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Overview 

!  Spacepoint formation and calibration 
!  Pattern recognition 
!  Track fitting methods 
!  Vertexing 
!  Alignment 



Peter Hansen, NordForsk lectures 

The tracking challenge 

!  Every second, 40 million beam-crossings are happening 
at the LHC,  producing thousands of tracks from up to 
O(100) individual collisions. About 1 kHz of the crossings 
are to be selected for later processing. 

!  To cope with the high density and high momentum of  the 
tracks very many channels are needed, causing rather 
large amounts of material in the tracking detectors. 

!  Thus,  we need highly sophisticated and error-tolerant 
track-finders and –fitters, good calibration and alignment  
methods, robust vertexing and particle identification. 

"  This lecture covers standard tracking methods. 
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ATLAS and CMS Inner Trackers 

 Many ATLAS  and CMS examples are used this lecture. A general principle is 
 to build detector planes roughly perpendicular to the tracks… 
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The  Inner Detectors 

The ATLAS ID 

ATLAS ID material 

The CMS silicon tracker 
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Space-point reconstruction 

Clustering of pixel cells performed in hardware  
by the ATLAS Fast Track Trigger 
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Spacepoint formation 

!  Tracking detectors register “hits” from signals induced on 
pickup electrodes by an electron cloud made by a track. 

!  In case of a hit on only one electrode, the precision is 
               (Δ = the electrode size). 
!   Much better is it if the signal is 
 distributed over two electrodes. 
 In that case 

   This gives higher accuracy, but 
   you need to know both P and 
   the cloud width w. € 

δx
Λ

= f (P1,P2,w)

Blum, Ronaldi: TPC tracking book 



Spacepoint formation 

#  If 3 or more electrodes pick up signal for one track passing 
    the detector layer, the barycenter is a popular estimator of 

the track position. 
#   The pulse-heights, P, must  exceed a certain threshold and 

the electrodes must share a side or corner , forming a 
cluster. Summing over cluster cells, we get the barycenter: 

(sometimes only the cells at the cluster edge are used) 



Spacepoint formation 

!  The barycenter needs correction because of the finite size 
of the electrodes.  

!  Example: 
 3x3cm electrodes in 
 a lead-gas sampling 
 calorimeter. The 
 estimate is  only 
 unbiased at the 
 border between two  
 or at centre of one. 

Aleph EM calorimeter 



Stereo view 

!  If you do not have pixels, only wires or strips, what about 
the second coordinate? 

!  In strip detectors double sided wafers are often used with 
strips on both sides having an angle between them. But 
large angles gives ghost hits! 

!  At high track densities, 20-80 mrad is a good choice, 
avoiding too many ghost hits, having good resolution in the 
bending plane and still some resolution in the second 
coordinate.	
 

Ghost 1 

Ghost 2 Track 1 

Track 2 
No ghosts 



Spacepoint calibration 

! In general we must know the response function , 
the probability distribution of induced pulse-heights 
for a given track impact  

! (Actually, we would like the inverse: the pdf for the 
track impact, given the pulseheights. But we can 
not get that from testbeam..) 

! The response function may vary from channel to 
channel and even vary in time. It must be calibrated 
from data. 



Ex1: Lorentz angle and defects 

! Due to the Lorentz force from the B-field, the electron drift 
direction in silicon sensors is rotated by a Lorentz angle. 
This needs to be corrected for to get the true hit position. 

!  Another complication is 
 the possibility of local radiation 
 damage to pixels or strips 
 biasing the barycenter. 

$ In CMS, all this is handled 
 by comparing the observed 
 charge distributions with a 
 simulated template for each 
 possible true track (sic!), where defects are accounted for. 



Lorentz angle 

T 

!  In ATLAS, the Lorentz angle is extracted from the 
cluster size vs incident angle in the first tracking 
iteration. (from Simone Montesano)‏ 

FF
FF 



Ex2: Splitting merged clusters 

T 

!  At high track densities, clusters of fired detector cells 
from two different tracks may merge. 

!  For example, a jet with pT=1TeV has a typical 
distance of only 0.1mm between two tracks at the 
innermost ATLAS pixel layer. 

!  A NN algorithm  has been developed to split pixel 
clusters again (Prokofieff and Selbach 2012) 

!   In the calorimeters similar MVA methods, or a simple 
search for local minima are used to split clusters. 

!  It is a must for NN or similar algorithms that pulse-
height information is available (in the pixels this info is 
Time-over-Threshold).  

FF
FF 



Ex2: Splitting merged clusters 

T 
FF
FF 

Improvements in Run2: 

$  NN  (and other) evaluates if a 
   pixel cluster is shareable. 

$  These can be shared without 
   penalty in score (see later) 

$  Merged clusters are first split 
   after Pass 1 track reco taking 
   advantage of track info. This yields: 

$  a 10-17% improvement in track reconstruction 
 efficiency in jet cores, 

$  a 7-13% increase in b-tagging efficiency 

$  a significant reduction of CPU (factor 4 when joined by other 
 improvements in Run2 reco). 



Ex3: Dead and noisy channels 

!  Any clustering algorithm must handle dead or noisy 
channels to avoid false clusters. 
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Ex4: Spacepoints in drift-tubes 

     The ATLAS TRT flags time-bin t 
where the signal exceeds some 
threshold. Must calibrate the 
distance R(t-t0) from the track to 
the each wire. 

ATLAS TRT 
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Refinements of  drift radii 

     Large pulses will trigger the 
threshold sooner for the same 
track impact -> small correction 

     for large time-over-threshold or 
High-Threshold hit. 

      At a track refit, the track impact 
along the wire, angle and other 
info is available. 

     Small corrections for time-of-flight, 
     signal propagation and other 

effects can be made at this point. 
ATLAS TRT 



Ex5: Big water Cherenkov detectors 

 For calibration Super-K needs 
 for each single PMT: 

1) The gain = charge / photo-electron. 

2) The quantum and collection efficiency. 

3) The timing calibration and resolution. 

4) The background level.  

In addition it needs the water transparency, 
temperature, the geo-magnetic field 
etc at each point in space. 

A variety of light sources, radioactive 
sources and even small linear 
accelerators are used in the calibration.  

The “space-points” are here 
 the signals on each PMT: 
 the charges on the anode 
 and their arrival times. 



Peter Hansen,  tracking algorithms 

P 20 

From space-points to tracks 

$  Given a collection of space-points we need to group together  
those space-points that belong to a track and determine the 
tracks features. 

$  The important feature of a track is its momentum, so we 
      open a parenthesis on momentum measurement 

$  Then we will look at pattern recognition 

$  Then study two track fit algorithms: 
       the Kalman filter and the global chi-squared fit. 
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Momentum measurement (.. 

This and next three slides are from Christian 
Jorams summer student lectures 
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Momentum accuracy 
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Multiple scattering 
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Total momentum error  ..) 



Fast pattern recognition 

! How to fast associate a subset of the hits to a track? 

!  Predefined templates, i.e. patterns of fired cells defining an 
allowed track. Used in fast trigger algorithms. The cell tower 
is an example from the calorimeter world. 

! Hough transform is another method. For straight tracks in 
two dimensions, each hit corresponds to a straight line in 
the slope-intercept plane. Peaks in this plane where many 
lines intercept reveal the hits-on-tracks. This is also 
relatively fast. 



Simple Hough transform 

! Histogram methods may provide fast seeds for high 
momentum tracks – here an example: 

ATLAS TRT 



General Hough transform 

!  Scan in two dimensions (di=-Cir+dhit) 
! Count number of compatible hits.   



Associative memory – ATLAS FTK 
The associative memory where each hit is seen 
 by all possible templates is the most advanced 
 example. 



The state vector 

!  Let at each detector surface the track be given by a vector 
(position, direction, 1/p), along with its uncertainties: 

Figure from ATLAS reconstruction group 



The helix 
!  An example of a state vector is helix parameters, where 

90o-λ is the track angle to the B field, R is the radius, s the 
path length and h is a sign. This gives the trajectory: 

!  A track in a detector with cylinder symmetry is a collection of 
helices at each “cylinder surface”. 



Perigee parameters 

!  The perigee parameters 

    are often used to describe the track state at the closest 
point to the beam (z) axis.  

$  Use q/p because q/p is approximately measured with a 
gaussian uncertainty. 

$  d0 has some sign convention according to the angular 
momentum of the track wrt the z axis 

€ 

x = (ϕ0,d0,z0,θ,
q
p
)



The projection matrix H 

!  To compare with measurements m, the track state x needs 
to be mapped onto “measurement space”. We linearize: 

!      H=δm/δx, where H is the projection matrix 
   (assuming for simplicity that x=0 corresponds to m=0) 
! Consider, for example, a set of strips forming a small angle 
α with the x axis. Let the track parameters be x and y at 
each plane of strips. Then we must do 

    in order to arrive at the y’-coordinate perpendicular to the 
tilted strip. This y’ measures the hit strip numbers which are 
the raw measurements m.  



Spectrometer example 

y-z pixel planes 
distance between planes d 
Field B 
x 
y 

€ 

tan(Δϕ) = 0.3 × Bzdx × q∫ / p = b(q / p)
Using units of Tesla,m, and GeV/c  



Spectrometer example 

y-z pixel planes 
distance between planes d 
Field B 
x 
y 



The Kalman filter 

! Determines the track state vector dynamically from 
measurements at each detector surface. 

!  These are either discarded or used to update the 
existing state vector. 

! Needs only inversion of small matrices. Fast. 
! Can account for noise, multiple scattering and 

energy loss at each surface. Efficient. 
! Is equivalent to the least squares fit, but provides 

pattern recognition integrated in the fit. 



Seeding 

! We need TRACK SEEDs with a high efficiency 
    and modest fake rate. Many different strategies: 

Start from two 
outer layers: 

! ATLAS and CMS use the inner pixel layers for 
seeds and then proceed outwards for track finding 

Figure from Mankel 
arXiv:0402039v1 

Connect all 
inner layer hits 
to each outer 



The propagator F 

!  Let the track transport from layer k-1 to k be given by 

!  Let the predicted state be denoted by a tilde. If f is not 
already linear in x, we Taylor expand it: 

    where Ck is the covariance matrix for the predicted state 
and Q contains the additional random perturbations in the 
step, such as multiple scattering and energy loss. 

€ 

˜ x k = Fk xk−1,
Ck

k−1 = FkCk−1Fk
T + Qk€ 

xk = f (xk−1)



Covariance matrices V and C 

!  A pair of random variables xi and xj has the covariance matrix: 

It is symmetric and have diagonal elements equal to the      
variances of the x’es. 
Off-diagonal elements describe the degree of correlation 
between xi and xj. 
"  Any set of functions fi of the x’s has (to lowest order in a 

Taylor expansion) the covariance matrix: 

" This is the chain rule. 

€ 

Vij = E((xi − E(xi) × (x j − E(x j ))

€ 

Cij
f =

∂f i
∂xk

∂f j
∂xl

Vkl
kl
∑



The propagator F – simple example 

!  The F propagator is exactly the same as the transfer matrix 
of accelerator physics. 

!  For our example spectrometer we have the z projection 
    propagation from the second to the third plane (a drift 
    space in accelerator language). 



The propagator F – complex case 

!  In regions with an inhomogenous B field, the preferred 
method is Runge-Kutta integration. Here, the trajectory 
derivatives are sampled at a number of intermediate 
positions, weighted so that the error is 5th power in h, the 
small time-step to the next plane:  

€ 

ʹ′ y = f (t,y), y0 = y0(t0)

yn +1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4 )

k1 = f (tn ,yn )

k2 = f (tn +
h
2
,yn +

h
2

k1)

k3 = f (tn +
h
2
,yn +

h
2

k2)

k4 = f (tn + h,yn + hk3)



The propagator F – complex case 

!  Let us try a grossly nonlinear case y=exp(t): 

!  Victory!  

€ 

ʹ′ y = y, y0 =1
k1 =1

k2 =1+
h
2

k3 =1+
h
2
(1+

h
2
)

k4 =1+ h +
h2

2
(1+

h
2
)

y1 =1+
h
6
(k1 + 2k2 + 2k3 + k4 ) =1+ h +

h2

2
+

h3

6
+

h4

24



The residual r‏ 

!  The difference between a measurement m  and its 
prediction by the track state, Hx, is called the residual: 

    V is the covariance matrix of the measurements  
    R is the covariance matrix of the residuals. 
    (Note that the contribution from the track is here added to 

the measurement variance. The measurement is not used 
yet. If the hit contributes to the track, the track variance is 
instead subtracted from the residual variance). 

 At this point you can reject a measurement mk on the basis of 
rk

2/Rkk . This is the pattern recognition part. 

€ 

rk
k−1 = mk −Hk ˜ x k, Rk

k−1 = Vk + HkCk
k−1Hk

T



Updating the state vector: 

!  A way to update the track state with the newly added hit is 
to take a weighted average of the predicted track state and 
the state suggested by the new measurement: 



Updating the state vector: 

!  An equivalent way is to use the gain matrix K:  

€ 

Kk = Ck
k−1HT (Vk + HkCk

k−1Hk
T )−1

˜ x k = ˜ x k
k−1 + Kk (mk −Hk ˜ x k

k−1)
Ck = (1−KkHk )Ck

k−1



Filtered residuals 

!  The filtered residual, its covariance and χ2 are 

Figure from Fleischmann 



Smoothing 

! We have reached the end with n hits. Now the procedure is 
repeated backwards. This is used to update the state at 
each surface k with the information from all the other: 

!  Finally the state at the innermost surface is extrapolated to 
the perigee, and this result is used in further analysis. 



Smoothing 

From the GLAST 
Science Prototype 



Combinatorial Kalman Filter 

# IFor tracking in dense track environments, the nearest hit
 might not be the best. 
# The Combinatorial Kalman Filter (Mankel 1997) keeps many
options open for propagating a seed until one of them conquers



Outlier removal and iterations 

# ISeveral iterations are normally used:

# The smoother fit can use updated
    space-points (applying small corrections
    depending on track parameters).
# At the smoother step, outliers contributing a large χ2
   can be removed
  (due to δ-electrons, nearby tracks, misalignment or noise)
# The easiest tracks (with high pT and many
    hits-on-track) are reconstructed first and their hits removed
    from the list of hits.
# The remaining hits are now fitted with more relaxed
    requirements (in particular a lower pT cut).
Finally the filter is repeated outside-in, starting with seeds in
the outer layers, in particular to pick up long-lived decays
and photon conversions.



Global (Newton-Raphson) fits 

!  The global least-squares fit assumes we know in advance 
which hits belong to the track. 

!   It minimizes the weighted sum of distances between the 
fitted track and the assigned hits, adjusting the track states 
at each surface. 

!  It is mathematically equivalent to the Kalman filter-smoother 
for a fixed selection of hits on a track.  

!  If all measurement errors are Gaussian,  it is also equal to 
the maximum likelihood fit.  



Global fits 
!  In the approximation where the expected measurements  

are linear in the track parameters x, we minimize: 

 where m is a vector of measurements at all the surfaces. 
# The solution is: 

    For normally distributed m, this is also the maximum 
likelihood estimate of the parameters. 

    The factor 

    is also the covariance matrix C of the track parameters. 

€ 

χ2 = (m −Hx )T V −1(m −Hx )

€ 

(HTV −1H)−1 = (1
2
δ 2χ2

δx 2
)−1



Newton-Raphson fit 

!  If  the projection h(x) is not linear, we can Taylor expand 
around an initial value x0 obtaining approximately: 

we insert now instead 

    x1 may not exactly minimize χ2 – but x1 is, after all, better 
than x0. Thus we iterate until convergence:  

   (|x1 -x0|<small number). 



Track fits in Super-Kamiokande 

$  Reconstruct Cherenkov rings 

$ Extract track parameters 
$ X= 

$ Vertex position 
$ Momentum and direction 
$ Particle ID 

By maximizing the total likelihood: 



Track fits in Super-Kamiokande 

$  The individual pdf’s are far from Gaussian ! See f_q below. 

$  So good seeding is very important to avoid local minima 
  and CPU consumption is very high  



Dealing with multiple scattering 

!  The global chi-squared track fit can allow at each scattering 
plane a MS angle treated as an extra track parameter with a 
contribution to chi-squared of 

!  Alternatively we can introduce correlations between 
surfaces in the covariance matrix V. This is what we do in 
the exercise: 

! MS is approximately Gaussian. 
!   The Global Chisquared and the Kalman Filter only work 

efficiently with Gaussian deviations from expectations. 



Dealing with Non Gaussian errors  

!  Special methods  are needed to take care of non-gaussian 
influences. Typical example is hard photon radiation where 
the probability density for the electron to retain a fraction z 
of its energy follows the Bethe-Heitler law  

€ 

f (z) = (−ln z)c−1 /Γ(c)

€ 

c = Xrl /ln2



Gaussian Sum Filter 

!  Branch the Kalman filter at each surface into parallel paths 
using a finite number of different Gaussian errors. 

!  This is the same as modelling e.g. the Bethe-Heitler as a 
sum of Gaussians 

where the weights gi, the average, µi, and variance, σi
2, of the 

energy are determined beforehand from simulation. 

Figure from Salzburger lectures 

€ 

f (z) = giφ(z;µi
i

Nmax

∑ ,σ i)

See eg R. Frühwirth and S. Frühwirth-Schnatter, 1998  



Gaussian Sum Filter 

!  Effectively the track state branches out into a number of 
possibilities at each plane. 

! Component reduction, must be carried out at some point to 
keep the number of branches from exploding. 

!  The resulting algorithm is very efficient in recovering from 
hard bremsstrahlung, but is also very CPU consuming.  
Often restricted to electron candidates.  

From A. Strandlie, CMS simulation 2003 



! DNA offers an alternative recovery from bremsstrahlung. 
!   First, the z retained after a particular surface is estimated 

using the hits in a few following planes. 
!   Then an adjustable noise level σ(z) is calculated so that 

the Bethe-Heitler probability this z equals that for 
z=z(median)+xσ(z), where x is drawn from a unit Gaussian.  

Dynamic Noise Adjustment 



!  The dynamically adjusted  σ(z)=Δz/Δx noise term is fed 
back to the Kalman Filter covariance matrix, just like for 
multiple scattering, and allows for an increase of 1/p. 

Dynamic Noise Adjustment 

 from Kartvilishvili 



DNA filter 

! Using the DNA filter instead of just a fixed noise of  width 
                                  helps for electrons, because z is not 

Gaussian: 

From Kartvilishvili 



Global optimization 

!  The problem arises of competing assignments of hits to the 
different track candidates or to noise. What is the optimal 
assignment? 

!   In essence this is the travelling salesman’s problem. It is 
not sure that the nearest track is the best. The problem 
should be tackled by minimizing a total energy function. 

!  In the Elastic Arms Algorithm a number of “deformable track 
templates” must first be found. These should also include a 
“noise template”. The number of tracks stays fixed, but their 
parameters can change during the procedure. 



Global optimization 

!  A “metric” Mia is now defined, typically the squared distance 
    from hit i to track template a. 
!   One could try to minimise to minimize a “total energy”: 

     where the “assignment strength” Sia is either 0 or 1. 
#   However, optimizing the Sia’s is tricky since the energy-    
landscape is very “spiky” with lots of local minima. 

€ 

E = SiaMia[ ]
i

Hits

∑
a

Tracks

∑



Elastic arms and annealing 

!  This is tackled by annealing and fuzzy assignment strength: 

 where β=1/T and λ is a “chisquared cut” of the order 10. 
 Si0 is here the assignment strength to noise (Mi0=λ) 

!   We now start at a high “temperature” where the Sia’s are 
relatively large, even for distant hits. Few local minima. 

!   The track parameters are then iterated to the global 
minimum of E using its derivatives a la Newton-Raphson 

€ 

Sia =
e−βM ia

e−βλ + e−βM ia

a=1

Tracks

∑



Elastic arms and annealing 

! We then lower the temperature (by eg 5%), repeat 
     and continue until T<<1. 
!  At this point, all the Sia’s take ~discreet values of 0 and 1.  

Chisquared for 10 muon tracks in 
HERA-B with decreasing temperature. 
(From Borgmeier Diploma Thesis 1996) 

More is found in R.Mankels review 
(arXiv:040239v1) from 2004. 



Deterministic Annealing Filter 

!  A problem with a global method like Elastic Arms is that the 
approximate number of tracks must be known beforehand. It 
gives you only better hit sharing, not better track finding 
efficiency. 

$ Therefore Frühwirth and Strandlie proposed to modify the 
(local) Kalman filter using an assignment probability Sik  

    for assigning hit i in plane k to the current track. 
$ Thus all hits have a say in the propagation of a given seed. 
$ Investigated for ATLAS in S. Fleischmanns thesis 



DAF assignment probabilities 

!  The assignment probability for each of nk measurements in 
layer k to the current track is assumed to be proportional to 
a multivariate Gaussian: 

    where x here is the smoothed track state, but without 
involving layer k in the fit, and T a temperature parameter 
(the last  term is the “track contribution” to the error, which 
can often be ignored).  

   This is nothing but the likelihood for a track to produce a 
given hit using scaled measurement errors. However, what 
we want is the posterior probability of the track parameters. 



DAF assignment probability 

!  Allowing for the hypothesis that no hit is produced by the 
track in layer k, we normalise the assignment probability as: 

!  The cut term may be parametrized as 

  where     acts as a     cut-off at low temperature. 
(Frühwirth and Strandlie, Comp.Phys.Comm 120,197 (1999)) 

€ 

Si
k =

φk
i

Λk
j + φk

j( )
j

nk

∑



DAF algorithm 

!  The filtered state can take several measurements per 
detector layer into account by using their weighted mean. 

Figure from Fleischmann 
PhD thesis (ATLAS) 



DAF in practice 

!  The Deterministic Annealing Filter has turned out especially 
effective in finding the best left-right choices in drift tubes. 

!  It can be used as an ”afterburner” and may significantly 
improve momentum resolution. 

Simulated performance in an 
“ATLAS-like” setup of the DAF, 
either in standalone mode or as 
a track fitter following a CKF or GSF 
track finder. (Frühwirth and Strandlie, 
2006) 



DAF as a multi-track fitter 

!  It can be extended it to a multi-track fitter with built-in pattern 
recognition 

   (Frühwirth and Strandlie, Comp.Phys.Comm,133(2000)34). 
!   In this case, the normalisation of assignment probabilities 

needs to be changed so that the sum runs over all accepted  
tracks competing for the measurements. 

!   As in the Elastic Arms, the procedure starts at a high 
temperature and iterates with decreasing tolerance, but without 
working with a fixed number of tracks. 



Track scoring 

! Competition among tracks for the same hits call for a quality 
estimator (or “score”) used to reject or accept the track. 

!  A combination of sub-estimators are used: 
% Number of precision hits 
% Number of outlier hits 
% Holes (track passing through live sensor no signal) 
% Shared hits (penalized if hit is not “shareable”). 
%  Total χ2 per degree of freedom 
$ In a second pass the hits not yet assigned to a track may be 

reconsidered with larger tolerances to form, for example, low pT 
tracks or tracks from secondary interactions (long lived decays). 



Finding the primary vertex 

!  Typically a limited ”beam-spot” is given by the machine-
parameters , beam-position monitors or pre-processing. 

! Hereafter, just two tracks suffices to provide an accurate seed 
for the vertex  

Figure from Mankel 



!  The danger is of course that the initial seed is wrong, so 
great care must be taken in this very first step. 

!  In ZEUS, all candidate track pairs were checked for 
compatibility with a common vertex on the beam-line. They 
were then ranked according to how many other pairs they 
agreed with. The best pair then started the chi-squared fit. 

! CMS also finds the coordinates with the highest density of 
track pair crossings. Each track pair is weighted by a 
decreasing function of the distance between their two 
perigees. The position with the largest weight is the seed. 

Finding the first vertex seed 



!  Several vertices fitted simultaneously (20 vertices above) 
!  Several iterations with decreasing tolerance for assigning a 

track to a vertex a la the Multitrack DAF. 

ATLAS Multi Vertex Finder 

Figure from Saltzburger 



!  The alternative to a Kalman Filter is the Newton-Raphson 
least squares fit (for vertices called a Billoir fit): 

!  It requires that the collection of tracks associated with the 
vertex is known in advance. 

!  It can be done e.g. after the Kalman Filter vertex finder. 
! Not only the vertex is fitted, but also the track momenta, this 

time with the constraint that they should all come from the 
same vertex point. This yields improved momenta. 

Billoir vertex fit 



!  Let                           be the vertex position for n tracks 
!  Let                           be the i’th track momentum 
!  Let                          be the 5 track parameters of the i’th track 

at some reference surface. 
!  To first order in a Taylor series:  
!  v0 and p0i are estimates of the vertex and track momenta. 
!  Let                                      and      be the      covariance 

matrix. 
!  Then 

Billoir vertex fit 

€ 

v = (xv,yv,zv )

€ 

p i = (pxi, pyi, pzi)

€ 

x i = F(v , p i)

€ 

F = F(v 0, p 0i) + Diδv + Eiδp i

€ 

δx i = x i,meas − F(v 0, p 0i)

€ 

Vi

€ 

χ2 ≈ (δx i∑ −Diδv − Eiδp i)
T Vi

−1(δx i −Diδv − Eiδp i)

€ 

xi

€ 

δxi



!  Just like in the track fit (slide 49), we minimize χ2 by: 

! Where the real work for the programmer is in the initial 
calculation of D and E - and in the initial guess of v0                          

Billoir vertex fit 

€ 

A = Di
TVi

−1Di∑ Bi = Di
TVi

−1Ei Ci = Ei
TVi

−1Ei

t = Di
TVi

−1δx i u i = Ei
TVi

−1∑ δx i€ 

v = v 0 + (A − BiCi
−1BT

i)−1(t ∑ − (Bi∑ Ci
−1)T u i)

p i = p 0i + Ci
−1(u i − Bi

Tδv )

Tatjana Lenz master thesis 



! Now interchange      with     and continue until convergence 
!  The covariance of the fitted parameters is at each step: 

! We also get correlations between the track momenta: 

Billoir vertex fit 

€ 

cov(v ) = A − BiCi
−1Bi

T∑( )
cov(p i) = Ci

−1 + (BiCi
−1)T cov(v )BiCi

−1

cov(v , p i) = −cov(v )DiEi
−1

€ 

cov(p i, p j ) = δ ij E j
−1 − Ei

−1Di
T cov(v , p j )



If you have some prior knowledge about the beam collision 
position b, just add an extra contribution to the chisquared 
which effectively changes the derivatives Di: 

!  If we deal with a secondary vertex and expect the sum of 
track momenta to point back to the primary vertex (exact 
constraint), then we can use the method of Lagrange 
Multipliers: 

! Where λ are 3 new arbitrary fit parameters and d is the 
minimal vector distance between the primary vertex and the 
line pointed by the momentum sum (more about that later). 

Exploiting external constraints 

€ 

δχ2 = (v − b )T Vb (v − b )

€ 

δχ2 = −λ • d (v ,∑ p i)



!  Jets with a B-hadron can be identified by the lifetime (1.5 
ps) and high mass of the b quark (about 4.2 GeV) 

b-jet tagging 

From the ATLAS B-physics group 



# One way is to (partly) reconstruct the decay chain: 
     b-jet -> B-+X -> D0+X+Y -> K-+X+Y+Z  
Where X are b-quark fragmentation particles, Y are other 
particles from B- decay and Z other particles from D decay. 

# The number of found vertices along the jet-axis, their 
distances from PV, the mass and number of tracks at each 
vertex are all examples of variables with power to 
discriminate between b-quarks and lighter partons. 

using secondary vertices 



# Due to the high B-meson mass, its leptonic decay (~10%) 
     has a higher pT

rel  than leptons from light parton jets 

Using a lepton tag 



# Combine impact parameter significances for jet tracks 

 S is the impact parameter 
 significance and f(S) 
 its light jet probability. 
The P(jet) estimator has many 
nice properties. 

#   Finally combine everything: 
 combined Likelihood 
 or Multi-Variate Analysis  

Using impact parameter prob. 



Constraints from priors 

!  a priori knowledge can be used with great advantage. 
!   One example is the beam energy constraint used in the 

reconstruction of tracks from e+e- collisions. 
!   Another is the reconstruction of B meson cascade decay 

where the known masses of the D mesons are used as a 
constraint. 

!  Another is e+e- tracks from photon conversions. A vanishing 
photon mass can be imposed using Lagrange Multipliers. 

!  Another on the next slide. 
!   Details on implementation are found in 
     www.phy.ufl.edu/~avery/fitting/kinfit_talk1.pdf‏ 



New ParticleDiscovery 
The Ξb*0  involves elegant 
cascade that CMS tracker 
handles beautifully.  

Candidate event display 
Λ0 



Lagrange Multipliers 

!  Let again x be the track parameters of the two tracks that 
form a conversion candidate. The constraints must be 
expressed as some functions, H(x), being exactly zero. 

! We again expand around an approximate solution xA: 

!  If the two tracks should emerge parallel from a common 
point, the expression would be something like 

! Where the p’s  and r’s refer to the start points of the tracks. 



Lagrange Multipliers 

!  The function to be minimized is now (dropping vector bars): 

#      The minimum is found in the space of the track  
parameters x=(p,r) and the real constants λ. 

#    The ”0” refer to the unconstrained solution from the track 
fits and the “A” to the previous iteration of this fit. 

#   The solutions have to be iterated since the constraint 
equations were linearized. 



Solution to the constrained fit 

!  (put derivatives of chi2 to zero and solve by substitution): 



Notes to the constrained fit 

! Once we have determined D and d, the rest is automatic 
!  x0 and V0 are given by the independent track fits 

! We do not have to invert V0, only DV0DT 

!  The χ2 is a sum of terms, one for each constraint. 
    You can choose to cut on them individually 



Alignment 

!  In order to have high resolution unbiased tracking, the 
detector elements must be correctly aligned.  

!  This is partly achived by optical survey, and for example  
laser alignment systems, to track short-term movements. 

!  The ultimate alignment precision is best achieved by using 
the fitted tracks themselves. 



Peter Hansen, NordForsk lectures 

Alignment with tracks 

! Consider our example spectrometer. From the 
reconstructed tracks, we want to determine the alignment 
corrections to the position and orientation of each plane. 

! Consider a single measured coordinate yi and a track model 
y=h(x,α), where x are the track parameters and α are the 
alignment corrections. 

!  A straight forward estimate of δαi is simply the average 
residual <ri = yi – h(x,α)>, averaged over all fitted tracks. 

!  If the considered plane does not take part in the fitted track, 
ri is called an unbiased residual. 

!  This “local” approach requires in general many iterations 
because the correlations between planes induced by the 
fitted tracks are ignored with this method. 



Alignment with tracks 

From ATLAS alignment paper 



Global alignment with tracks 

!  In the ”global” approach we define a total chi2 of a large 
track sample: 

    where r are the residuals, α the alignment parameters of the 
detector elements and x the individual track parameters. 

    What we want is to simultaneously minimise chi2 both with 
respect to the millions of x’s and to the many α’s. 

    Sounds impossible, but it isn’t! 

€ 

χ2 = rTR−1r
tracks
∑

r(x,α,m) = m − h(x,α)



Global alignment with tracks 

!  After fitting for the track parameters, x, we have to first 
order the total derivative wrt the alignment : 

   where A is the partial derivative of r wrt α. 
!  If R is diagonal, the derivative wrt some α receives only 

contributions from the local detector element for which the 
partial derivative A=δr/δα is non-zero. 

!  Finding δα so that the sum of the derivatives over all tracks 
be zero thus results in M coupled equations, just like for the 
Billoir vertex fit. 

€ 

dχ2

dα 
= 2

tracks
∑ AT R−1r 



Global alignment with tracks 

!  If the summed χ2 is not already at minimum, we linearize 
the problem to these M equations: 

!   Several algorithms exists for solving them iteratively. 
MILLIPEDE is a well-known example (google Blobel).  

!  Another example is MINRES, minimising the distance 
between the two sides of the equation (used by CMS). 

! Others calculate eigenvectors and eigenvalues of the 
second derivative exploiting the sparseness of this matrix 
(used by ATLAS). 

€ 

dχ2

dα 
= −

d2χ2

dα 2
Δα 



Global alignment with tracks 

!  The explicit solution to the alignment problem is thus 

     or, assuming r is linear in α,: 

    where                                    is the covariance matrix of the 
residual vector of a track. See ATL-INDET-PUB-2007-009. 



Eigen-modes of  distortion 

!  Let 

    Then the covariance of the fitted alignment corrections is 
     C(Δα)=A-1 . Since this matrix has an inverse, it can be 

diagonalized and written in terms of its eigenvectors u: 

 where 

€ 

Ckl (Δα ) =
1
d j

uk
( j )ul

( j )

j

M

∑
€ 

b = −
1
2
dχ2

dα 
, A =

1
2
d2χ2

dα 2

€ 

Δα =
1
d j

(u( j )Tb)u( j )
j

M

∑



Eigen-modes of  distortion 

!  The eigenvectors are collective orthogonal distortions of the 
detector. The change in the χ2 due to the correction Δα 
receives independent contributions from each mode: 

!  Thus we can identify and correct these contributions 
independently of each other. 

€ 

Δχ2 = −2 1
d j

(u( j )Tb)2
j

M

∑



Weak modes 

    Clearly there is a problem if dj=0. 
    Small eigenvalues of A correspond to small 
    dχ2/dα. These are called ”weak modes”, poorly 
    constrained by the data. 

   So there are some distortions which cannot be seen in the 
residuals but still may spoil the momentum measurement. 



Weak modes 

    The only way out is to use external constraints.  
     If, for example, an optical survey yields the alignment shift 
     αsurvey with precision σ, you would add a piece 

     If in general relations g(α)=0 exist with covariance G: 

     Exact constraints, like known resonance masses, are taken 
into account with Lagrange multipliers. 

€ 

Δχ2 = (α −αsurvey )
2 /σ 2

€ 

Δχ2 = gTGg



Effect of  weak mode misalignment 

!  ATLAS saw the troubles from weak modes already in 
simulation. Extra constraints from cosmics, surveys, 
resonances and combined detectors  can correct for 
weak modes. 

!                     2008                                                   2011 



Curls and twists (q anti-sym) 

!  Imaging a rotation of the various layers in phi proportional with 
R. That would approximately conserve the helix-shape but 
bias the momentum (different for positive and negative 
charge). That is called a curl. 

!    

!  Imagine a rotation of the end of a layer cylinder. That would 
approximately conserve the helix-shape but bias the 
momentum in an eta dependent way. That is called a twist.  

From the ATLAS Silicon alignment group, Bruckman et al 



Checking for twists and curls 

! No effect of twists and curls seen after  alignment 

E/p (e+ e-) Z->mu+mu- mass 

€ 

q / pCorrected = q / pReconstructed (1− qpTδSagitta )



Radial deformations ( q sym) 

!  There are also weak mode distortions affecting charges 
symmetrically – but different at different phi. 

From the ATLAS Silicon alignment group, Bruckman et al 



Checking radial deformations 

!   Phi dependence of low mass resonances 

From the ATLAS Silicon alignment group, Bruckman et al 



B field rotations 

€ 

p→ p(1− cotθ sinϕα rot )

From the ATLAS Silicon alignment group, Bruckman et al 



Correcting for B field rotation 

!  The needed extra constraint is here provided by the K0 mass. 
!  The rotations in data are found from interpolation among 

simulated rotated samples. 



Checking for B field rotation 

From the ATLAS Silicon alignment group, Bruckman et al 



Summary of  particle tracking 

! Good spacepoints is the most important thing! 
! Constants need to be frequently CALIBRATED and ALIGNED! 
!  Pre-fabricated templates saves CPU time. 
!  Fits maximize the likelihood of track and vertex states, given 

the spacepoints. The Kalman Filter and Global Chisquared 
minimization are the standard methods. 

! Non-linearities are handled by iteration and non-Gaussianity 
by procedures such as the GSF. 

!   Further refinements are possible by with global methods 
arbitrating competing track-hit asignments and using external 
constraints. 

!   Ultimate optimum is to use ALL the info in the data and ALL 
knowledge that you have otherwise – a bit like in big water 
Cherenkovs. 


