Lecture 1: Dust evolution

"NBI summer School on Protoplanetary Disks and Planet Formation"

August 2015

Anders Johansen (Lund University)

Conditions for planet formation

• Young stars are orbited by turbulent protoplanetary discs

• Disc masses of 10^{-4} – $10^{-1}~M_{\odot}$

• Disc life-times of 1–10 million years

Planet formation paradigm

Planetesimal hypothesis:

Planets form in protoplanetary discs around young stars from dust and ice grains that stick together to form ever larger bodies

• Viktor Safronov (1917-1999): "father" of the planetesimal hypothesis

 "Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets" (1969, translated from Russian)

The three steps of planet formation

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs around young stars from dust and ice grains that stick together to form ever larger bodies

Dust to planetesimals

 $\mu m \rightarrow km:$ contact forces during collision lead to sticking

- $\begin{array}{|c|c|c|c|} \hline \textbf{P} lanetesimals to protoplanets} \\ \hline km \rightarrow 1,000 \ \text{km}: \ \text{gravity} \ (\text{run-away accretion}) \end{array}$

Sticking

• Colliding particle stick by the same forces that keep solids together (van der Waals forces such as dipole-dipole attraction)

Dust growth

(Blum & Wurm, 2008)

(Paszun & Dominik, 2006)

- Dust growth starts with μ m-sized monomers
- Growth of dust aggregates by hit-and-stick
- Dust aggregates compactify in mutual collisions

Bouncing

- Laboratory experiments used to probe sticking, bouncing and shattering of particles (labs e.g. in Braunschweig and Münster)
- Collisions between equal-sized macroscopic particles lead mostly to bouncing:

• Experimental result presented in Blum & Wurm (2008)

Collision regimes

• *Güttler et al.* (2010) compiled experimental results for collision outcomes with different particle sizes, porosities and speeds

Collision outcomes

• Güttler et al. (2010) \rightarrow

 Generally sticking or bouncing below 1 m/s and shattering above 1 m/s

• Sticking may be possible at higher speeds if a small impactor hits a large target

Drag force

Gas accelerates solid particles through drag force: (Whipple, 1972; Weidenschilling, 1977)

$$\frac{\partial \boldsymbol{v}}{\partial t} = \dots - \frac{1}{\tau_{\rm f}} (\boldsymbol{v} - \boldsymbol{u})$$
Particle velocity Gas velocity

In the Epstein drag force regime, when the particle is much smaller than the mean free path of the gas molecules, the friction time is

$$\tau_{\rm f} = \frac{R\rho_{\bullet}}{c_{\rm s}\rho_{\rm g}} \qquad \begin{array}{c} \stackrel{R: \mbox{ Particle radius}}{\rho_{\bullet}: \mbox{ Material density}} \\ \stackrel{r_{\rm f}: \mbox{ Gas density}}{\rho_{\rm g}: \mbox{ Gas density}} \end{array}$$

Important nondimensional parameter in protoplanetary discs:

 $\Omega_{\rm K} \tau_{\rm f}$ (Stokes number)

Particle sizes

- In the Epstein regime $St = \frac{\sqrt{2\pi R \rho_{\bullet}}}{\Sigma_{\sigma}}$
- Other drag force regimes close to the star yield different scalings with the gas temperature and density (*Whipple*, 1972)

Dust evolution

Sedimentation

- Dust grains coagulate and gradually decouple from the gas
- Sediment to form a thin mid-plane layer in the disc
- Planetesimals form by self-gravity in dense mid-plane layer
- Turbulent diffusion prevents the formation of a very thin mid-plane layer

Diffusion-sedimentation equilibrium

Diffusion-sedimentation equilibrium:

$$\frac{H_{\rm dust}}{H_{\rm gas}} = \sqrt{\frac{\delta}{\Omega_{\rm K}\tau_{\rm f}}}$$

 $H_{\rm dust} =$ scale height of dust layer

 $H_{\rm gas} =$ scale height of gas

 δ = turbulent diffusion coefficient, like α -value ($D = \delta H c_s$)

 $\varOmega_{\rm K}\tau_{\rm f}=$ Stokes number, proportional to radius of solid particles

Derivation of diffusion-sedimentation equilibrium

• The flux of dust particles in the vertical direction is

$$\mathcal{F}_{z} = \rho_{\rm p} v_{z} - D \rho_{\rm g} \frac{\mathrm{d}(\rho_{\rm p}/\rho_{\rm g})}{\mathrm{d}z}$$

- Here we have assumed *Fickian diffusion* where the diffusive flux is proportional to the concentration $\epsilon = \rho_p / \rho_g$.
- In diffusion-sedimentation equilibrium we have $\mathcal{F} = 0$,

$$\epsilon v_z - D \frac{\mathrm{d}\epsilon}{\mathrm{d}z} = 0.$$

• We use the terminal velocity expression $v_z = - au_{
m f} arOmega_{
m K}^2 z$ to obtain

$$\frac{\mathrm{d}\ln\epsilon}{\mathrm{d}z} = -\frac{\tau_{\mathrm{f}}\Omega_{\mathrm{K}}^2 z}{D}$$

The solution is

$$\epsilon(z) = \epsilon_{
m mid} \exp[-z^2/(2H_\epsilon^2)]$$

with

$$H_{\epsilon}^{2} = \frac{D}{\tau_{\rm f} \Omega_{\rm K}^{2}} = \frac{\delta H^{2} \Omega_{\rm K}}{\tau_{\rm f} \Omega_{\rm K}^{2}} \qquad \Rightarrow \qquad \frac{H_{\epsilon}^{2}}{H^{2}} = \frac{\delta}{\Omega_{\rm K} \tau_{\rm f}}$$

Turbulent collision speeds

• Turbulent gas accelerates particles to high collision speeds:

(Brauer et al., 2008; based on Weidenschilling & Cuzzi, 1993)

- $\Rightarrow\,$ Small particles follow the same turbulent eddies and collide at low speeds
- $\Rightarrow\,$ Larger particles collide at higher speeds because they have different trajectories

Terminal velocity approximation

• Equation of motion of particles (v) and gas (u)

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\boldsymbol{\nabla}\boldsymbol{\Phi} - \frac{1}{\tau_{\mathrm{f}}}(\boldsymbol{v} - \boldsymbol{u}) \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = -\boldsymbol{\nabla}\boldsymbol{\Phi} - \frac{1}{\rho}\boldsymbol{\nabla}\boldsymbol{P}$$

- Particles do not care about the gas pressure gradient since they are very dense
- Subtract the two equations from each other and look for equilibrium

$$\frac{\mathrm{d}(\boldsymbol{v}-\boldsymbol{u})}{\mathrm{d}t} = -\frac{1}{\tau_{\mathrm{f}}}(\boldsymbol{v}-\boldsymbol{u}) + \frac{1}{\rho}\boldsymbol{\nabla}P = 0$$

• In equilibrium between drag force and pressure gradient force the particles have their *terminal velocity* relative to the gas

$$\delta \mathbf{v} = au_{\mathrm{f}} \frac{1}{
ho} \mathbf{\nabla} P$$

\Rightarrow Particles move towards the direction of higher pressure

Ball falling in Earth's atmosphere

$$oldsymbol{v}_{ ext{term}} = au_{ ext{f}} rac{1}{
ho} oldsymbol{
abla} P$$

• Ball falling in Earth's atmosphere:

• Pressure is falling with height, so $\mathrm{d}P/\mathrm{d}z < 0$ and thus $v_{\mathrm{term}} < 0$ \Rightarrow Ball is seeking the point of highest pressure

Radial drift

Disc is hotter and denser close to the star

- $\bullet\,$ Radial pressure gradient force mimics decreased gravity \Rightarrow gas orbits slower than Keplerian
- Particles do not feel the pressure gradient force and want to orbit Keplerian
- Headwind from sub-Keplerian gas drains angular momentum from particles, so they spiral in through the disc
- Particles sublimate when reaching higher temperatures close to the star

Sub-Keplerian motion I

• Balance between gravity, centrifugal force and pressure gradient force:

$$0 = -\frac{GM_{\star}}{r^2} + \Omega^2 r - \frac{1}{\rho} \frac{\partial P}{\partial r}$$

• If we can ignore pressure gradients, then we recover the Keplerian solution

$$\Omega = \sqrt{\frac{GM_{\star}}{r^3}} \equiv \Omega_{\rm K}$$

• We can use $arOmega_{\mathrm{K}}$ to rewrite the original expression as

$$\Omega^2 r - \Omega_{\rm K}^2 r = \frac{1}{\rho} \frac{\partial P}{\partial r}$$

Sub-Keplerian motion II

• Balance between gravity, centrifugal force and pressure gradient force:

$$\Omega^2 r - \Omega_{\rm K}^2 r = \frac{1}{\rho} \frac{\partial P}{\partial r}$$

• Write pressure as $P = c_{\rm s}^2 \rho$ $\Omega^2 r - \Omega_{\rm K}^2 r = \frac{c_{\rm s}^2}{P} \frac{r}{r} \frac{\partial P}{\partial r} = \frac{c_{\rm s}^2}{r} \frac{\partial \ln P}{\partial \ln r}$

• Use
$$H = c_s / \Omega_K$$
 and get
 $\Omega^2 r - \Omega_K^2 r = \frac{H^2 \Omega_K^2}{r} \frac{\partial \ln P}{\partial \ln r}$

• Divide equation by $\Omega_{\rm K}^2 r$ $\left(\frac{\Omega}{\Omega_{\rm K}}\right)^2 - 1 = \frac{H^2}{r^2} \frac{\partial \ln P}{\partial \ln r}$

Sub-Keplerian motion III

• Balance between gravity, centrifugal force and pressure gradient force:

$$\left(rac{arOmega}{arOmega_{
m K}}
ight)^2 - 1 = rac{H^2}{r^2}rac{\partial\ln P}{\partial\ln r}$$

• The left-hand-side can be expanded as

$$\begin{split} \left(\frac{\varOmega}{\varOmega_{\mathrm{K}}}\right)^{2} - 1 &= \left(\frac{\nu}{\nu_{\mathrm{K}}}\right)^{2} - 1 \\ &= \left(\frac{\nu_{\mathrm{K}} - \Delta \nu}{\nu_{\mathrm{K}}}\right)^{2} - 1 \\ &= \left(1 - \Delta \nu / \nu_{\mathrm{K}}\right)^{2} - 1 \\ &= 1 - 2\Delta \nu / \nu_{\mathrm{K}} + (\Delta \nu / \nu_{\mathrm{K}})^{2} - 1 \\ &\approx -2\Delta \nu / \nu_{\mathrm{K}} \quad \text{for} \quad \Delta \nu \ll \nu_{\mathrm{K}} \end{split}$$

Sub-Keplerian motion IV

• Balance between gravity, centrifugal force and pressure gradient force:

$$-2\Delta v/v_{\rm K} = \left(\frac{H}{r}\right)^2 \frac{\partial \ln P}{\partial \ln r}$$
$$\Delta v = -\frac{1}{2} \left(\frac{H}{r}\right)^2 \frac{\partial \ln P}{\partial \ln r} v_{\rm K} \equiv \eta v_{\rm K}$$

• Use $H/r=({\it c}_{\rm s}/\varOmega_{\rm K})/({\it v}_{\rm K}/\varOmega_{\rm K})={\it c}_{\rm s}/{\it v}_{\rm K}$ to obtain the final expression

$$\Delta v = -\frac{1}{2} \frac{H}{r} \frac{\partial \ln P}{\partial \ln r} c_{\rm s}$$

 Particles do not feel the global pressure gradient and want to orbit Keplerian ⇒ headwind from the sub-Keplerian gas

Radial drift

Balance between drag force and head wind gives radial drift speed (Adachi et al. 1976; Weidenschilling 1977)

$$v_{
m drift} = -rac{2\Delta v}{arOmega_{
m K} au_{
m f} + (arOmega_{
m K} au_{
m f})^{-1}}$$

for Epstein drag law $au_{
m f}=a
ho_{ullet}/(c_{
m s}
ho_{
m g})$

• MMSN $\Delta v \sim 50 \dots 100 \text{ m/s}$

• Drift time-scale of 100 years for particles of 30 cm in radius at 5 AU Column density in the Minimum Mass Solar Nebula

- Spread rock and ice in the solar system planets evenly over the distance to the neighbouring planets
- Assume rock and ice represent ≈1.8% of total material ⇒ original gas contents (Kusaka, Nakano, & Hayashi, 1970; Weidenschilling, 1977b; Hayashi, 1981)

$$\begin{split} \varSigma_{\rm r}(r) &= 7\,{\rm g\,cm^{-2}}\,\left(\frac{r}{{\rm AU}}\right)^{-3/2} & {\rm for} \quad 0.35 < r/{\rm AU} < 2.7\\ \varSigma_{\rm r+i}(r) &= 30\,{\rm g\,cm^{-2}}\,\left(\frac{r}{{\rm AU}}\right)^{-3/2} & {\rm for} \quad 2.7 < r/{\rm AU} < 36\\ \varSigma_{\rm g}(r) &= 1700\,{\rm g\,cm^{-2}}\,\left(\frac{r}{{\rm AU}}\right)^{-3/2} & {\rm for} \quad 0.35 < r/{\rm AU} < 36 \end{split}$$

• Total mass of Minimum Mass Solar Nebula

$$M = \int_{r_0}^{r_1} 2\pi r \Sigma_{\mathrm{r+i+g}}(r) \mathrm{d}r \approx 0.013 M_{\odot}$$

Temperature in the Minimum Mass Solar Nebula

- Much more difficult to determine the temperature in the solar nebula
- Several energy sources: solar irradiation, viscous heating, irradiation by nearby stars
- Simplest case: only solar irradiation in optically thin nebula

$$F_{\odot} = \frac{L_{\odot}}{4\pi r^{2}}$$

$$P_{\rm in} = \pi \epsilon_{\rm in} R^{2} F_{\odot} \qquad P_{\rm out} = 4\pi R^{2} \epsilon_{\rm out} \sigma_{\rm SB} T_{\rm eff}^{4}$$

$$T_{\rm eff} = \left[\frac{F_{\odot}}{4\sigma_{\rm SB}}\right]^{1/4}$$

$$T = 280 \,\mathrm{K} \,\left(\frac{r}{\mathrm{AU}}\right)^{-1/2}$$

Vertical gravity

Radial density structure of MMSN

$$\Sigma(r) = 1700 \,\mathrm{g \, cm^{-2}} r^{-1.5}$$

- What about the vertical structure?
- \Rightarrow Hydrostatic equilibrium between gravity and pressure

• The distance triangle and the gravity triangle are similar triangles $\Rightarrow g_z/g = z/d$

$$g_z = g \frac{z}{d} = -\frac{GM_{\star}}{d^2} \frac{z}{d} \approx -\frac{GM_{\star}}{r^3} z = -\Omega_{\rm K}^2 z$$

Hydrostatic equilibrium structure

• Equation of motion for fluid element at height *z* over the disc mid-plane:

$$\frac{\mathrm{d}\mathbf{v}_z}{\mathrm{d}t} = -\Omega_\mathrm{K}^2 z - \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}z}$$

- For constant temperature T we can write $P = c_s^2 \rho$ (isothermal equation of state with sound speed c_s =const)
- Look for hydrostatic equilibrium solution:

$$\mathbf{0} = -\Omega_{\mathrm{K}}^2 z - c_{\mathrm{s}}^2 \frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}z}$$

Scale height

• Hydrostatic equilibrium condition:

$$0 = -\Omega_{\rm K}^2 z - c_{\rm s}^2 \frac{{\rm d} \ln \rho}{{\rm d} z}$$

• Rewrite slightly and introduce scale height $H = c_s / \Omega_K$:

$$\frac{\mathrm{d}\ln\rho}{\mathrm{d}z} = -\frac{\Omega_{\mathrm{K}}^2}{c_{\mathrm{s}}^2}z = -\frac{z}{H^2}$$

• Solution in terms of $\ln \rho$:

$$\ln \rho = \ln \rho_0 - \frac{z^2}{2H^2}$$

• Solution in terms of ρ :

$$\rho(z) = \rho_0 \exp\left[-\frac{z^2}{2H^2}\right]$$

Mid-plane density

Vertical density structure of protoplanetary disc

$$\rho(z) =
ho_0 \exp\left[-rac{z^2}{2H^2}
ight]$$

- $\rho_0 = \rho(r, z = 0)$ is the mid-plane gas density
- <u>Problem</u>: we only know the column density. Connection between Σ and ρ_0 comes from definite integral

$$\Sigma = \int_{-\infty}^{\infty} \rho(z) dz = \rho_0 \int_{-\infty}^{\infty} \exp[-z^2/(2H^2)] dz$$
$$= \sqrt{2}H\rho_0 \int_{-\infty}^{\infty} \exp[-\zeta^2] d\zeta = \sqrt{2\pi}H\rho_0$$

This yields the mid-plane density

$$p_0 = \frac{\Sigma}{\sqrt{2\pi}H}$$

Minimum Mass Solar Nebula overview

• As a starting point for planet formation models we can use the Minimum Mass Solar Nebula model of *Hayashi* (1981):

$$\begin{split} \Sigma(r) &= 1700 \,\mathrm{g \, cm^{-2}} \left(\frac{r}{\mathrm{AU}}\right)^{-3/2} \\ T(r) &= 280 \,\mathrm{K} \left(\frac{r}{\mathrm{AU}}\right)^{-1/2} \\ \rho(r,z) &= \frac{\Sigma(r)}{\sqrt{2\pi}H(r)} \exp\left[-\frac{z^2}{2H(r)^2}\right] \\ H(r) &= \frac{c_{\mathrm{s}}}{\Omega_{\mathrm{K}}} \qquad \Omega_{\mathrm{K}} = \sqrt{\frac{GM}{r^3}} \\ c_{\mathrm{s}} &= 9.9 \times 10^4 \,\mathrm{cm \, s^{-1}} \left(\frac{2.34}{\mu} \frac{T}{280 \,\mathrm{K}}\right)^{1/2} \\ H/r &= \frac{c_{\mathrm{s}}}{v_{\mathrm{K}}} = 0.033 \left(\frac{r}{\mathrm{AU}}\right)^{1/4} \end{split}$$

Minimum Mass Solar Nebula density

• Density contours in Minimum Mass Solar Nebula:

- Mid-plane gas density varies from 10^{-9} g/cm³ in the terrestrial planet formation region down to 10^{-13} g/cm³ in the outer nebula
- Blue line shows location of z = H
- Aspect ratio increases with r, so solar nebula is slightly flaring

Drift-limited growth

- Particles in the outer disc grow to a characteristic size where the growth time-scale equals the radial drift time-scale (*Birnstiel et al.*, 2012)
- Growth time-scale $t_{\rm gr}=R/\dot{R}$, drift time-scale $t_{\rm dr}=r/\dot{r}$
- Yields dominant particle Stokes number $St \approx \frac{\sqrt{3}}{8} \frac{\epsilon_p}{\eta} \frac{\Sigma_p}{\Sigma_g}$, with $\epsilon_p \sim 1$ the sticking efficiency (Lambrechts & Johansen, 2014)
- Here the pebble column density can be obtained from the pebble mass flux through $\dot{M}_{\rm p}=2\pi r v_r \varSigma_{\rm p}$

Radial pebble flux

- The pebble mass flux can be calculated from the pebble formation front that moves outwards with time (*Lambrechts & Johansen*, 2014)
- $\bullet\,$ The final Stokes number is ~ 0.1 inside 10 AU and ~ 0.02 outside of 10 AU
- The drift-limited solution shows a fundamental limitation to particle growth
- Inclusion of bouncing and fragmentation results in even smaller particle sizes

Radial drift barrier

- Coagulation equation of dust particles can be solved by numerical integration
- We start with μm-sized particles and let the size distribution evolve by sticking and fragmentation
- The head wind from the gas causes cm particles to spiral in towards the star
- ⇒ All solid material lost to the star within a million years (*radial drift barrier*)
 - Inclusion of particle fragmentation worsens the problem in the inner disc (*fragmentation barrier*)

Bouncing barrier

- Collisions between dust aggregates can lead to sticking, bouncing or fragmentation (*Güttler et al.*, 2010)
- Sticking for low collision speeds and small aggregates
- Bouncing prevents growth beyond mm sizes (bouncing barrier)
- Further growth may be possible by mass transfer in high-speed collisions (*Windmark et al.*, 2012) or by ice condensation (*Ros & Johansen*, 2012), but stops at radial drift barrier

Growth by ice condensation

- Near ice lines pebbles can form like hail stones (Ros & Johansen, 2013)
- The water ice line has both radial and vertical components
- The atmospheric ice line is \sim 3 scale-heights from the mid-plane and ice particles are rarely lifted so high

Radial iceline

- The radial ice-line feeds vapour directly into the mid-plane
- \Rightarrow Growth to dm-sized ice balls
- \Rightarrow Turbulent diffusion mixes growing pebbles in the entire cold region
- ⇒ Future models of coagulation and condensation could yield large enough particle sizes for streaming instabilities to become important

Observed dust growth in protoplanetary discs

(Wilner et al., 2005)

• Dust opacity as a function of frequency $\nu = c/\lambda$:

- $\kappa_{\nu} \propto \nu^2$ for $\lambda \gg a$
- $\kappa_{\nu} \propto \nu^0$ for $\lambda \ll a$

•
$$F_{
u} \propto
u^{lpha} \propto \kappa_{
u} B_{
u} \propto \kappa_{
u}
u^2 \propto
u^{eta}
u^2$$

- By measuring α from SED, one can determine β from $\beta = \alpha 2$
- Knowledge of β gives knowledge of dust size

Opacity index

- *Rodmann et al.* (2006) observed 10 low-mass pre-main-sequence stars in the Taurus-Auriga star-forming region
- All had $\beta \sim 1$, indicating growth to at least millimeters
- Agrees well with expectation from drift-limited growth

• The disc around TW Hya contains 0.001 M_{\odot} of cm-sized pebbles (*Wilner et al.*, 2005) and more than 0.05 M_{\odot} of gas (*Bergin et al.*, 2013)

Pebbles in protoplanetary disks

- Many nearby protoplanetary disks observed in mm-cm wavelengths show opacity indices below $\beta = 2 \ (\kappa_{\nu} \propto \nu^{\beta})$
- Typical pebble sizes of mm in outer disk and cm in inner disk
- Protoplanetary disks are filled with pebbles

Pebbles in HL Tau

- This beautiful ALMA image of HL Tau was published in 2015 (ALMA Partnership, 2015)
- Emission at mm wavelengths comes mainly from mm-sized pebbles
- Dark rings have been interpreted as density depressions caused by the presence of planets (*Dipierro et al.*, 2015)

Dark rings and ice lines

⁽Zhang et al., 2015)

 The dark rings have also been proposed to coincide with ice lines of major volatile species (H₂O, NH₃, CO) (*Zhang, Blake, & Bergin*, 2015)

Opacity index

- The opacity index α is \sim 2.5 outside of 50 AU, consistent with mm particles
- The two inner dark rings have $lpha \sim$ 2.5, while the bright regions have $lpha \sim$ 2
- Direct interpretation is that mm particles dominate the opacity in the dark rings and cm particles in the bright areas
- In that case we need to evoke smaller column densities in the dark rings to explain the weaker emission there

Two-component model of HL Tau emission

- Alternatively, lack of emission in the dark rings explained by particle growth
- Two particle size components: 10% mm particles and 90% cm particles
- The large particles yield $\alpha \sim$ 2 in the inner disc
- In the dark rings the large particles have grown to 10 cm or larger and hence the (weak) emission is dominated by the mm grains with $\alpha \sim 2.5$
- \Rightarrow Particle growth by condensation or enhanced sticking outside of ice lines
- Protoplanetary disc are efficient pebble factories

Collision speeds

⁽Johansen et al., 2014)

 Collision speeds are given by a combination of brownian motion, gas turbulence, differential drift and gravitational torques from the turbulent gas

Copenhagen 2015 (Lecture 1)

Turbulent density fluctuations

- Torques from turbulent gas excite the eccentricities of embedded planetesimals
- Eccentricity grows like a random walk
- Equilibrium reached when growth time-scale is equal to gas drag time-scale

Gravitational torques

(Ormel & Okuzumi, 2013)

- Torques from the turbulent gas excite high collision speeds for pre-planetesimals (sizes larger than 10 m)
- High collision speeds prevent accretion (Ida et al., 2008)
- Run-away accretion only when v_{esc} higher than v_{col} (Ormel & Okuzumi, 2013)
- ⇒ Need some way to form large planetesimals directly from pebbles

Summary of dust growth

- Dust aggregates grow efficiently by sticking and ice condensation
- Direct growth to planetesimal sizes hampered by bouncing and fragmentation
- Radial drift limits the particle size to between mm and cm even for perfect sticking
- Protoplanetary discs are very efficient pebble factories
- Torques from the turbulent gas induces catastrophic collision speeds for pre-planetesimals larger than 10 m in size
- Need some way to form planetesimals directly from pebbles