, the result of which is entered in the χ2 as in the equation above.
This particular mode could also be handled with a so-called exact constraint. We may simply
define the average position of all modules to be the origo of the coordinate system. This ex-
act constraint could be implemented by parameter substitution or by the Lagrange multiplier
method in Eq. 1.6.

More sophisticated weak modes can be handled by exploiting other external knowledge. In
collider detectors you can have rotations of the individual detector layers (or of the field) that
would leave the χ2 invariant, but change the fitted momentum. Such weak modes could be
targeted by studying the E/p ratio of the calorimeter energy to the fitted momentum of identified
high-energy electrons. Other weak mode distortions can be cornered by studying the deviations
from the known masses of reconstructed Z bosons, J/Ψ mesons and K0

S mesons. Any such
study must be binned in φ and θ in order to identify a particular weak mode. Cosmic ray
runs are especially useful because cosmic rays penetrate the entire detector, while tracks from
collision events origin from the middle of the detector and thus only probe half of it. In general,
the more detector parts that participate in the track fit and the global alignment, the better.

Finally, information from laser based systems and piezo-electro feelers may be used to trace fast
changes in module positions, changes that are too fast to be followed by alignment based on
a large sample of reconstructed tracks. These corrections are applied directly on a run-by-run
basis with the constraint that they average to zero over the event sample used for track-based
alignment.

1.11 Exercises
1. Design a spectrometer

• Copy all the files in

http://www.nbi.dk/~phansen/nordforsk/

This is C++ code using ROOT libraries that simulates a compact spectrometer with
very thin (0.05mm) CMOS pixel layers (the MIMOSA chip) and a weak spectrom-
eter magnet in the middle. You are assumed to be running some unix on your com-
puter. Figure 1.6 illustrates the setup, except that we here use three planes on each
side of the magnet. The goal is to measure positron production in the 50-1000 MeV
range from electrons impinging on a diamond target upstream of the first layer. Such
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a spectrometer is used by an Aarhus group in connection with studies of a positron
factory for the future CLIC accelerator.

The program simulates mono-energetic single positrons emitted along the beam (x)
axis, at a small cost of generality. The simulated positrons are traced and digitized
through the spectrometer, including effects from multiple scattering, noise and de-
tection inefficiencies.

In this excise you implement a Kalman Filter, in a way suggested below, for the
pattern recognition of the simulated data, resulting in a number of track candidates
After that, a global chi-squared fit finds the best among the candidates. The pattern
recognition requires hits in all layers, except for the last two where only one is
required.
• Implement the method Spectrometer::KalmanFilter in Spectrometer.C using the ma-

trix formalism of these notes with help of the ROOT TMatrixD class. The method
must propagate a track candidate from the last detector layer with a hit to layer p1
in the non-bending x-z plane. It must then update the track parameters in x-z using
the hit ihit and return the chisquared contributed by the hit as well as the updated
RecoTrack, tout. The first lines could be:

float Spectrometer::KalmanFilter

(int p1, int ihit, RecoTrack t, RecoTrack& tout) {

if(debug) cout << ‘‘ in Kalman Filter ‘‘ << endl;

double s2 = resolution*resolution;

double pinv = 1./beamMomentum; //use here a fixed momentum

double t0 = multScattAngle*pinv; //average multiple scattering angle

TMatrixD z = t.GetPar(); //track parameters at current plane

TMatrixD C = t.GetCov(); //their covariance matrix

//we are not sure which plane is the current, so check

vector<int> hits=t.GetHits();

int plane0 = hitdata.at(hits.back()).GetPlane(); //so this is it

double d=distBetweenPlanes*(p1-plane0); //propagation distance

if(debug) cout << ‘‘ propagate from plane ‘‘ << plane0

<< ‘‘ to plane ‘‘ << p1 << endl;

Then make the propagator matrix (TMatrixD) F and it’s transposed.

Then make the multiple scattering smearing matrix.

Then make the total covariance matrix of the propagated track.

Then propagate the track parameters, z, to plane p1.

Then make the covariance matrix of the updated track.

Then make the parameters of the updated track.

Then, if chi-squared<Cut1, construct the updated RecoTrack, tout.

Finally return the chi-squared.

Warning: If you transpose or invert a TMatrixD into a new matrix

(by doing HT=H.T() or Cinv=C.Invert()) then H or C is also left in the
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transformed state, so you need to transform them back ( just do H.T()

or C.Invert() again, or else copy the matrices before transforming).

When you have edited Spectrometer.C to your liking, then type make.

Then type ./SMgr.exe | tee spectrometer.out

Look then at the output, type root and in ROOT type

TBrowser b and click at the histogram file and the histograms

you want to see, fit, zoom or whatever.

• Is the spectrometer configuration optimal? Try vary the length by varying distBe-
tweenPlanes. Can we do with fewer planes? Try 4 instead of 6. What happens
if the magnet is twice as strong? What should be chosen for the adjustable noise
occupancy? What is a reasonable chi-squared cut? Use the 1/p accuracy, the track
reconstruction efficiency and the computing time as deciding quality factors. Try
out both 0.05 GeV and 1 GeV in each case.

• The simulated efficiency is in fact a pure guess. If the simulated data had been real,
how would you measure the plane efficiency (the probability for a track to produce
a hit in a plane). How would you then estimate the track reconstruction efficency?

• Since we deal with positrons, we need to worry about bremsstrahlung, but this is
not taken into account in the program. How much trouble do you expect from this?
(Hint: make a hit-and-miss simulation of the fractional energy loss in each of the
three planes before the magnet and in the line calculating the angular bend in the
magnet replace beamMomentum with a reduced momentum).

2. Reconstruct a vertex. Let us consider the case where our spectrometer is traversed by
two pions from a K0 decay somewhere upstream. Imagine that our program is now made
able to return two fitted tracks, each with parameters (z0,z’,y0,y’,q/p) and their covariance
matrix.

• Write down an initial estimate of the decay vertex v0 and the derivative matrices D
and E from the Billoir vertex fit.

• How could you take advantage of external information? For example that the beam,
including the K0’s, propagates along the x-axis with a gaussian transverse profile of
size b, or that you are sure that the two pions really come from a K0 decay.

3. Make an alignment algorithm. Among the downloaded files are AlignSpectrometer.C
and AMgr.C. Edit the Makefile and, if needed, the AlignSpectrometor constructor. Then
type make and then

./AMgr.exe | tee alignspectrometer.out

Here, each plane is shifted randomly in each direction by a sigma of 0.1mm. Both the
local and global method is implemented and can be chosen in the constructor. Look at
the output (both the “out” file and the root file).
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• What accuracy is obtained and does that make sense? Does it help to make itera-
tions? Is global better than local? Are there “ weak modes “ giving trouble? Any-
thing you could do about those? Then assume that the true beam axis in the x− z
plane has been measured with beam monitoring devices to be z0 = 0.002±0.001cm
at the first plane and have a slope dz/dx = 0.1± 0.01mrad. Try to implement that
knowledge in the simulation and take advantage of it in the alignment fit.

• The program has only considered unwanted translations of the planes. How would
you formally implement the possibility of a rotation, for example around the local
z-axis of the planes?
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Quantity symbol value
Speed of light c 299792458 m/s
Planck’s const h 6.6260696 ×10−34 J s

Planck’s const, reduced h̄ = h/2π 6.5821193 ×10−22 MeV s
Conversion const h̄c 197.326963 MeV fm
Electron charge e 1.602176490 10−19 C
Electron mass me 0.51099891 MeV/c2

Proton mass mp 938.27201 MeV/c2

Atomic mass unit u 931.494 MeV/c2

Atomic mass unit u 1.6605388 ×10−27 kg
Vacuum permittivity ε0 8.854188 ×10−12 F m−1

Vacuum permeability µ0 = 1/ε0c2 4π×10−7 N A−2

Fine structure const α = e2/4πε0h̄c 1/137.036
Classical electron radius re = e2/4πε0mec2 2.81794029 ×10−15 m

Bohr radius a∞ = reα−2 0.529177209 ×10−10 m
Rydberg energy hcR = mec2α2/2 13.6056919 eV

Thomson cross section 8πr2
e/3 0.665246 barn

Bohr magneton µB = eh̄/2me 5.78838176 ×10−11 MeV T−1

Avogadro const NA 6.0221418 ×1023 mol−1

Boltzmann const k 8.617343 ×10−5 eV K−1

Table 1.1:

Material Z A Nucl. int. length Rad. Length dE
dx (min) density Refr. index

g cm−2 g cm−2 MeV g−1 cm2 g cm−3 (g l−1)
H2 1 1.008 52 63.04 4.104 0.071(0.084) 1.11
He 2 4.003 71.0 94.32 1.937 0.125(0.166) 1.02
Be 4 9.012 77.8 65.19 1.595 0.534 1.02

Graphite 6 12.011 85.8 42.70 1.742 2.210
dry air 7 14 90.1 36.6 1.815 1.205
water 83.3 36.08 1.992 1. 1.33
CO2 88.9 36.20 1.819 1.563(1.842)
Al 13 26.98 107.2 24.01 1.615 2.699
Si 14 28.086 108.4 21.82 1.664 2.329 3.95
Ar 18 39.95 119.7 19.55 1.519 1.574(2.98) 1.32
Fe 26 55.85 132.1 13.84 1.451 7.874
Cu 29 63.55 137.3 12.86 1.403 8.96
W 74 183.84 191.9 6.76 1.145 19.3
Pb 82 207.2 199.6 6.37 1.122 11.35

Table 1.2: Gasses refer to NTP (20◦ 1 atm). When there are two numbers, the first is for liquid
and the second for gas.


