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The diversity among the confirmed 1792 exoplanetary  
systems provides a daunting challenge for theories of 
planet formation
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The traditional core accretion scenario

• Formation of planetesimals followed by runaway growth  
to form planetary embryos

• Oligarchic/orderly growth of planetary embryos 

• Giant impacts between embryos form inner terrestrial planets 

• Massive cores form beyond the ice line capable of accreting  
gas envelopes ➔ ice-giant and gas-giant planets 
 
One major flaw is that this picture ignores the role of  
planetary migration  
 
 

Question  
Can the oligarchic growth picture, combined with a self-consistent disc model and  
the most up-to-date prescriptions for planet migration, lead to systems of planets 
that look like those which have been observed?



N-body simulations



N-body simulations with migration, collisional growth and gas accretion onto planetary cores  
(Hellary & Nelson 2012, Coleman & Nelson 2014) 
 
Model ingredients 

• Gravitationally interacting planetary embryos + planetesimals (Mercury-6, J. Chambers) 

• Self-consistent thermally evolving 1D viscous disc model with stellar irradiation  
and dispersal through a photoevaporative disc wind (Dullemond et al 2011) 

• Type I migration with corotation torques (Paardekooper et al 2011, Fendyke & Nelson 2014),  
and transition to type II migration when gap forms (Lin & Papaloizou 1986) 

• Gas settling onto planetary cores – enhanced planetesimal capture  
(Inaba & Ikoma 2003) 

• Gas accretion for cores with mass > 3 Earth masses (Movshovitz et al 2010) 

• Simple chemical model that tracks ice-lines and planetary compositions through  
chemical tagging (Oberg et al 2012) 
 
Variation of parameters:  
 
Disc mass (1 – 5 MMSN)  
Solids-gas ratio (1 or 2 x solar) 
Planetesimal radii (1 or 10 km) 
 



Planetesimal capture radius 
(Inaba et al 2003)

Gas accretion onto cores 
(Movshovitz et al 2010)



Evolution of viscous disc model













Slow growth in a low mass disc: S111B









Kamikaze Neptunes: S211A















Kamikaze Giants: S221A









Late forming survivors: S521A















Bulk chemical composition of planets and their gaseous envelopes



Comparing simulation results with observations

• Model leads to formation of super-Earth and  
Neptune-mass planets with intermediate orbital  
periods 

• Adopting an inner boundary at 0.15 AU prevents  
formation of compact systems of super-Earths observed  
by Kepler (e.g. Kepler 11) 

• The model fails to form any gas giants that survive  
- only two giant planets formed exterior to ~ 1 AU, 
due to rapid inward migration of cores when their  
masses mp > 15 MEarth   Mordasini et al (2009)





Prelimary results from updated N-body simulations 
(Coleman & Nelson 2015a,b In prep.) 
 
New model ingredients 

• Disc cavity interior to 0.05 AU (stellar magnetosphere) 

• Transition to higher disc viscosity when T > 1000 K 

• Consistent treatment of dust opacity and solids abundance 

 
 
 
Model parameters 
Disc masses: 1, 1.5, 2 x MMSN  
Metallicity values: [Fe/H] = 0.5, 1 , 2 x Solar 
Planetesimal radii: Rpl = 10m, 100m, 1km, 10km 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Simulation results

Three basic modes of evolution:

1. Modest growth to mp < 2 MEarth prior to disc dispersal. 
Modest levels of migration. Low solid abundance. Large planetesimals. 

2. Formation of super-Earths + Neptunes with mp < 35 MEarth.  
Large scale migration. Moderate solid abundance. Small planetesimals/boulders. 

3. Formation of giant planets with mp > 35 MEarth. 
Large scale migration. Large solid abundance. Small planetesimals/boulders.
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Mdisc=1.5, [Fe/H]=2, Rpl=1 km
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Mdisc=1, [Fe/H]=2, Rpl=100 m
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Mdisc=2, [Fe/H]=2, Rpl=10 m



Disc mass = 1.5x MMSN  
Metallicity = 0.5 x solar 
Planetesimal sizes = 10 km



Disc mass = 1.5x MMSN  
Metallicity = 0.5 x solar 
Planetesimal sizes = 1 km



Disc mass = 1.5x MMSN  
Metallicity = 0.5 x solar 
Planetesimal sizes = 100 m



Disc mass = 1.5x MMSN  
Metallicity = 0.5 x solar 
Planetesimal sizes = 10 m 



Disc mass = 1 x MMSN  
Metallicity = 2 x solar 
Planetesimal sizes = 10 km



Disc mass = 1 x MMSN  
Metallicity = 2 x solar 
Planetesimal sizes = 1 km



Disc mass = 1 x MMSN  
Metallicity = 2 x solar 
Planetesimal sizes = 100 m



Disc mass = 1 x MMSN  
Metallicity = 2 x solar 
Planetesimal sizes = 10 m



Mordasini et al (2009)

No giants?



Giant planet formation and survival



Mordasini et al (2009)

Hydro simulation

N-body simulation

Semi-major axis versus time Planet mass versus time

Planet mass versus semi-major axis



6 Me core

Forming a Jovian mass planet that orbits at ~ 5 AU requires rapid  
gas accretion and type II migration to initiate at ~ 14 AU

How to maintain cores at large distance and avoid rapid inward  
type I migration?
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Structuring of disc due to variations in viscous 
stresses may create regions where corotation 
torque prevents type I migration for bodies with 
mp ~ 30 MEarth  
 
Zonal flows observed in MHD simulations of disc 
turbulence (Papaloizou & Steinacker 2003; Papaloizou & Nelson 2003; 
Johansen et al 2009; Bai & Stone 2014) 
 
 
A simple toy model: 
•  Choose radii where viscous ⍺ varies by 

~ 50%  

• Set life time of zonal flows ~ 50,000 local orbits 

• Choose new radius to apply zonal flow after life time  
has elapsed  
 
 

ALMA Partnership (2015)

Bai & Stone (2014)
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No zonal flows Zonal flow runs



Conclusions

• Compact short-period systems of super-Earths and Neptunes are produced in N-body simulations 

• Formation of short-period planets around low metallicity stars (e.g Kaptyen’s star, 
Kepler 444) requires planetary growth through boulder or pebble accretion rather than  
planetesimal accretion  

• Formation and survival of giant planets requires significant slowing of migration at  
distances ~ 10-20 AU from central star. Zonal flows may provide a mechanism for  
achieving this… 

• Slow or no type II migration at large and small orbital radii may explain the observed  
period distribution for giant exoplanets
 


