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o Radial drift prevents particle growth beyond cm in the inner disc and
mm in the outer disc

@ This is fully consistent with observations of protoplanetary discs

@ Fragmentation sets the limit of the growth within 10 AU

@ Turbulent density fluctuations lead to destruction of pre-planetesimals
less than 1 to 10 km in radius in a dead zone and less than 1000 km
in a region with active MRI turbulence
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Planetesimal formation by gravitational instability

@ Dust and ice particles in a protoplanetary disc coagulate to cm-sized
pebbles and rocks

@ Pebbles and rocks sediment to the mid-plane of the disc

@ Further growth frustrated by high-speed collisions (>1-10 m/s) which
lead to erosion and bouncing

@ Layer not dense enough for gravitational instability

= Need some way for particle layer to get dense enough to
initiate gravitational collapse
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How turbulence aids planetesimal formation
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@ Passive concentration as particles pile up in long-lived pressure bumps
and vortices excited in the turbulent gas flow

@ Active concentration as particles make dense filaments and clumps to
protect themselves from gas friction
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Particle concentration

Eddies Pressure bumps / vortices Streaming instabilities

-1~ 1km, St~ 10°-10" I~1-10 H, St ~ 0.1-10 1~0.1 H, St~0.01-1

Three ways to concentrate particles: (Johansen et al., 2014, arxiv:1402.1344)

@ Between small-scale low-pressure eddies
(Squires & Eaton, 1991; Fessler et al., 1994; Cuzzi et al., 2001, 2008; Pan et al., 2011)

@ In pressure bumps and vortices
(Whipple, 1972; Barge & Sommeria, 1995; Klahr & Bodenheimer, 2003; Joh. et al., 2009a)

@ By streaming instabilities
(Youdin & Goodman, 2005; Johansen & Youdin, 2007; Johansen et al., 2009b; Bai & Stone, 2010a,b,c)
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Roche density

@ Protoplanetary discs are gravitationally unstable if the parameter @ is
Sma“er than Unity (Safronov, 1960; Toomre, 1964)

@ The column density can be written in terms of the scale height and
the mid-plane density

E%Hpo

@ Turn the gravitational instability criterion into a criterion for the
density
N 2? M,
PO > PR = Y=l

@ The Roche density is pg ~ 6 x 1077 g/cm3 at 1 AU, the mid-plane
gas density is pg ~ 1.4 x 107° g/cm?
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Pressure bumps
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(Fignre from Whipple, 1972)

@ Particles seek the point of highest pressure
= Particles get trapped in pressure bumps
@ Achieve high enough local density for gravitational instability and
planetesimal formation
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Pressure bumps in MRI turbulence

piPy

(Johansen, Youdin, & Klahr, 2009)

@ Gas density shows the expected vertical stratification

@ Gas column density shows presence of large-scale pressure fluctuations
with variation only in the radial direction

@ Pressure fluctuations of order 10%
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Stress variation and pressure bumps

~0.05 s +0.05

@ Mass accretion rate and column density:
: M
M=3rXy, = X=
3,
v = acsH

— Constant M and constant « yield ¥ o r—!

= Radial variation in « gives pressure bumps

Copenhagen 2015 (Lecture 2) Planetesimal formation

9/38



Particle trapping
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@ Strong correlation between high gas density and high particle density

(Johansen, Klahr, & Henning, 2006)
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Forming planetesimals in pressure bumps
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(Johansen et al., 2011)
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What sets the scale of pressure bumps?
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(Lyra et al., 2008)

@ Pressure bumps reported in a number of MRI papers
(Fromang & Stone, 2009; Davis et al., 2010; Simon et al. 2012)

@ Pressure bumps cascade to the largest scales of local box simulations,
bUt may Stop at 5—10 Scale helghts (Johansen et al., 2009; Dittrich, Klahr, & Johansen, 2013)

@ More global simulations needed!
(e.g. Fromang & Nelson, 2005; Lyra et al., 2008; Uribe et al., 2012)
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Turbulence is a double-edged sword

© Turbulence can excite long-lived pressure bumps which trap particles
® Turbulence excites high relative particle speeds between particles as
well as between planetesimals

(Johansen et al., 2014)
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Dead zone and layered accretion

Dead zone
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(Gammie, 1996; Fleming & Stone, 2003; Oishi et al., 2007)

@ Cosmic rays do not penetrate to the mid-plane of the disc, so the
ionisation fraction in the mid-plane is too low to sustain MRI

= Accretion in active surface layers or by disc winds
(Blandford & Payne, 1982; Fromang et al., 2012; Bai & Stone, 2013)

= Weak turbulence and low collision speeds in the dead zone
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Disc wind model
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@ Mid-plane is decoupled from the magnetic field by ohmic diffusion and surface
layers by ambipolar diffusion (Bai & Stone, 2013)

@ Threading magnetic field enters a wind configuration (Blandford & Payne, 1982)

@ Angular momentum transported vertically away from the mid-plane

@ Thin but rapid accretion flow where azimuthal magnetic field changes sign about 3
H from the mid-plane (Gressel et al., 2015)

@ Mid-plane is completely laminar with no turbulent motion
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Streaming instability

@ Gas orbits slightly slower than Keplerian
@ Particles lose angular momentum due to headwind

@ Particle clumps locally reduce headwind and are fed by isolated
particles

it

Vieep (1=1) '
Fg 1FP oo e H
O e L —

= Youdin & Goodman (2005): “Streaming instability”
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Linear analysis

Log(2ms/)

10-2 107 1 10 107! 1 10
Po/Pg Po/Pq
(Youdin & Goodman, 2005)

The streaming feeds off the velocity difference between gas and particles
Particles move faster than the gas and drift inwards, pushing the gas outwards
In total there are 8 linear modes (density waves modified by drag)

One of the modes is unstable (Youdin & Goodman, 2005; Jacquet, Balbus, & Latter, 2011)

Requires both radial and vertical displacements

Fastest growth for large particles and local dust-to-gas ratio above unity
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Clumping

Linear and non-linear evolution of radial drift flow of meter-sized boulders:
t=80.0Q7*
i

zl(nr)
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= Strong clumping in non-linear state of the streaming instability
(Youdin & Johansen, 2007; Johansen & Youdin, 2007; done with Pencil Code [pencil-code.googlecode.com])

Copenhagen 2015 (Lecture 2) Planetesimal formation 18 / 38


pencil-code.googlecode.com

Why clump?

Copenhagen 2015 (Lecture 2) Planetesimal formation 19 / 38



Sand dunes

@ Barchan sand dunes form when sparse sand

(Groh et al. 2008)

moves over bedrock and wind has a dominant _
direction £ % ]
) £ 25 1
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Convergence tests — unstratified

0 s
B [

@ Bai & Stone (2010a) presented

high-resolution convergence tests of
non-stratified 2-D simulations

= Maximum particle density increases with
resolution, converging at 1024° or 20482

= Confirmation of Pencil Code results with

independent code (Athena)
Copenhagen 2015 (Lecture 2) Planetesimal formation 21 /38



Stratified simulations
@ Johansen, Youdin, & Mac Low (2009) presented first stratified simulations of

streaming instabilities
@ Particles sizes {27+ = 0.1,0.2,0.3,0.4 (3-12 cm at 5 AU, 1-4 cm at 10 AU)

@ Dust-to-gas ratio no longer a free parameter, but column density Z = X, /X5 is
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Convergence tests — stratified

o Particle density up to 10,000 times
local gas density

@ Criterion for gravitational collapse:
pp 2 §22/G ~ 100p,

@ Maximum density increases with
increasing resolution
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(Johansen, Mac Low, Lacerda, & Bizzarro, 2015)
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Scale-by-scale convergence
Q1,=0.3, 7=0.02, £=0.3

4 T
10 Lonr
107 \" AU G BN
T S i o [ ]
102 * Pr@3AU (IXMMSN) ]
= %+ R e
= \%’a T pr@3AU (5xMMSN) ]
g o, - ]
g 10k N, 3
N \Ib'\ E
\(0/317 p o
NY%e
© max , 64 R SN\
10°F © max,, , 128’ N 3
+ mean KmaxL) 64° : \\\
o mean,(maxL) 128 % .
10 e
0.001 0.010 0.100 1.000 (Johansen, Youdin, & Lithwick, 2012)
L/H

@ Plot shows maximum density over a given scale (averaged over time)
@ Points for 64% and 128% almost on top of each other
=- Streaming instability overdensities converge scale-by-scale

@ Increasing the resolution increases the maximum density because density at
grid-cell level gains structure at increased resolution
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Sedimentation of 10 cm rocks

@ Streaming instability relies on 121038 Q"' Z=0010
the ability of solid particles to
accelerate the gas towards
the Keplerian speed

= Efficiency increases with the
metallicity of the gas

0.2 0.1 0.0 0.1 02 -0.1 0.0 0.1 0.2
@ Solar metallicity: turbulence o o
caused by the streaming
instability puffs up the
mid-plane layer, but no

clumping

Z=0.017

@ Dense filaments form
spontaneously above
Z =~ 0.015

-0.2 0.1 0.0 0.

o
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VH, VIH,
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Metallicity matters

-0.10 -0.05 0.00 0.05 0.10
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g
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Why is metallicity important?

@ Gas orbits slightly slower than Keplerian
o Particles lose angular momentum due to headwind

@ Particle clumps locally reduce headwind and are fed by isolated
particles

o Clumping relies on particles being able to accelerate the gas towards

Keplerian speed

Copenhagen 2015 (Lecture 2) Planetesimal formation

27 /38



Metallicity of exoplanet host stars

Z =10.01 0.02 0.03

o First planet around 30 _(ISa;toscIeta/T, 20104;1 T T T
solar-type star discovered in Fischer & Valenti, 2005) N

1995 - _

(Mayor & Queloz, 1995) \

20 —

@ Today several thousand
exoplanets known

10 —

o Exoplanet probability
increases sharply with § m&
metallicity of host star 0 |

-0.5 0.5
[FE/H]
= Expected due to efficiency of core accretion and pebble accretion

(Ida & Lin, 2004; Mordasini et al., 2009; Lambrechts & Johansen, 2014)

= ... but planetesimal formation may play equally big part
(Johansen et al., 2009; Bai & Stone, 2010b)

Percentage of planet hosts
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Dependence on headwind parameter
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@ Bai & Stone (2010c) searched for the critical metallicity for clumping
as a function of the headwind parameter [1 = Av/c;
= Slow headwind (close to star or in pressure bumps) gives lower
threshold
= Careful when using pressure bumps to stop radial drift — streaming
instability leads to strong clumping when headwind is slow
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Gravitational collapse
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Planetesimal birth sizes
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@ Cumulative size distribution is less affected by noise than the
differential size distribution

o Well-fitted by an exponentially tapered power law
@ Most of the mass resides around the knee
@ Small planetesimals dominate in number

@ Can be compared to the asteroid belt (next lecture)
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Concentrating chondrules
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@ Typical particle sizes considered for the streaming instability are of size 10 cm
(when scaled to the asteroid belt)

@ Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

=- Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, 2015)
@ Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)
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Concentrating chondrules

1200
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Simulation time (')
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@ Typical particle sizes considered for the streaming instability are of size 10 cm
(when scaled to the asteroid belt)

@ Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

=- Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, 2015)

@ Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)
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Concentrating chondrules

Solid-mass-fraction (Z)

Stokes number (r;)

@ Typical particle sizes considered for the streaming instability are of size 10 cm
(when scaled to the asteroid belt)

@ Meteorites contain up to 80% mass in chondrules of sizes 0.1-1 mm
(e.g. Krot et al., 2009)

= Smaller particles can be concentrated at higher metallicity
(Carrera, Johansen, & Davies, 2015)

@ Metallicity increase by photoevaporation or drifting particles?
(Alexander et al., 2006; Alexander & Armitage, 2007)
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Achieving the conditions for the streaming instability

10° needed for planétesima{ formation
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(Drazkowska & Dullemond, 2014) (Gorti et al., 2015)

@ Possible to form pebble sizes needed for streaming instability outside of the ice line
(Drazkowska & Dullemond, 2014)

But bouncing stalls silicate particles at mm sizes inside of the ice line

About half of the solid mass remains in tiny grains unable to participate in the
streaming instability

@ Photoevaporation can increase the dust-to-gas ratio to close to Z ~ 0.1 already
before inner hole is formed (Gorti et al., 2015)

@ Need global disc wind models including dust (Armitage et al., 2013)

Copenhagen 2015 (Lecture 2) Planetesimal formation 35 /38



Stirring of the mid-plane

-5
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(Lesur & Papaloizou, 2010) (R;’tti; et al., 2015)

@ Baroclinic instability is similar to radial convection (kiahr & Bodenheimer, 2003)

@ Produces vortices after extended growth phase

@ Particles are trapped in the vortices

@ Back-reaction friction force nevertheless destroys the vortices (Rittig et al., 2015)

@ Vertical shear instability could also stir the mid-plane (Nelson et al., 2013)
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Planetesimal formation by particle concentration and
gravitational collapse

@ Dust growth by coagulation to a few cm

@ Spontaneous clumping through streaming instabilities
and in pressure bumps and vortices

© Gravitational collapse to form 100-1000 km radius
planetesimals
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Summary of planetesimal formation

@ Particles can be concentrated in the gas to reach the Roche density

@ Concentration mechanisms include pressure bumps, vortices and
streaming instability

@ The streaming instability leads to very strong particle concentration,
to more than a factor 10,000 times the gas density

@ Planetesimals form with a wide range of sizes — from up to Ceres size,
down to 25 km at the highest resolution reached

@ The particle sizes and metallicities needed for the streaming instability
can be achieved outside of the ice line

@ Other sources of turbulence (baroclinic instability and vertical shear
instability) likely relevant but still under exploration
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