
Physical Processes in Protoplanetary Disks

Philip J. Armitage

Abstract These notes provide an introduction to physical processes in protoplan-
etary disks relevant to accretion and the initial stages of planet formation. Topics
covered include the elementary theory of disk structure and evolution, the gas-phase
physics of angular momentum transport through turbulence and disk winds, and
episodic accretion observed in Young Stellar Objects.1

1 Disk structure

The lifetime of protoplanetary disks is observed to be of the order of several Myr
[85, 92], which equates to millions of dynamical times in the inner disk and thou-
sands of dynamical times at 100 AU, in the outer disk. To a first approximation
we can treat the disk as evolving slowly through a sequence of axisymmetric static
structures as mass accretes on to the star and is lost through disk winds, and our first
task is to discuss the physics that determines those structures. Quantities that we are
interested in include the density ρ(r,z), the gas and dust temperatures T (r,z) and
Td(r.z), the chemical composition, and the ionization fraction. The importance of
these for observations and for planet formation is self-explanatory, with the possible
exception of the ionization fraction which matters for the role it plays in determin-
ing how magnetic fields couple to the gas. The density of solid particles (“dust”) ρd
is also important, but there is nothing useful we can say about that until we have
discussed turbulence, radial drift, and the aerodynamic coupling of solids and gas.

1 These notes are part of a draft write-up of lectures given at the 45th Saas-Fee Advanced Course
“From Protoplanetary Disks to Planet Formation”. A full version, including material on particle
evolution in disks, ought to be available later in the year. In the meantime, I’d greatly appreciate
feedback regarding errors or omissions you notice in the draft!
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Fig. 1 The geometry for calculating the vertical hydrostatic equilibrium of a non-self-gravitating
protoplanetary disk. The balancing forces are the vertical component of stellar gravity and the
vertical pressure gradient.

1.1 Vertical and radial structure

1.1.1 Vertical structure

The vertical profile of gas density in protoplanetary disks is determined by the con-
dition of hydrostatic equilibrium. The simplest case to consider is an optically thick
disk that is heated by stellar irradiation, has negligible mass compared to the mass
of the star, and is supported by gas pressure. We can then approximate the optically
thick interior of the disk as isothermal, with constant sound speed cs and pressure
P= ρc2

s . The sound speed is related to the temperature via c2
s = kBT/µmH , where kB

is Boltzmann’s constant, mH is the mass of a hydrogen atom, and where under nor-
mal disk conditions the mean molecular weight µ ' 2.3. In cylindrical co-ordinates,
the condition for vertical hydrostatic equilibrium (Figure 1) is,

dP
dz

=−ρgz =−
GM∗

r2 + z2 sinθρ, (1)

where M∗ is the stellar mass. For z� r,

gz =
GM∗

(r2 + z2)3/2 z'Ω
2
Kz, (2)

where ΩK ≡
√

GM∗/r3 is the Keplerian orbital velocity (here defined at the mid-
plane, later in §1.1.2 we will need to distinguish between the mid-plane and other
locations). Equation (1) then becomes,

c2
s

dρ

dz
=−Ω

2
Kρz, (3)

which integrates to give,

ρ(z) = ρ0 exp
[
−z2/2h2] , (4)

where ρ0 is the mid-plane density and we have defined the vertical scale height
h≡ cs/ΩK. Because the effective gravity increases with height (and vanishes at the
mid-plane) this standard disk profile is gaussian, rather than exponential as in a thin
isothermal planetary atmosphere. A consequence is that the scale over which the
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Fig. 2 Simple models for the vertical density profile of an isothermal disk, in units of the disk
scale height h. The solid blue line shows the gaussian density profile valid for z� r, the dashed
blue line shows the exact solution relaxing this assumption (the two are essentially identical for
this disk, with h/r = 0.05). The red dashed curve shows a fit to numerical simulations that include
a magnetic pressure component [95].

density drops by a factor of e gets smaller with z; loosely speaking disks become
more “two dimensional” away from the mid-plane. Defining the surface density
Σ =

∫
ρdz, the central density is,

ρ0 =
1√
2π

Σ

h
. (5)

Up to straightforward variations due to differing conventions (e.g. some authors de-
fine h =

√
2cs/ΩK) these formulae define the vertical structure of the most basic

disk model (isothermal, with a gaussian density profile). For many purposes, espe-
cially if one is mostly worried about conditions within a few h of the mid-plane, it
may be a perfectly adequate description.

The most obvious cause of gross departures from a gaussian density profile is a
non-isothermal temperature profile. If the disk is accreting, gravitational potential
energy that is thermalized in the optically thick interior will need a vertical tem-
perature gradient dT/dz < 0 in order to be transported to the disk photosphere and
radiated. We will return to this effect in §1.2 and §2, after assessing the other as-
sumptions inherent in equation (4). We first note that the simplification to z� r is
convenient but not necessary, and that we can integrate equation (1) without this
assumption to give,
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ρ = ρ0 exp
[

r2

h2

((
1+ z2/r2)−1/2−1

)]
. (6)

Protoplanetary disks are geometrically thin, however, with h/r ≈ 0.05 being fairly
typical. In this regime, as expected and as is shown in Figure 2, departures from a
gaussian are negligibly small. We only really need to worry about the full expression
for vertical gravity when considering disk winds, which flow beyond z∼ r.

What about the contribution of the disk itself to the vertical component of grav-
ity? Approximating the disk as an infinite sheet with (constant) surface density Σ ,
Gauss’ theorem tells us that the gravitational acceleration above the sheet is inde-
pendent of height,

gz = 2πGΣ . (7)

Comparing this acceleration with the vertical component of the star’s gravity at
z = h, we find that the disk dominates if,

Σ >
M
2π

h
r3 . (8)

Very roughly we can write the disk mass Mdisk ∼ πr2Σ , which allows us to write the
condition for the disk’s own gravity to matter as,

Mdisk

M∗
>

1
2

(
h
r

)
. (9)

For h/r = 0.05, a disk mass of a few percent of the stellar mass is significant as
far as the vertical structure goes, and such masses are not unreasonably large. As
we will see in §3, however, when disk masses Mdisk/M∗ ∼ h/r are encountered we
tend to have bigger fish to fry, as this is also the approximate condition for the onset
of disk self-gravity, the formation of spiral arms, and substantial departures from
axisymmetry.

Magnetic pressure PB = B2/8π is likely to impact the vertical density profile,
at least for z� h (here and subsequently, we use units such that B is measured in
Gauss). No simple principle for predicting the strength or vertical variation of the
magnetic field is known, so we turn to numerical simulations for guidance. Hirose &
Turner [95] completed radiation magnetohydrodynamic (MHD) simulations of the
protoplanetary disk at a radius of 1 AU, taking the surface density Σ = 103 g cm−2

and adopting as stellar parameters M∗ = 0.5 M�, Teff = 4000 K, and R∗ = 2 R�.
Their simulations included Ohmic diffusion but ignored both ambipolar diffusion
and the Hall effect (see §3 for further discussion of these processes). They — along
with other authors — found that the model disk was gas pressure dominated near
the mid-plane, but that the atmosphere (or corona) was magnetically dominated. An
empirical fit to the density profile is,

ρ =
ρ0

1+ ε

[
exp
(
−z2/2h2)+ ε exp(−|z|/kh)

]
, (10)
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with ε ' 1.25×10−2 and k ' 1.5. This fit is shown in Figure 2. Magnetic pressure
beats out gas pressure for |z|> 4h, leading to a low density exponential atmosphere
that is much more extended than a standard isothermal disk. Even if the atmosphere
itself gives way to a disk wind at still higher altitudes (as suggested by other simu-
lations), these results suggest that observational probes of conditions near the disk
surface may be sampling regions where the magnetic field dominates.

The impact of magnetic pressure on the vertical structure of protoplanetary
disks may be larger than the preceding discussion implies. Simulations of the
inner disk (r ∼ 1 AU) that include the Hall effect [123] result in the genera-
tion of strong azimuthal magnetic fields whose magnetic pressure may exceed
that of the gas within one scale height, or even at the mid-plane. This implies
that there could be regions of the disk where the conventional estimate of the
scale height based on the temperature is significantly in error. Observational
constraints on such models would be valuable, as would a better analytic un-
derstanding of what determines the vertical profile of B in disks.

1.1.2 Radial structure

The radial run of the surface density cannot be predicted from considerations of
static disk structure; it is either an observational question [3] or one to address using
time-dependent models (§2). Instead, we consider the azimuthal velocity vφ . If the
disk is static (and even if it is slowly evolving) the azimuthal component of the
momentum equation,

∂v
∂ t

+(v ·∇)v =− 1
ρ

∇P−∇Φ (11)

can be written in the mid-plane as,

v2
φ

r
=

GM∗
r2 +

1
ρ

dP
dr

. (12)

Here P is the pressure and all quantities are mid-plane values. Let’s start with an
explicit example of the consequences of this force balance in protoplanetary disks.
Consider a disk with Σ ∝ r−1 and central temperature Tc ∝ r−1/2. We then have
cs ∝ r−1/2, ρ ∝ r−9/4 and P ∝ r−11/4. Substituting into equation (12) yields,

vφ = vK

[
1− 11

4

(
h
r

)2
]1/2

. (13)

From this we deduce,
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• The deviation from strict Keplerian rotation, vK =
√

GM∗/r is of the order of
(h/r)2.

• Its magnitude is small. For a disk with h/r = 0.03 at 1 AU, the difference be-
tween the disk azimuthal velocity and the Keplerian value is about 0.25%, or, in
absolute terms |vφ − vK| ' 70 m s−1.

When we come to discuss the evolution of particles within disks (§??), it will turn
out that this seemingly small effect is of paramount importance. Particles do not ex-
perience the radial pressure gradient that is the cause of the mismatch in speeds, and
as a result develop a differential velocity with respect to the gas that leads to aero-
dynamic drag and (usually) inspiral. It behoves us to study not just the magnitude of
the effect but also its vertical dependence. To do so, we follow Takeuchi & Lin [211]
and consider an axisymmetric, vertically isothermal disk supported against gravity
by gas pressure. The vertical density profile is then gaussian (equation 4) and the
condition for equilibrium (equation 11) reads,

rΩ
2
g =

GM∗
(r2 + z2)3/2 r+

1
ρ

∂P
∂ r

. (14)

We distinguish between the gas angular velocity, Ωg(r,z), the Keplerian angular
velocity ΩK(r,z) = GM∗/(r2 + z2)3/2, and its mid-plane value ΩK,mid. The disk is
fully specified by the local power-law profiles of surface density and temperature,

Σ ∝ r−γ (15)
Tc ∝ r−β , (16)

with γ = 1 and β = 1/2 being typically assumed values. Evaluating ∂P/∂ r using
equation (4) with h = h(r) allows us to determine the equilibrium gas angular ve-
locity in terms of the mid-plane Keplerian value,

Ωg 'ΩK,mid

[
1− 1

4

(
h
r

)2(
β +2γ +3+β

z2

h2

)]
. (17)

Provided that the temperature is a locally decreasing function of radius (β > 0), the
sense of the vertical shear is that the gas rotates slower at higher z. Like the sub-
Keplerian mid-plane velocities, the magnitude of the shear is only of the order of
(h/r)2, but this small effect may nevertheless be detectable with ALMA data [193].

For particle dynamics, what matters is the difference between the gas velocity and
the local Keplerian speed. To order z2/r2, the vertical dependence of the Keplerian
velocity is,

ΩK 'ΩK,mid

(
1− 3

4
z2

r2

)
. (18)

This function decreases faster with height than Ωg, so the difference between them,
plotted in Figure 3, switches sign for sufficiently large z,
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Fig. 3 The variation in angular velocity with height in the disk. In blue, the angular velocity of gas
relative to the mid-plane Keplerian value, (Ωg−ΩK,mid)/ΩK,mid× (r/h)2. In red, the difference
between the Keplerian angular velocity and the local gas angular velocity, (Ωg−ΩK)/ΩK,mid×
(r/h)2. The assumed disk has Σ ∝ r−1 and Tc ∝ r−1/2 (solid curves) or radially constant Tc (dashed
curves).

Ωg−ΩK '−
1
4

(
h
r

)2 [
β +2γ +3+(β −3)

z2

h2

]
ΩK,mid. (19)

Particles that orbit the star at the local Keplerian speed move slower than the gas
near the mid-plane (and thus experience a “headwind”), but faster at high altitude.
For typical parameters, the changeover occurs at about z≈ 1.5h.

The orbital velocity will also deviate from the point mass Keplerian form if the
disk mass is sufficiently high. The gravitational potential of a disk is not that of
a point mass (and does not have a simple form for realistic disk surface density
profiles), but for an approximation we assume that it is. Then the modified Keplerian
velocity depends only upon the enclosed disk mass,

v′K ' vK

(
1+

Mdisk

M∗

)1/2

. (20)

For disk masses Mdisk ∼ 10−2 M∗ the effect on the rotation curve is of comparable
magnitude (but opposite sign) to the effect of the radial pressure gradient.
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Fig. 4 The setup for calculating the radial temperature distribution of an optically thick, razor-thin
disk. We consider a ray passing that makes an angle θ to the line joining the area element to the
center of the star. Different rays with the same θ are labelled with the azimuthal angle φ ; φ = 0
corresponds to the “twelve o’clock” position on the stellar surface.

The simplicity of the calculation of the deviations from Keplerian rotation
due to pressure gradients in the disk depends on the disk being axisymmet-
ric. How axisymmetric (and planar) are real disks? In most cases we don’t
know observationally, and it’s obvious that a disk formed from the collapse of
a turbulent molecular cloud core might well start out significantly eccentric
and warped. The rate of decay of eccentric or warp perturbations remains a
subject of active research [28]. It’s thus worth remembering, especially when
interpreting precise kinematic observations, that un-modeled warps or eccen-
tricities as small as e∼ (h/r)2 could be significant.

1.2 Thermal physics

We seek to determine the temperature of gas and dust as f (r,z). Our first task is
to calculate the interior temperature of a disk heated solely by starlight. This is
straightforward. At most radii of interest the dust opacity is high enough for the
disk to be optically thick to both stellar radiation and to its own re-emitted radiation,
which hence has a thermal spectrum. It is then a geometric problem to work out how
much stellar radiation annulus of the disk intercepts, and what equilibrium T results.
We will then consider the temperatures of gas and dust in the surface layers of disks.
These problems are trickier. The surface layers are both optically thin and of low
density, so we have to account explicitly for the heating and cooling processes and
allow for the possibility that the dust and gas are too weakly coupled to maintain the
same temperature. We defer until §2 the question of how accretion heating modifies
these solutions.

A disk whose temperature is set by stellar irradiation is described as “passive”.
The model problem is a flat razor-thin disk that absorbs all incoming stellar radiation
and re-emits it locally as a blackbody. We seek the temperature of the blackbody disk
emission as f (r). Modeling the star as a sphere of radius R∗, and constant brightness
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I∗, we define spherical polar coordinates such that the axis of the coordinate system
points to the center of the star (figure 4). The stellar flux passing through a surface
at distance r is,

F =
∫

I∗ sinθ cosφdΩ , (21)

where dΩ represents the element of solid angle. We count the flux coming from the
top half of the star only (and later equate that to radiation from only the top surface
of the disk), so the integral has limits,

−π/2 < φ ≤ π/2

0 < θ < sin−1
(

R∗
r

)
. (22)

Substituting dΩ = sinθdθdφ , the integral evaluates to,

F = I∗

sin−1
(

R∗
r

)
−
(

R∗
r

)√
1−
(

R∗
r

)2
 . (23)

A star with effective temperature T∗ has brightness I∗ = (1/π)σT 4
∗ , with σ the

Stefan-Boltzmann constant. Equating F to the one-sided disk emission σT 4
disk the

temperature profile is,

(
Tdisk

T∗

)4

=
1
π

sin−1
(

R∗
r

)
−
(

R∗
r

)√
1−
(

R∗
r

)2
 . (24)

The exact result is unnecessarily complicated. To simplify, we expand the right hand
side in a Taylor series for (R∗/r)� 1 (i.e. far from the stellar surface) to obtain,

Tdisk ∝ r−3/4, (25)

as the power-law temperature profile of a thin, flat, passive disk. This implies a
sound speed profile, cs ∝ r−3/8, and a disk thickness (h/r) ∝ r1/8. We therefore
predict that the disk becomes geometrically thicker (“flares”) at larger radii. We can
also integrate equation (24) exactly over r, with the result that the luminosity from
both side of the disk sums to Ldisk/L∗ = 1/4.

A more detailed calculation of the dust emission from passive disks requires
consideration of two additional physical effects [105]. First, as we just noted, the
disk thickness as measured by the gas scale height flares to larger radii. If dust is
well-mixed with the gas — which may or may not be a reasonable assumption —
a flared disk intercepts more stellar radiation in its outer regions than a flat one,
which will tend to make it flare even more strongly. We therefore need to solve
for the self-consistent shape of the disk that simultaneously satisfies hydrostatic
and thermal equilibrium at every radius. This is conceptually easy, and the slightly
messy geometry required to generalize the flat disk calculation is clearly described
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by Kenyon & Hartmann [105]. Second, small dust grains that are directly exposed
to stellar irradiation (i.e. those where the optical depth to stellar radiation along
a line toward the star τ < 1) emit as a dilute blackbody with a temperature higher
than if they were true blackbody emitters [105]. The reason for this is that small dust
grains, of radius s, have an emissivity ε = 1 only for wavelengths λ ≤ 2πs. At longer
wavelengths, their emissivity declines. The details depend upon the composition
and structure of the dust grains, but roughly the emissivity (and opacity κ) scale
inversely with the wavelength. In terms of temperature,

ε =

(
T
T∗

)β

(26)

with β = 1. A dust particle exposed to the stellar radiation field is then in radiative
equilibrium at temperature Ts when absorption and emission are in balance,

L∗
4πr2 πs2 = σT 4

s ε (Ts)4πs2. (27)

The resulting temperature,

Ts =
1

ε1/4

(
R∗
2r

)1/2

T∗, (28)

exceeds the expected blackbody temperature by a substantial factor if ε � 1.
An illustrative analytic model that incorporates these effects was developed by

Chiang & Goldreich [46]. They considered a disk with a surface density profile Σ =
103(r/1AU)−3/2 g cm−2 around a star with M∗ = 0.5 M�, T∗ = 4000 K and R∗ =
2.5 R�. Within about 100 AU, their solution has half of the bolometric luminosity
of the disk emitted as a blackbody at the interior temperature,

Ti ≈ 150
( r

1 AU

)−3/7
K, (29)

with equal luminosity at each radius emerging from a hot surface dust layer at,

Ts ≈ 550
( r

1 AU

)−2/5
K. (30)

The Chiang & Goldreich solution is a two-layer approximation to dust continuum
radiative transfer for a passive, hydrostatic disk. Approximations in the same spirit
have been developed that incorporate heating due to accretion [79], but the full
problem requires numerical treatment. Several codes are available for its efficient
solution [34, 64, 191, 207].

If our main interest is in the physical conditions at the disk mid-plane within the
normal planet forming region (i.e. excluding very large orbital distances where the
disk is becoming optically thin), or in the continuum Spectral Energy Distribution
(SED), models for the dust temperature largely suffice. Dust dominates both the



Physical Processes in Protoplanetary Disks 11

absorption of starlight and thermal emission of reprocessed radiation and accretion
heating, and in the mid-plane the gas and dust temperatures are normally closely
equal (to within ∼ 10% for an optical extinction AV > 0.1 [102]). The gas tempera-
ture near the surface of the disk is, however, of critical importance for a number of
applications,

• Interpretation of sub-mm data, where the observable emission is rotational transi-
tions of molecules such as CO and HCO+. These observations frequently probe
the outer regions of disks, at depths where the molecules are not (of course!)
photo-dissociated but where the gas is warm and not in equilibrium with the
dust.

• Interpretation of near-IR and far-IR data, often from the inner disk, where we are
seeing ro-vibrational transitions of molecules along with fine-structure cooling
lines such as [CII] and [OI].

• Chemistry. It’s cold at the disk mid-plane, and chemical reactions are sluggish.
Although the densities are much lower in the disk atmosphere, the increased tem-
peratures and exposure to higher energy stellar photons make the upper regions
of the disk important for chemistry [89].

The properties of gas near the surface of disks are very closely tied to the incident
flux of ultraviolet radiation from the star. Stellar UV radiation ionizes and dissoci-
ates atoms and molecules, and heats the gas by ejecting electrons from dust grains
(grain photoelectric heating). Depending upon the temperature and density, the heat-
ing is balanced by cooling from rotational transitions of molecules (especially CO)
and atomic fine structure lines. Also important is energy exchange due to inelastic
collisions between gas molecules and dust particles (thermal accommodation) — if
this process is too efficient the gas temperature will revert to match the dust which
is absorbing and emitting the bulk of the star’s bolometric luminosity.

Photoelectric heating [59] is typically the dominant process for dusty gas ex-
posed to an ultraviolet radiation field. The work function of graphite grains (the
minimum energy required to free an electron from them) is around 5 eV, so 10 eV
FUV photons can eject electrons from uncharged grains with 5 eV of kinetic en-
ergy that ultimately heats the gas. Ejection occurs with a probability of the order of
0.1, so the overall efficiency (the fraction of the incident FUV energy that goes into
heating the gas rather than the dust) can be rather high, around 5%.

A detailed evaluation of the photoelectric heating rate is involved, and resistant
to a fully first-principles calculation. Weingartner & Draine [225] give a detailed
description. Here, we sketch the main principles following Kamp & van Zadelhoff
[103], who developed models for the gas temperature in A star disks. We consider
a stellar radiation spectrum Fν impinging on grains of graphite (work function w =
4.4 eV [225]) and silicate (w = 8.0 ev). For micron-sized grains the work function,
which is a property of the bulk material, is equivalent to the ionization potential —
the energy difference between infinity and the highest occupied energy level in the
solid. Additionally, the probability for absorption when a photon strikes a grain is
Qabs≈ 1. Most absorbed photons, however, do not eject electrons, rather their energy
goes entirely into heating the dust grain. The yield of emitted electrons is some
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function of photon energy Y (hν), and they have some spectrum of kinetic energy E,
roughly described by [59] f (E,hν) ∝ (hν−w)−1. If the grains are charged (e.g. by
prior emission of photoelectrons) then the kinetic energy (E−eU) available to heat
the gas is that left over once the electron has escaped the electrostatic potential eU
of the grain. The heating rate is then [103],

Γpe = 4nHσ

∫ Emax

Emin

(∫
νmax

νth

QabsY (hν) f (E,hν)Fν dν

)
(E− eU)dE, (31)

where nH is the number density of hydrogen atoms, σ is the geometric cross-section
per hydrogen nucleus, and the lower limits express the minimum frequency νth of
a photon that can overcome the work function and the minimum energy of a pho-
toelectron that can escape from a charged grain. An assessment of the photoelec-
tric heating rate then requires knowledge of the functions Y and f , specification
of the radiation field Fν , and calculation of the typical charge on grains of differ-
ent sizes [61, 225]. The physics is conceptually identical but quantitatively distinct
when the grains in question are extremely small (e.g. Polycyclic Aromatic Hydro-
carbons, PAHs) [21, 225].

The rate of energy exchange from inelastic gas-grain collisions can be calculated
with a collision rate argument. Consider grains with geometric cross-section σd =
π〈s2〉 and number density nd , colliding with hydrogen atoms with number density
nH . The thermal speed of the hydrogen atoms is vth = (8kBTg/πmH)

1/2 and the
average kinetic energy of the molecules on striking the surface is 2kBTg. The cooling
rate per unit volume due to gas-grain collisions can then be written in the form [41],

Λg−d = ndngσd

(
8kBTg

πmH

)1/2

αT (2kBTg−2kBTd) , (32)

where Tg and Td are the temperatures of the gas and dust respectively. The subtleties
of the calculation are reflected in the “accommodation co-efficient” αT , which is
typically αT ≈ 0.3 for silicate and carbon grains. For a specified volumetric heating
rate (and assumptions as to the gas to dust ratio and properties of the grains), this
expression can be used to estimate the density below which the thermal properties
of gas and dust decouple.

In addition to cooling that occurs indirectly, as a consequence of gas-grain colli-
sions, gas in the upper layers of disks also cools radiatively. In the molecular layer of
the disk, the dominant coolant is typically CO, as this is the most abundant molecule
that is not homonuclear (diatomic molecules, such as H2, have no permanent elec-
tric dipole moment and hence radiate inefficiently). At higher temperatures — only
attained in the very rarified uppermost regions of the disk atmosphere — cooling by
Lyα emission becomes important. Qualitatively, there are then three distinct layers
in the disk:

• A cool mid-plane region, where dust and gas have the same temperature and dust
cooling is dominant.
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Fig. 5 Illustration of some of the physical processes determining the temperature and emission
properties of irradiated protoplanetary disks.

• A warm surface layer, in which both dust and gas have temperatures that exceed
the mid-plane value. The gas in the warm layer can be substantially hotter than
the dust (T ∼ 103 K at 1 AU), and cools both by dust-gas collisions and by CO
rotational-vibrational transitions.

• A hot, low-density atmosphere, where Lyα radiation and other atomic lines (e.g.
O[I]) cool the gas.

The disk structure that results from these heating and cooling processes is illustrated
in Figure 5.

1.3 Ionization structure

The degree of ionization of the gas in protoplanetary disks is important because
it is key to understanding how gas couples to magnetic fields, and thence to un-
derstanding the role of magnetic fields in the formation of disks, in the sustenance
of turbulence within them, and in the generation of jets and magnetohydrodynamic
(MHD) winds. At the most basic level, we care about the ratio of the number density
of free electrons ne to the number density of neutrals,
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xe ≡
ne

nn
, (33)

though we should remember that dust grains can also bear charges and carry cur-
rents. We will consider separately the thermodynamic equilibrium process of ther-
mal (or collisional) ionization, which typically dominates above T ∼ 103 K, and
non-thermal ionization due to photons or particles that have an energy well in ex-
cess of the typical thermal energy in the gas.

In anticipation of results that will be derived in §3, we note that very low and
seemingly negligible levels of ionization — xe � 10−10 – often suffice to couple
magnetic fields to the fluid. We need to worry about small effects when considering
ionization.

1.3.1 Thermal ionization

Thermal ionization of the alkali metals is important in the innermost regions of the
disk, usually well inside 1 AU. In thermal equilibrium the ionization state of a single
species with ionization potential χ is obeys the Saha equation [194],

nionne

n
=

2U ion

U

(
2πmekBT

h2

)3/2

exp[−χ/kBT ]. (34)

Here, nion and n are the number densities of the ionized and neutral species, and
ne (= nion) is the electron number density. The partition functions for the ions and
neutrals are U ion and U , and the electron mass is me. The temperature dependence
is not quite just the normal exponential Boltzmann factor, because the ionized state
is favored on entropy grounds over the neutral state.

In protoplanetary disks thermal ionization becomes significant when the tem-
perature becomes high enough to start ionizing alkali metals. For potassium, the
ionization potential χ = 4.34 eV. We write the fractional abundance of potassium
relative to all other neutral species as f = nK/nn, and define the ionization fraction
x,

x≡ ne

nn
. (35)

While potassium remains weakly ionized, the Saha equation gives,

x' 10−12
(

f
10−7

)1/2( nn

1015 cm−3

)−1/2
(

T
103 K

)3/4 exp[−2.52×104/T ]
1.14×10−11 (36)

where the final numerical factor in the denominator is the value of the exponent at
103 K. The ionization fraction at different temperatures is shown in Figure 6. Ioniza-
tion fractions large enough to be interesting for studies of magnetic field coupling
are reached at temperatures of T ∼ 103 K although the numbers remain extremely
small – of the order of x∼ 10−12 for these parameters.
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Fig. 6 The thermal ionization fraction as a function of temperature predicted by the Saha equation
for the inner disk. Here we assume that potassium, with ionization potential χ = 4.34 eV and
fractional abundance f = 10−7, is the only element of interest for the ionization. The number
density of neutrals is taken to be nn = 1015 cm−3.

1.3.2 Non-thermal ionization

Outside the region close to the star where thermal ionization is possible, any rem-
nant levels of ionization are controlled by non-thermal processes. Considerations of
thermodynamic equilibrium are not relevant, and we need to explicitly balance the
rate of ionization by high-energy particles or photons against the rate of recombina-
tion within the disk gas.

There is no shortage of potentially important sources of ionization. Ordering
them roughly in order of their penetrating power, ideas that have been suggested
include,

• Ultraviolet photons (from the star, or from other stars in a cluster)
• Stellar X-rays
• Cosmic rays
• Energetic protons from a stellar corona [218]
• Particles produced from radioactive decay of nuclides within the disk [208]
• Electric discharges. [153]

We will limit our discussion to the first three of these processes.
The coronae of T Tauri stars are powerful sources of keV X-rays [178]. Typical

luminosities are LX ' 1028− 1031 erg s−1, in X-rays with temperatures kBTX of a
few keV. The physics of the interaction of these X-rays with the disk gas involves
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Compton scattering and absorption by photo-ionization, which has a cross-section
σ ∼ 10−22 cm2 for keV energies, decreasing with photon energy roughly as E−3

phot.
Given an input stellar spectrum and assumptions as to where the X-rays originate,
the scattering and absorption physics can be calculated using radiative transfer codes
to deduce the ionization rate within the disk [65].

Depending upon the level of detail needed for a particular application, the re-
sults of numerical radiative transfer calculations can be approximated analytically.
For a relatively hard stellar spectrum (kBTX = 5 keV), the ionization rate fairly deep
within the disk scales with radius r and vertical column from the disk surface Σ

as r−2 exp[−Σ/8 g cm−2] [219]. A more detailed fit is given by Bai & Goodman
(2009) [18]. For an X-ray luminosity scaled to LX ,29 = LX/1029 erg s−1 they repre-
sent the numerical results with two components,

ζX

LX ,29

( r
1 AU

)−2.2
= ζ1 exp[−(Σ/Σ1)

α ]+ζ2 exp[−(Σ/Σ2)
β ]+ ... (37)

where Σ is the vertical column density from the top of the disk and symmetric
terms in the column density from the bottom of the disk are implied. For kBTX =
3 keV and Solar composition gas the fit parameters are ζ1 = 6× 10−12 s−1, ζ2 =
10−15 s−1, Σ1 = 3.4× 10−3 g cm−2, Σ2 = 1.59 g cm−2, α = 0.4 and β = 0.65.
For kBTX = 5 keV the fit parameters are ζ1 = 4× 10−12 s−1, ζ2 = 2× 10−15 s−1,
Σ1 = 6.8×10−3 g cm−2, Σ2 = 2.27 g cm−2, α = 0.5 and β = 0.7.

Figure 7 shows the estimates for ζ (Σ) for a stellar X-ray luminosity of LX =
1030 erg s−1 incident on the disk at 1 AU. If one is mainly interested in regions
of the disk more than ≈ 10 g cm−2 away from the surfaces the single exponential
fit given by Turner & Sano (2008) [219] may suffice. The more complex fitting
function given by equation (37) captures the much higher rates of ionization due to
X-rays higher up in the disk atmosphere.

Cosmic rays are another potential source of disk ionization. A standard descrip-
tion of the interstellar cosmic ray flux gives them an unattenuated ionization rate of
ζCR ∼ 10−17−10−16 s−1 and an exponential stopping length of 96 g cm−2 (substan-
tially greater than even high energy stellar X-rays). With these parameters, X-rays
would remain the primary source of ionization in the upper≈ 50 g cm−2 of the disk,
but cosmic rays would dominate in the region between about 50 and 500 g cm−2.
It is unclear, however, whether the unattenuated interstellar medium flux of cos-
mic rays typically reaches the surfaces of protoplanatary disks. The magnetic fields
embedded in the Solar wind form a partial barrier to incoming cosmic ray parti-
cles, whose effect is seen in a modulation of the observed flux with the Solar cycle.
T Tauri stars could have much stronger stellar winds that exclude cosmic rays effi-
ciently. Indeed, chemical modeling of molecular line data suggests that cosmic rays
are substantially excluded (to a level ζCR ∼ 10−19) from the disk around the nearby
star TW Hya [50], though how pervasive this phenomenon is remains unknown. If
cosmic rays are not present, the only guaranteed source of ionization at columns
more than ≈ 100 g cm−2 away from the disk surfaces is radioactive decay.
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Fig. 7 Estimates of the non-thermal ionization rate due to X-rays (red curves), unshielded cosmic
rays (blue) and radioactive decay of short-lived nuclides (blue), plotted as a function of the vertical
column density from the disk surface. The solid red curve shows the Bai & Goodman (2009) result
for an X-ray temperature kBTX = 5 keV, the dashed curve their result for kBTX = 3 keV. The dot-
dashed red curve shows a simpler formula proposed by Turner & Sano (2008). All of the X-ray
results have been normalized to a flux of LX = 1030 erg s−1 and a radius of 1 AU.

If our main interest is in conditions at r ∼ 1 AU the surface density in gas is
typically Σ ∼ 103 gcm−2 and X-rays, which are our main concern, will not reach the
mid-plane. The situation is different further out. At 100 AU typical surface densities
are much lower — 1 g cm−2 might be reasonable — and X-rays will sustain a non-
zero rate of ionizations throughout that column. On these scales ultraviolet photons
can also be important. Stellar FUV radiation will ionize carbon and sulphur atoms
near the disk surface, yielding a relatively high electron fraction xe ∼ 10−5. The
ionized skin that results is shallow, penetrating to a vertical column of just 0.01−
0.1 g cm−2, but enough to be significant in the tenuous outer disk [172].

Whether cosmic rays are excluded from most or all T Tauri disks is an impor-
tant question which may be addressed observationally in the near future. I also
keep in the back of my mind that the amount of power involved in non-thermal
ionization is rather small when compared to that liberated by accretion [98].
Any internal disk process that could convert a small fraction of the accretion
energy into non-thermal particles would likely matter for the ionization state.

As with ionization, the rate of recombination within the disk can be calculated
from complex numerical models that track reactions (often numbering in the thou-
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sands) between dozens of different species. The following discussion, which bor-
rows heavily from the description given by Ilgner & Nelson (2006) [96] and Fro-
mang (2013) [72] is intended only to outline some of the important principles. At
the broadest level of discussion we need to consider gas-phase recombination reac-
tions (involving molecular and gas-phase metal ions) along with recombination on
the surface of dust grains.

The principles of gas-phase recombination can be illustrated by considering the
possible reactions between electrons and generic molecules m and metal atoms M
[163, 96]. The basic reactions are then,

• Ionization,
m→m++ e−, (38)

with rate ζ . A specific example is H2→ H+
2 + e−.

• Recombination with molecular ions,

m++ e−→m, (39)

with rate α = 3× 10−6T−1/2 cm3 s−1. An example is the dissociative recombi-
nation reaction HCO++ e−→ CO+H.

• Recombination with gas-phase metal ions,

M++ e−→M+hν , (40)

with rate γ = 3×10−11T−1/2 cm3 s−1. An example is Mg++ e−→Mg+hν .
• Charge exchange reactions,

m++M→m+M+, (41)

with rate β = 3×10−9 cm3 s−1. An example is HCO++Mg→Mg++HCO.

From such a set of reactions we form differential equations describing the time
evolution of the number density of species involved. For the molecular abundance
nm, for example, we have,

dnm

dt
=−ζ nm +αnenm+ +βnMnm+ = 0, (42)

where the second equality follows from assuming that the system has reached equi-
librium. The resulting system of algebraic equations has simple limiting solutions.
For example, if there are no significant reactions involving metals then the above
equation, together with the condition of charge neutrality (nm+ = ne), gives an elec-
tron fraction xe = ne/nm,

xe =

√
ζ

αnm
. (43)

In the more general case, the network yields a cubic equation which can be solved
for the electron fraction as a function of the gas-phase metal abundance [96]. Typi-
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cally the presence of metal atoms and ions is found to be important for the ionization
level.

Recombination can also occur on the surfaces of dusty or icy grains. The simplest
reactions we might consider are,

e−+gr → gr−

m++gr− → gr+m. (44)

If the first of these reactions is rate-limiting, then we can write a modified version
of the ordinary differential equation (equation 42) that includes grain processes.
Ignoring metals for simplicity,

dnm

dt
=−ζ nm +αnenm+ +σvengrne− , (45)

where σ is the cross-section of grains to adhesive collisions with free electrons
and ve is the electron thermal velocity. In the limit where only grains contribute to
recombination we then find,

xe =
ζ

σvengr
. (46)

If the grains are mono-disperse with radius s, then xe ∝ 1/σngr ∝ s, and recombina-
tion on grain surfaces will be more important for small grain sizes. We also note that
the dependence on the ionization rate ζ is linear, rather than the square root depen-
dence found in the gas-phase case. As for metals, grain populations with commonly
assumed size distributions are found to matter for the ionization level.

The above discussion of recombination leaves a great deal unsaid. For grains, an
important additional consideration is related to the typical charge state, which needs
to be calculated [61]. A good comparison of different networks for the calculation of
the ionization state is given by Ilgner & Nelson (2006) [96], while Bai & Goodman
(2009) [18] provide a clear discussion of the important processes.

The accuracy needed from calculations of ionization equilibrium is strongly
problem-dependent (and in some cases, such as if we don’t know if cosmic
rays are present for a particular system, high accuracy may be illusory). The
reader who encounters a problem involving the ionization level is advised
to consider whether a simple analytic approximation is adequate, or whether
solution of a full chemical network is required. Both new analytic models
(that include dust), and flexible freely-available codes for computing detailed
solutions, would be valuable.
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2 Disk evolution

The population of protoplanetary disks is observed to evolve, but why this should
happen remains hard to fully explain. For a geometrically thin, low-mass disk, the
deviation from a point-mass Keplerian rotation curve is small (c.f. equation 13) and
the specific angular momentum,

l(r) = r2
ΩK =

√
GM∗r ∝ r1/2, (47)

is an increasing function of orbital radius. To accrete, gas in the disk must lose angu-
lar momentum, and the central theoretical problem in disk evolution is to understand
this process.

Within any shearing fluid, momentum is transported in the cross-stream direction
because the random motion of molecules leads to collisions between particles that
have different velocities. The classical approach to disk evolution [140, 180] treats
the disk as a vertically thin axisymmetric sheet of viscous fluid, and leads to a fairly
simple equation for the time evolution of the disk surface density Σ(r, t). There
appears to be a fatal flaw to this approach, because the molecular viscosity of the
gas is much too small to lead to any significant rate of disk evolution. But it’s not
as bad as it seems. The classical disk evolution equation involves few assumptions
beyond the immutable laws of mass and angular momentum conservation, and as we
shall see is therefore approximately valid if the “viscosity” is re-interpreted as the
outcome of a turbulent process. We will have (much) more to say about the possible
origin of disk turbulence in §3.

Redistribution of angular momentum within the gas disk is not the only route
to evolution. An almost equally long-studied suggestion [36] is that gas accretes
because a magnetohydrodynamic (MHD) wind removes angular momentum entirely
from the disk. Winds and viscosity have frequently between seen as orthogonal and
competing hypotheses for disk evolution, but there is evidence suggesting that both
processes are simultaneously important in regions of protoplanetary disks.

2.1 The classical equations

The evolution of a flat, circular and geometrically thin ((h/r)� 1) viscous disk
follows from the equations of mass and angular momentum conservation [180].
Given a surface density Σ(r, t), radial velocity vr(r, t) and angular velocity Ω(r), the
continuity equation in cylindrical co-ordinates yields,

r
∂Σ

∂ t
+

∂

∂ r
(rΣvr) = 0. (48)

Angular momentum conservation gives,
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r
∂

∂ t

(
r2

ΩΣ
)
+

∂

∂ r

(
r2

Ω · rΣvr
)
=

1
2π

∂G
∂ r

, (49)

where Ω(r) is time-independent but need not be the point mass Keplerian angular
velocity. The rate of change of disk angular momentum is given by the change in
surface density due to radial flows and by the difference in the torque exerted on the
annulus by stresses at the inner and outer edges. For a viscous fluid the torque G has
the form,

G = 2πr ·νΣr
dΩ

dr
· r (50)

where ν is the kinematic viscosity. The torque is the product of the circumference,
the viscous force per unit length, and the lever arm r, and scales with the gradient
of the angular velocity.

To obtain the surface density evolution equation in its usual form we first elimi-
nate vr by substituting for ∂Σ/∂ t in equation (49) from equation (48). This gives an
expression for rΣvr, which we substitute back into equation (48) to yield,

∂Σ

∂ t
=−1

r
∂

∂ r

[
1

(r2Ω)′
∂

∂ r

(
νΣr3

Ω
′)] , (51)

where the primes denote differentiation with respect to radius. Specializing to a
point mass Keplerian potential (Ω ∝ r−3/2) we then find that viscous redistribution
of angular momentum within a thin disk obeys an equation,

∂Σ

∂ t
=

3
r

∂

∂ r

[
r1/2 ∂

∂ r

(
νΣr1/2

)]
. (52)

This equation is a diffusive partial differential equation for the evolution of the gas,
which has a radial velocity,

vr =−
3

Σr1/2

∂

∂ r

(
νΣr1/2

)
. (53)

The equation is linear if the viscosity ν is independent of Σ .
Some useful rules of thumb for the rate of evolution implied by equation (52) can

be deduced with a change of variables. Defining,

X ≡ 2r1/2 (54)

f ≡ 3
2

ΣX , (55)

and taking the viscosity ν to be constant, we get a simpler looking diffusion equa-
tion,

∂ f
∂ t

= D
∂ 2 f
∂X2 (56)

with a diffusion coefficient D,

D =
12ν

X2 . (57)
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Fig. 8 The time-dependent solution to the disk evolution equation with ν = constant, showing the
spreading of a ring of gas initially orbiting at r = r0. From top down the curves show the surface
density as a function of the scaled time variable τ = 12νr−2

0 t, for τ = 0.004, τ = 0.008, τ = 0.016,
τ = 0.032, τ = 0.064, τ = 0.128, and τ = 0.256.

The diffusion time scale across a scale ∆X for an equation of the form of equa-
tion (56) is just (∆X)2/D. Converting back to the physical variables, the time
scale on which viscosity will smooth surface density gradients on a scale ∆r is
τν ∼ (∆r)2/ν . For a disk with characteristic size r, the surface density at all radii
will evolve on a time scale,

τν ≈
r2

ν
. (58)

This is the viscous time scale of the disk.
We can gain some intuition into how equation (52) works by inspecting time-

dependent analytic solutions that can be derived for special forms of the viscosity
ν(r). For ν = constant a Green’s function solution is possible. Suppose that at t = 0
the gas lies in a thin ring of mass m at radius r0,

Σ(r, t = 0) =
m

2πr0
δ (r− r0), (59)

where δ (r− r0) is a Dirac delta function. With boundary conditions that impose
zero-torque at r = 0 and allow for free expansion toward r = ∞ the solution is [140],

Σ(x,τ) =
m

πr2
0

1
τ

x−1/4 exp
[
− (1+ x2)

τ

]
I1/4

(
2x
τ

)
, (60)
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in terms of dimensionless variables x≡ r/r0, τ ≡ 12νr−2
0 t, and where I1/4 is a mod-

ified Bessel function of the first kind. This solution is plotted in Figure 8 and il-
lustrates generic features of viscous disk evolution. As t increases the ring spreads
diffusively, with the mass flowing toward r = 0 while the angular momentum is car-
ried by a negligible fraction of the mass toward r = ∞. This segregation of mass and
angular momentum is generic to the evolution of a viscous disk, and must occur if
accretion is to proceed without overall angular momentum loss.

2.1.1 Limits of validity

Protoplanetary disks are not viscous fluids in the same way that honey is a viscous
fluid (or, for that matter, in the same way as the mantle of the Earth is viscous).
To order of magnitude precision, the viscosity of a gas ν ∼ vthλ , where vth is the
thermal speed of the molecules and the mean-free path λ is,

λ ∼ 1
nσ

. (61)

Here n is the number density of molecules with collision cross-section σ . Taking
σ to be roughly the physical size of a hydrogen molecule, σ ∼ π(10−8 cm)2, and
conditions appropriate to 1 AU (n∼ 1015 cm−3, vth ∼ 105 cm s−1) we estimate,

λ ∼ 3 cm
ν ∼ 3×105 cm2 s

−1
. (62)

This is not a large viscosity. The implied viscous time according to equation (58)
is of the order of 1013 yr, far in excess of observationally inferred time scales of
protoplanetary disk evolution. If we nevertheless press on and use equation (52) to
model disk evolution, we are implicitly modeling a system that is not an ordinary
viscous fluid with a viscous equation. We need to understand when this is a valid
approximation.

The first possibility, introduced by Shakura & Sunyaev (1973) in their paper on
black hole accretion disks [198], retains the idea that angular momentum is con-
served within the disk system, but supposes that turbulence rather than molecular
processes is the agent of angular momentum transport. Looking back at the deriva-
tion of the disk evolution equation (52), we note that the fluid properties of molec-
ular viscosity only enter twice, (i) in the specific expression for G (which, e.g. is
linear in the rate of shear) and (ii) in the more basic assumption that angular mo-
mentum transport is determined by the local fluid properties. The rest of the deriva-
tion involves only conservation laws that hold irrespective of the nature of transport.
Plausibly then, a disk in which angular momentum is redistributed by the action
of turbulence should still be describable by a diffusive equation, provided that the
turbulence is a local process. Proceeding rigorously, Balbus & Papaloizou (1999)
[26] showed that MHD turbulence is in principle local in this sense, whereas angu-
lar momentum transport by self-gravity is in principle not. At the level of the basic
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axisymmetric evolution equation then — before we turn to questions of what deter-
mines ν , or how boundary layers behave where the shear is reversed — we have not
committed any cardinal sin in starting from the viscous disk equation.

Greater care is needed in situations where the disk flow is no longer axisym-
metric. Fluids obey the Navier-Stokes equations, but there is no guarantee that a
turbulent disk with a complex geometry will behave in the same way as a viscous
Navier-Stokes flow with effective kinematic and bulk viscosities. In eccentric disks,
for example, even the most basic properties (such as whether the eccentricity grows
or decays) depend upon the nature of the angular momentum transport [159].

The disk evolution equation will also need modification if there are external
sources or sinks of mass or angular momentum. If the disk gains or loses mass
at a rate Σ̇(r, t), and if that gas has the same specific angular momentum as the disk,
then the modification is trivial,

∂Σ

∂ t
=

3
r

∂

∂ r

[
r1/2 ∂

∂ r

(
νΣr1/2

)]
+ Σ̇ . (63)

Disk evolution in the presence of thermally driven winds (such as photo-evaporative
flows) can be described with this equation. Alternatively, we may consider a disk
subject to an external torque that drives a radial flow with velocity vr,ext . This adds
an advective term,

∂Σ

∂ t
=

3
r

∂

∂ r

[
r1/2 ∂

∂ r

(
νΣr1/2

)]
− 1

r
∂

∂ r
(rΣvr,ext) . (64)

The qualitative evolution of the disk — for example the tendency for the outer re-
gions to expand to conserve angular momentum — can be changed if there is even
a modest external torque on the system.

The evolution of disk populations is frequently modeled using the diffusion
equation (52). In addition to the formal question of whether this is mathe-
matically sensible, it is not entirely obvious that protoplanetary disks evolve
significantly under viscous torques at all radii. In the outer regions, especially,
it is possible that the initial surface density distribution is modified more by
thermal or magnetic winds.

2.1.2 The α prescription

Molecular viscosity depends in a calculable way upon the density, temperature and
composition of the fluid. Can anything similar be said about the “effective viscosity”
present in disks? The standard approach is to write the viscosity as the product of
the characteristic velocity and spatial scales in the disk,

ν = αcsh, (65)
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where α is a dimensionless parameter. This ansatz (introduced in a related form in
[198]) is known as the Shakura-Sunyaev α prescription.

We can view the α prescription in two ways. The “weak” version is to regard it
as a re-parameterization of the viscosity that (perhaps) describes the leading order
scaling expected in disks (so that α is a more slowly varying function of tempera-
ture, radius etc than ν). This is useful, and along with convention is the reason why
numerical simulations of turbulent transport are invariably reported in terms of an
effective α . One can also adopt a “strong” version of the prescription in which α

is assumed to be a constant. This is powerful, as it allows for the development of
a predictive theory of disk structure that is based on only one free parameter (for a
textbook discussion see Frank, King & Raine [70], or for an application to proto-
planetary disks see, e.g. [30]). However, its use must be justified on a case by case
basis, as there is no reason why α should be a constant. Constant α models proba-
bly work better in highly ionized disk systems, where angular momentum transport
across a broad range of radii occurs via the simplest version of magnetorotational
instability [24], than in protoplanetary disks where the physical origin of angular
momentum transport is more complex [8].

2.2 Boundary conditions

Solving equation (52) requires the imposition of boundary conditions. The most
common, and simplest, is a zero-torque inner boundary condition, which exactly
conserves the initial angular momentum content of the disk. If the star has a dynam-
ically significant magnetic field, however, or if the disk is part of a binary system,
other boundary conditions may be more appropriate.

2.2.1 Zero-torque boundary conditions

A steady-state solution to equation (52) with a zero-torque inner boundary condition
is derived by starting from the angular momentum conservation equation (Equa-
tion 49). Setting the time derivative to zero and integrating we have,

2πrΣvr · r2
Ω = 2πr3

νΣ
dΩ

dr
+ constant. (66)

In terms of the mass accretion rate Ṁ =−2πrΣvr we can write this in the form,

−Ṁ · r2
Ω = 2πr3

νΣ
dΩ

dr
+ constant, (67)

where the constant of integration, which is an angular momentum flux, is as yet
undermined. To specify the constant, we note that if there is a point where dΩ/dr =
0 the viscous stress vanishes, and the constant is just the advective flux of angular
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Fig. 9 A sketch of what the angular velocity profile Ω(r) must look like if the disk extends down
to the surface of a slowly rotating star. By continuity there must be a point — usually close to the
stellar surface — where dΩ/dr = 0 and the viscous stress vanishes.

momentum advected,
constant =−Ṁ · r2

Ω . (68)

The physical situation where dΩ/dr = 0 is where the protoplanetary disk extends
all the way down to the surface of a slowly rotating star. The disk and the star
form a single fluid system, and the angular velocity (shown in Figure 9) must be a
continuous function that connects Ω = 0 in the star to Ω ∝ r−3/2 within the disk. The
viscous stress must then vanish at some radius R∗+ rbl, where rbl is the width of the
boundary layer that separates the star from the Keplerian part of the disk. Within the
boundary layer the angular velocity increases with radius, and gravity is balanced
against a combination of rotation and radial pressure support. Elementary arguments
[179] show that in many case the boundary layer is narrow, so that R∗+ rbl ' R∗.
We then find that,

constant'−ṀR2
∗

√
GM∗
R3
∗

(69)

and the steady-state solution for the disk simplifies to,

νΣ =
Ṁ
3π

(
1−
√

R∗
r

)
. (70)

For a specified viscosity this equation gives the steady state surface density profile of
a disk with a constant accretion rate Ṁ. Away from the inner boundary Σ(r) ∝ ν−1,
and the radial velocity (Equation 53) is vr =−3ν/2r.
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In obtaining equation (70) we have derived an expression for a Keplerian disk
via an argument that relies on the non-Keplerian form of Ω(r) in a boundary layer.
The resulting expression for the surface density is valid in the disk at r� R∗, but
would not work well close to the star even if there is a boundary layer. To model the
boundary layer properly, we would need equations that self-consistently determine
the angular velocity along with the surface density [177].

2.2.2 Magnetospheric accretion

For protoplanetary disks the stellar magnetic field can have a dominant influence on
the disk close to the star [110]. The simplest magnetic geometry involves a dipolar
stellar magnetic field that is aligned with the stellar rotation axis and perpendicular
to the disk plane. The unperturbed field then has a vertical component at the disk
surface,

Bz = B∗

(
r

R∗

)−3

. (71)

In the presence of a disk,the vertical field will thread the disk gas be distorted by
differential rotation between the Keplerian disk and the star. The differential rotation
twists the field lines that couple the disk to the star, generating an azimuthal field
component at the disk surface Bφ and a magnetic torque per unit area (counting both
upper and lower disk surfaces),

T =
BzBφ

2π
r. (72)

Computing the perturbed field accurately is hard (for simulation results see, e.g.
[192]), but it is easy to identify the qualitative effect that it has on the disk. Defining
the co-rotation radius rco as the radius where the field lines have the same angular
velocity as that of Keplerian gas in the disk,

rco =

(
GM∗P2

4π2

)1/3

, (73)

there are two regions of star-disk magnetic interaction:

• Interior to co-rotation (r < rco) the disk gas has a greater angular velocity than
the field lines. Field lines that link the disk and the star here are dragged forward
by the disk, and exert a braking torque that removes angular momentum from the
disk gas.

• Outside co-rotation (r > rco) the disk gas has a smaller angular velocity than
the field lines. The field lines are dragged backward by the disk, and there is a
positive torque on the disk gas.

Young stars are typically rapid rotators [40], so the co-rotation radius lies in the
inner disk. For P = 7 days, for example, the co-rotation radius around a Solar mass
star is at rco ' 15 R� or 0.07 AU.
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The presence of a stellar magnetic torque violates the assumption of a zero-torque
boundary condition, though the steady-state solution we derived previously (equa-
tion 70) will generally still apply at sufficiently large radius. The strong radial de-
pendence of the stellar magnetic torque means that there is only a narrow window of
parameters where the torque will be significant yet still allow the disk to extend to
the stellar surface. More commonly, a dynamically significant stellar field will dis-
rupt the inner disk entirely, yielding a magnetospheric regime of accretion in which
the terminal phase of accretion is along stellar magnetic field lines. The disruption
(or magnetospheric) radius rm can be estimated in various ways [110], but all yield
the same scaling as the spherical Alfvén radius,

rm '
(

kB2
∗R

6
∗

Ṁ
√

GM∗

)2/7

, (74)

where B∗ is the stellar surface field (defined such that B∗R3
∗ is the dipole moment)

and k a constant of the order of unity. Taking k = 1 for a Solar mass star,

rm ' 14
(

B∗
kG

)4/7( R∗
2 R�

)12/7( Ṁ
10−8 M� yr−1

)−2/7

R�. (75)

Often, the magnetospheric radius is comparable to the co-rotation radius.

2.2.3 Accretion on to and in binaries

Boundary conditions for disk evolution also need modification in binary systems.
For a coplanar disk orbiting interior to a prograde stellar binary companion, tidal
torques from the companion remove angular momentum from the outer disk and
prevent it from expanding too far [169]. The tidal truncation radius roughly corre-
sponds to the largest simple periodic orbit in the binary potential [167], which is at
about 40% of the orbital separation for a binary with mass ratio M2/M1 = 0.5. The
tidal torque is a function of radius, but to a first approximation one may assume that
tides impose a rigid no-expansion condition at r = rout. From equation (53),

∂

∂ r

(
νΣr1/2

)∣∣∣∣
r=rout

= 0. (76)

This type of boundary condition may also be an appropriate approximation for a
circumplanetary disk truncated by stellar tides [145].

The size of the disk (and even whether it is tidally truncated at all) will be
different if the disk is substantially misaligned with respect to the orbital plane
of the binary [135, 151].
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Fig. 10 The time-dependent analytic solution [181] to the disk evolution equation with a vr = 0
boundary condition at r = 1 for the case ν = r. The curves show the evolution of a ring of gas
initially at r = 2, at times t = 0.002, t = 0.004, t = 0.008 etc. The bold curve is at t = 0.128, and
dashed curves show later times. Gas initially accretes, but eventually decretes due to the torque
being applied at the boundary.

An exterior circumbinary disk will also experience stellar gravitational torques,
which in this case add angular momentum to the disk and slow viscous inflow. How
best to model these torques is an open question, particularly in the case of extreme
mass ratio binaries composed of a star and a massive planet. Pringle (1991) derived
an illuminating analytic solution for circumbinary disk evolution [181], under the
assumption that tidal torques completely prevent inflow past some radius r = rin.
With this assumption the boundary condition at r = rin is vr = 0, and the task is to
find a solution to equation (52) with this finite radius boundary condition. A simple
solution is possible for ν = kr, with k a constant. Defining scaled variables,

x = r1/2

σ = Σr3/2, (77)

the t > 0 solution for an initial mass distribution,

σ(x, t = 0) = σ0δ (x− x1), (78)

is [181],

σ =
σ0t−1/2

4(3πk)1/2

{
exp
[
−(x− x1)

2/3kt
]
+ exp

[
−(x+ x1−2xin)

2/3kt
]}

. (79)
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The solution, plotted in Figure 10, can be compared to the zero-torque solution (Fig-
ure 8, though note this is for a constant viscosity). The initial evolution is similar, but
at late times the torque which precludes inflow past rin causes qualitatively different
behavior. The disk switches from an accretion to a decretion disk, with an outward
flow of mass driven by the binary torque.

Disks resembling the classical decretion disk solution may be realized under
some circumstances, for example around rapidly rotating and strongly magnetized
stars. Around binaries, however, it appears hard to completely shut off inflow. Nu-
merical simulations show that angular momentum transfer to the disk co-exists with
persistent inflow into a low density cavity containing the binary [10, 58]. How best
to represent this complexity in a one-dimensional model is not entirely obvious.

2.3 Viscous heating

Although stellar irradiation is often the dominant source of heat for protoplanetary
disks (§1.2), dissipation of gravitational potential energy associated with accretion
is also important. Ignoring irradiation for the time being, we can derive the effective
temperature profile of a steady-state viscous disk. In the regime where the classical
equations are valid, the fluid dissipation per unit area is [180],

Q+ =
9
4

νΣΩ
2. (80)

Using the steady-state solution for νΣ (equation 70), we equate Q+ to the rate of
local energy loss by radiation. If the disk is optically thick, the disk radiates (from
both sides) at a rate Q− = 2σT 4

disk, with σ being the Stefan-Boltzmann constant.
This yields an effective temperature profile,

T 4
disk =

3GM∗Ṁ
8πσr3

(
1−
√

R∗
r

)
. (81)

Away from the inner boundary, the steady-state temperature profile for a viscous
disk (Tdisk ∝ r−3/4) is steeper than for irradiation. For any accretion rate, we then
expect viscous heating to be most important in the inner disk, whereas irradiation
always wins out at sufficiently large radii.

The viscous disk temperature profile is not what we get from considering just the
local dissipation of potential energy. The gradient of the potential energy per unit
mass ε , is dε/dr = GM∗/r2. For an accretion rate Ṁ, the luminosity available to be
radiated from an annulus of width ∆r due to local potential energy release would
be,

L =
1
2

GM∗Ṁ
r2 ∆r, (82)
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where the factor of a half accounts for the fact that half the energy goes into in-
creased kinetic energy, with only the remainder available to be thermalized and
radiated. Equating this luminosity to the black body emission from the annulus,
2σT 4

disk ·2πr∆r, would give a profile that is a factor three different from the asymp-
totic form of equation (81). The difference arises because the radial transport of
angular momentum is accompanied by a radial transport of energy. The local lu-
minosity from the disk surface at any radius then has a contribution from potential
energy liberated closer in.

The optically thick regions of irradiated protoplanetary disks will be vertically
isothermal. When viscous heating dominates, however, there must be a vertical tem-
perature gradient to allow energy to be transported from the mid-plane toward the
photosphere. What this gradient looks like, in detail, depends on the vertical distri-
bution of the heating, which is not well known. However, an approximation to T (z)
can be derived assuming that the energy dissipation due to viscosity is strongly con-
centrated toward the mid-plane. We define the optical depth to the disk mid-plane,

τ =
1
2

κRΣ , (83)

where κR is the Rosseland mean opacity. The vertical density profile of the disk is
ρ(z). If the vertical energy transport occurs via radiative diffusion then for τ � 1
the vertical energy flux F(z) is given by the equation of radiative diffusion [194]

Fz(z) =−
16σT 3

3κRρ

dT
dz

. (84)

Now assume for simplicity that all of the dissipation occurs at z = 0. In that case
Fz(z) = σT 4

disk is constant with height. We integrate from the mid-plane to the pho-
tosphere at zph assuming that the opacity is also constant,

−16σ

3κR

∫ Tdisk

Tc
T 3dT = σT 4

disk

∫ zph

0
ρ(z′)dz′ (85)

− 16
3κR

[
T 4

4

]Tdisk

Tc

= T 4
disk

Σ

2
, (86)

where the final equality relies on the fact that for τ � 1 almost all of the disk gas
lies below the photosphere. For large optical depth T 4

c � T 4
disk and the equation

simplifies to,
T 4

c

T 4
disk
' 3

4
τ. (87)

Often both stellar irradiation and accretional heating contribute significantly to the
thermal balance of the disk. If we define Tdisk,visc to be the effective temperature
that would result from viscous heating in the absence of irradiation (i.e. the quantity
called Tdisk, with no subscript, above) and Tirr to be the irradiation-only effective
temperature, then,
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T 4
c '

3
4

τT 4
disk,visc +T 4

irr (88)

is an approximation for the central temperature, again valid for τ � 1.
These formulae can be applied to estimate the location of the snow line. In the So-

lar System, meteoritic evidence [152] places the transition between water vapor and
water ice, which occurs at a mid-plane temperature of 150-180 K, at around 2.7 AU.
This is substantially further from the Sun than would be expected if the only disk
heating source was starlight. Including viscous heating, however, an accretion rate
of 2×10−8 M� yr−1 could sustain a mid-plane temperature of 170 K at 2.7 AU in a
disk with Σ = 400 g cm−2 and κR = 1 cm2 g−1. This estimate (from equation 87) is
consistent with more detailed models for protoplanetary disks [30], though consid-
erable variation in the location of the snow line is introduced by uncertainties in the
vertical structure [143].

2.4 Warped disks

The classical equation for surface density evolution needs to be rethought if the disk
is non-planar. Disks may be warped for several reasons; the direction of the angular
momentum vector of the gas that forms the disk may not be constant, the disk may
be perturbed tidally by a companion [121, 157], or warped due to interaction with
the stellar magnetosphere [120].

A warp affects disk evolution through physics that is independent of its origin
(for a brief review, see [156]). In a warped disk, neighboring annuli have specific
angular momenta that differ in direction as well as in magnitude. If we define a unit
tilt vector l(r, t) that is locally normal to the disk plane, the shear then has a vertical
as well as a radial component [160],

S = r
dΩ

dr
l+ rΩ

∂ l
∂ r

. (89)

The most important consequence of the vertical shear is that it introduces a periodic
vertical displacement of radially separated fluid elements. As illustrated in Figure 11
this displacement, in turn, results in a horizontal pressure gradient that changes sign
across the mid-plane and is periodic on the orbital frequency. In a Keplerian disk
this forcing frequency is resonant with the epicyclic frequency.

How the disk responds to the warp-generated horizontal forcing depends on the
strength of dissipation [170]. If the disk is sufficiently viscous, specifically if,

α >
h
r
, (90)

the additional shear is damped locally. The equation for the surface density and tilt
evolution (the key aspects of which are derived in [182], though see [158] for a
complete treatment) then includes terms which diffusively damp the warp at a rate
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Fig. 11 Illustration (after [131, 156]) of how a warp introduces an oscillating radial pressure gra-
dient within the disk. As fluid orbits in a warped disk, vertical shear displaces the mid-planes of
neighboring annuli. This leads to a time-dependent radial pressure gradient dP/dr(z). Much of the
physics of warped disks is determined by how the disk responds to this warp-induced forcing.

that is related to the radial redistribution of angular momentum. Normally, warp
damping is substantially faster than the viscous evolution of a planar disk. Even
for a Navier-Stokes viscosity — which is fundamentally isotropic — the effective
viscosity which damps the warp is a factor ≈ 1/2α2 larger than its equivalent in a
flat disk. Rapid evolution also occurs in the opposite limit of an almost inviscid disk
with,

α <
h
r
, (91)

but in this case the component of angular momentum associated with the warp is
communicated radially in the form of a wave. For a strictly inviscid disk the lin-
earized fluid equations for the evolution of the tilt vector take a simple form [136],

∂ 2l
∂ t2 =

1
Σr3Ω

∂

∂ r

(
Σr3

Ω
c2

s

4
∂ l
∂ r

)
. (92)

The speed of the warp wave is vw ≈ cs/2.

In most cases we expect protoplanetary disks to have α < h/r, and warps will
evolve in the wave-like regime. We expect, however, that the details of warp
evolution will depend upon the nature of angular momentum transport, and
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Fig. 12 Illustration, after Spruit [205], of the different regions of a disk wind solution.

nothing is known about how warps behave for the transport mechanisms (such
as non-ideal MHD) most relevant to protoplanetary disks. The differences be-
tween warp evolution with realistic transport, and that with a Navier-Stokes
viscosity, are of undetermined size.

2.5 Disk winds

Viscous evolution driven by redistribution of angular momentum is a consequence
of turbulent (or possibly laminar) stresses that are internal to the fluid. Evolution
can also be driven by external torques, the most important of which is the magnetic
torque that an MHD wind exerts on the surface of the disk. An excellent pedagogical
introduction to disk winds is the review by Spruit [205], while Königl & Salmeron
[111] provide a more recent account that addresses the peculiarities specific to pro-
toplanetary disks.

Winds that are driven solely by pressure gradients (“thermal winds”) are of in-
terest as a mechanism for disk dispersal but do not otherwise change the qualitative
character of disk evolution. Instead, we consider here MHD winds, with the sim-
plest case being a well-ionized disk is threaded by a large-scale ordered poloidal
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magnetic field [36]. In the ideal MHD limit the fluid is tied to magnetic field lines,
which can facilitate acceleration of the wind while exerting a back reaction on the
disk that removes angular momentum.

Blandford-Payne winds are not the only type of MHD outflow of interest for
protoplanetary disk systems. Outflows could be launched by a gradient of
toroidal magnetic field pressure [139], perhaps during or shortly after the col-
lapse of the cloud that forms both the star and the disk. Jets can also originate
from the interaction between the stellar magnetosphere and the disk [199].

The structure of such a wind, illustrated in Figure 12, generically has three re-
gions. Within the disk the energy density in the magnetic field, B2/8π , is smaller
than ρc2

s , the thermal energy2. Due to flux conservation, however, the energy in the
vertical field component, B2

z/8π , is roughly constant with height for z < r, while
the gas pressure typically decreases at least exponentially with a scale height h� r.
This leads to a region above the disk surface where magnetic forces dominate. The
magnetic force per unit volume is,

J×B
c

=−∇

(
B2

8π

)
+

B ·∇B
4π

, (93)

where the current,
J =

c
4π

∇×B. (94)

The force, in general, can be written as shown above as the sum of a magnetic
pressure gradient and a force due to magnetic tension. In the disk wind region where
magnetic forces dominate, the requirement that they exert a finite acceleration on the
low density gas implies that the force approximately vanishes, i.e. that,

J×B≈ 0. (95)

The structure of the magnetic field in the magnetically dominated region is then
described as being “force-free”, and in the disk wind case (where B changes slowly
with z) the field lines must be approximately straight to ensure that the magnetic
tension term is also individually small. If the field lines support a wind, the force-
free structure persists up to where the kinetic energy density in the wind, ρv2, first
exceed the magnetic energy density. This is called the Alfvén surface. Beyond the
Alfvén surface, the inertia of the gas in the wind is sufficient to bend the field lines,
which tend to wrap up into a spiral structure as the disk below them rotates.

Magneto-centrifugal driving can launch a wind from the surface of a cold gas
disk if the magnetic field are sufficiently inclined to the disk normal. The critical
inclination angle in ideal MHD can be derived via an exact mechanical analogy. To

2 We can also consider situations where the magnetic pressure in the disk is stronger than the gas
pressure, though it must always be weaker than ρv2

φ
.
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Fig. 13 Geometry for the calculation of the critical angle for magneto-centrifugal wind launching.
A magnetic field line s, inclined at angle θ from the disk normal, enforces rigid rotation at the
angular velocity of the foot point, at cylindrical radius ϖ = r0 in the disk. Working in the rotating
frame we consider the balance between centrifugal force and gravity.

proceed, we note that in the force-free region the magnetic field lines are (i) basically
straight lines, and (ii) enforce rigid rotation out to the Alfvén surface at an angular
velocity equal to that of the disk at the field line’s footpoint. The geometry is shown
in Figure 13. We consider a field line that intersects the disk at radius r0, where the

angular velocity is Ω0 =
√

GM∗/r3
0, and that makes an angle θ to the disk normal.

We define the spherical polar radius r, the cylindrical polar radius ϖ , and measure
the distance along the field line from its intersection with the disk at z = 0 as s. In
the frame co-rotating with Ω0 there are no magnetic forces along the field line to
affect the acceleration of a wind; the sole role of the magnetic field is to contrain the
gas to move along a straight line at constant angular velocity. Following this line of
argument, the acceleration of a wind can be fully described in terms of an effective
potential,

Φeff(s) =−
GM∗
r(s)

− 1
2

Ω
2
0 ϖ

2(s). (96)

The first term is the grvaitational potential, while the second describes the centrifu-
gal potential in the rotating frame.

Written out explicitly, the effective potential is,

Φeff(s) =−
GM∗

(s2 +2sr0 sinθ + r2
0)

1/2 −
1
2

Ω
2
0 (r0 + ssinθ)2 . (97)

This function is plotted in Figure 14 for various values of the angle θ . For a vertical
field line (θ = 0) the effective potential is a monotonically increasing function of
distance s, for modest values of θ there is a potential barrier defined by a maximum
at some s= smax, while for large enough θ the potential decreases from s= 0. In this
last case purely magneto-centrifugal forces suffice to accelerate a wind off the disk
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Fig. 14 The variation of the disk wind effective potential Φeff (in arbitrary units) with distance s
along a field line. From top downwards, the curves show field lines inclined at 0◦, 10◦, 20◦, 30◦ (in
bold) and 40◦ from the normal to the disk surface. For angles of 30◦ and more from the vertical,
there is no potential barrier to launching a cold MHD wind directly from the disk surface.

surface, even in the absence of any thermal effects. The critical inclination angle of
the field can be found by computing θcrit, specified though the condition,

∂ 2Φeff

∂ s2

∣∣∣∣
s=0

= 0. (98)

Evaluating this condition, we find,

1−4sin2
θcrit = 0

⇒ θcrit = 30◦, (99)

as the minimum inclination angle from the vertical needed for unimpeded wind
launching in ideal MHD [36]. Since most of us are more familiar with mechanical
rather than magnetic forces, this derivation in the rotating frame offers the easiest
route to this result. But it can, of course, be derived just as well by working in the
inertial frame of reference [205].

The rigid rotation of the field lines interior to the Alfvén surface means that gas
being accelerated along them increases its specific angular momentum. The mag-
netic field, in turn, applies a torque to the disk that removes a corresponding amount
of angular momentum. If a field line, anchored to the disk at radius r0, crosses the
Alfvén surface at (cylindrical) radius rA, it follows that the angular momentum flux
is,
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L̇w = ṀwΩ0r2
A, (100)

where Ṁw is the mass loss rate in the wind. Removing angular momentum at this
rate from the disk results in a local accretion rate Ṁ = 2L̇w/Ω0r2

0. The ratio of the
disk accretion rate to the wind loss rate is,

Ṁ
Ṁw

= 2
(

rA

r0

)2

. (101)

If rA substantially exceeds r0 (by a factor of a few, which is reasonable for detailed
disk wind solutions) a relatively weak wind can carry away enough angular momen-
tum to support a much larger accretion rate.

The behavior of a disk that evolves under wind angular momentum loss depends
on how the wind and the poloidal magnetic field respond to the induced accretion.
It is not immediately obvious that a steady accretion flow is even possible. The
form of the effective potential (Figure 14) suggests that the rate of mass and angular
momentum loss in the wind ought to be a strong function of the inclination of the
field lines — for θ < 30◦ there is a potential barrier to wind launching, while for
θ ≥ 30◦ there is no barrier at all. How θ responds to changes in the inflow rate
through the disk is of critical importance [138, 43, 161], and there is no simple
analog of the diffusive disk evolution equation.

Irrespective of the (uncertain) details, viscous and wind-driven disks exhibit
some qualitative difference that may enable observational tests. The classical
test is the evolution of the outer disk radius, which expands in viscous models
(if there is no mass loss, even in the form of a thermal wind) but contracts
if an MHD wind dominates. Old and almost forgotten observations [204] of
disk radius changes in dwarf novae (accreting white dwarfs in mass transfer
binary systems) provided empirical support for viscous disk evolution in those
specific systems. Disk winds also remove energy, and so another potential test
is to look for evidence of the dissipation of accretion energy within the disk
that is present in viscous models but absent for winds.

2.5.1 Magnetic field transport

The strength and radial profile of the vertical magnetic field threading the disk are
important quantities for disk winds, and for turbulence driven by MHD processes.
Disks form from the collapse of magnetized molecular clouds, and it is inevitable
that they will inherit non-zero flux at the time of formation. The poloidal component
of that flux can subsequently be advected radially with the disk gas, diffuse relative
to the gas, or (if the flux has varying sign across the disk) reconnect.

A theory for the radial transport of poloidal flux within geometrically thin ac-
cretion disks was developed by Lubow, Papaloizou & Pringle (1994) [137]. They
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considered a disk within which turbulence generates an effective viscosity ν and an
effective magnetic diffusivity η . The disk is threaded by a vertical magnetic field
Bz(r, t), which is supported by a combination of currents within the disk and (po-
tentially) a current external to the disk. Above the disk, as in Figure 12 the field is
force-free. The field lines bend within the disk, such that the poloidal field has a
radial component Brs(r, t) at the disk surface.

To proceed (following the notation in [83]), we first write the poloidal field in
terms of a magnetic flux function ψ , such that B = ∇ψ × eφ , where eφ is a unit
vector in the azimuthal directions. The components of the field are,

Br = −
1
r

∂ψ

∂ z
,

Bz =
1
r

∂ψ

∂ r
. (102)

From the second of these relations we note that ψ is (up to a factor of 2π) just
the vertical magnetic flux interior to radius r. We split ψ into two pieces, a piece
ψdisk due to currents within the disk, and a piece ψ∞ due to external currents (“at
infinity”),

ψ = ψdisk +ψ∞. (103)

The external current generates a magnetic field that is uniform across the disk.
With these definitions, the evolution of the poloidal field in the simplest analysis

[137, 83] obeys,
∂ψ

∂ t
+ r (vadvBz + vdiffBrs) = 0, (104)

where vadv is the advective velocity of magnetic flux and vdiff its diffusive velocity
due to the turbulent resistivity within the disk. The disk component of the flux func-
tion is related to the surface radial field via an integral over the disk. Schematically,

ψdisk(r) =
∫ rout

rin

F(r,r′)Brs(r′)dr′, (105)

where F is a rather complex function that can be found in Guilet & Ogilvie (2014)
[83]. The appearance of this integral reflects the inherently global nature of the
problem — a current at some radius within the disk affects the poloidal magnetic
field everywhere, not just locally — and makes analytic or numerical solutions for
flux evolution more difficult. Nonetheless, equation (105) can be inverted to find Brs
from ψ , after which the more familiar equation (104) can be solved for specified
transport velocities to determine the flux evolution.

Equation (104) expresses a simple competition, the inflow of gas toward the star
will tend to drag in poloidal magnetic field, but this will set up a radial gradient
and be opposed by diffusion. The physical insight of Lubow et al. (1994) [137] was
to note that although both of these are processes involving turbulence (and, very
roughly, we might guess that ν ∼ η), the scales are quite distinct. From Figure 12,
we note that because the field lines bend within the disk, a moderately inclined
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external field (with Brs ∼ Bz) above the disk only has to diffuse across a scale∼ h to
reconnect with its oppositely directed counterpart below the disk. Dragging in the
field with the mean disk flow, however, requires angular momentum transport across
a larger scale r. In terms of transport velocities, in a steady-state we have,

vadv ∼
ν

r
,

vdiff ∼
η

h
Brs

Bz
, (106)

so that for ν ∼ η and Brs ∼ Bz diffusion beats advection by a factor ∼ (h/r)−1 �
1. Defining the magnetic Prandtl number Pm = ν/η as the ratio of the turbulent
viscosity to the turbulent resistivity, we would then expect that in steady-state [137],

Brs

Bz
∼ h

r
Pm. (107)

This argument is the origin of the claim that thin disks do not drag in external
magnetic fields. It suggests that obtaining enough field line bending to launch a
magneto-centrifugal wind ought to be hard, and that whatever primordial flux the
disk is born with may be able to escape easily.

The physical arguments given above are robust, but a number of authors have em-
phasized that the calculation of the transport velocities that enter into equation (104)
involves some subtleties [161, 134, 82, 83, 212]. The key point is that the viscosity
and resistivity that enter into the equation for flux transport should not be computed
as density-weighted vertical averages, but rather (in the case of the induction equa-
tion) as conductivity-weighted averages [82]. This makes a large difference for pro-
toplanetary disks, where the conductivity is both generally low, and highest near the
disk surface where the density is small. The derived transport velocities are, more-
over, functions of the poloidal field strength, in the sense that diffusion becomes
relatively less efficient as the field strength decreases. It should be noted that none
of the flux transport calculations fully includes all of the MHD effects expected to
be present in protoplanetary disks (see §3.4.3). It seems possible, though, that the
variable efficiency of flux diffusion could simultaneously allow,

• For rapid flux loss from the relatively strongly magnetized disks formed from star
formation [128], averting overly rapid wind angular momentum loss that would
be inconsistent with observed disk lifetimes.

• For convergence toward a weak but non-zero net poloidal flux (possibly with a
ratio of thermal to poloidal field magnetic pressure at the mid-plane β ∼ 104−
107) later in the disk lifetime [83].

As we will discuss in the next section, poloidal field strengths in roughly this range
are of interest for their role in stimulating MHD instabilities within weakly ionized
disks, so this is a speculative but interesting scenario.
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3 Turbulence

Turbulence within protoplanetary disks is important for two independent reasons.
First, if it is strong enough and has the right properties, it could account for disk
evolution by redistributing angular momentum much faster than molecular viscos-
ity. Second, turbulence has its fingers in a plethora of planet formation processes,
ranging from the collision velocities of small particles [164] to the formation of
planetesimals [100] and the migration rate of low-mass planets [109]. For these rea-
sons we would like to understand disk turbulence, even if (as is possible) it is not
always responsible for disk evolution.

The first order of business when considering possibly turbulent fluid systems is
usually to estimate the Reynolds number, which is a dimensionless measure of the
relative importance of inertial and viscous forces. For a system with characteristic
size L, velocity U , and (molecular) viscosity ν , the Reynolds number is defined,

Re =
UL
ν

. (108)

There is no unique or “best” definition of U and L for protoplanetary disks, but
whatever choice we make gives a very large number. For example, taking L = h and
U = cs then our estimate of the viscosity at 1 AU (equation 62) implies Re∼ 1011.
By terrestrial standards this is an enormous Reynolds number. Experiments on flow
through pipes, for example — including those of Osborne Reynolds himself — show
that turbulence is invariably present once Re > 104 [62]. If turbulence is present
within protoplanetary disks, there is no doubt that viscous forces will be negligible
on large scales, and the turbulence will exhibit a broad inertial range.

Figure 15 lists some of the possible sources of turbulence within protoplanetary
disks. It’s a long list! We can categorize the candidates according to various criteria,

• The physics involved in generating the turbulence. The simplest possibility
(which appears unlikely) is that turbulence develops spontaneously in an isother-
mal, purely hydrodynamical shear flow. More complete physical models invoke
entropy gradients, disk self-gravity or magnetic fields as necessary elements for
the origin of turbulence.

• The origin of the free energy that sustains the turbulence, which could be the
radial or vertical shear, heating from the star, or velocity differences between gas
and solid particles.

• The character of the instabilities proposed to initiate turbulence from an ini-
tially non-turbulent flow. Linear instabilities grow exponentially from arbitrar-
ily small perturbations, while non-linear instabilities require a finite amplitude
disturbance. Demonstrating the existence of linear instabilities is relatively easy,
whereas proving that a fluid system is non-linearly stable is very hard.

• The species involved. In this section we concentrate on instabilities present in
purely gaseous disks; additional instabilities are present once we consider how
gas interacts aerodynamically with its embedded solid component (§??).
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Fig. 15 A menu of the leading suspects for creating turbulence within protoplanetary disks.

Figure 16 illustrates the dominant fluid motions or forces involved in some of the
most important disk instabilities.

For each candidate instability we would like to know the disk conditions under
which it would be present, its growth rate, and the strength and nature of the tur-
bulence that eventually develops. For disk evolution we are particularly interested
in how efficiently the turbulence transports angular momentum (normally charac-
terized by an effective α). In most cases the efficiency of transport can only be
determined using numerical simulations, whose fluctuating velocity and magnetic
fields can be analyzed to determine α via the relation [24],

α =

〈
δvrδvφ

c2
s
−

BrBφ

4πρc2
s

〉
ρ

, (109)

where the angle brackets denote a density weighted average over space (and time,
in some instances). The first term in this expression is the Reynolds stress from
correlated fluctuations in the radial and perturbed azimuthal velocity, the second
term in the Maxwell stress from MHD turbulence. We speak of the stress as being
“turbulent” if the averages in the above relation are dominated by contributions from
small spatial scales. It is also possible for a disk to sustain large scale stresses —
for example at some radius we might have non-zero mean radial and azimuthal
magnetic fields — which are normally described as being “laminar”.
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Fig. 16 A summary of the most important instabilities that can be present in protoplanetary disks.
Self-gravity is important for sufficiently massive and cold disks. It leads to spiral arms and gravita-
tional torques between regions of over-density. The magnetorotational instability occurs whenever
a weak magnetic field is sufficiently coupled to differential rotation. The magnetic field acts to cou-
ple fluid elements at different radii, leading to an instability that can sustain MHD turbulence and
angular momentum transport. The vertical shear instability feeds off the vertical shear that is set
up in disks with realistic temperature profiles. It is a linear instability characterized by near-vertical
growing modes. The subcritical baroclinic instability is a non-linear instability that operates in the
presence of a sufficiently steep radial entropy gradient. It resembles radial convection, and leads to
self-sustained vortices within the disk.

3.1 Hydrodynamic turbulence

The dominant motion in protoplanetary disks is Keplerian orbital motion about a
central point mass. Simplifying as much as possible, we first ask whether, in the
absence of magnetic fields3, the radial shear present in a low-mass disk would be
unstable to the development of turbulence. We first consider (rather unrealistically)
a radially isothermal disk, where according to equation (17) there is no vertical
shear. We then turn to the more general case where the temperature varies with
radius, giving rise both to vertical shear and qualitatively distinct possibilities for
instability.

3 Ignoring magnetic fields in astrophysical accretion flows is generally a stupid thing to do, and
indeed there is broad consensus that the magnetorotational instability (MRI) [24] is responsible
for turbulence and angular momentum transport in most accretion disks. In protoplanetary disks,
however, the low ionization fraction means that the dominance of MHD instabilities is much less
obvious, and purely hydrodynamic effects could in principle be important.
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3.1.1 Linear and non-linear stability

The linear stability of a shear flow with a smoothly varying Ω(r) against axisym-
metric perturbations is given by Rayleigh’s criterion (this is derived in most fluids
textbooks, see e.g. [183]). The flow is stable if the specific angular momentum in-
creases with radius,

dl
dr

=
d
dr

(
r2

Ω
)
> 0→ stability. (110)

A Keplerian disk has l ∝
√

r and is linearly stable.
There is no mathematical proof of the non-linear stability of Keplerian shear

flow, but nor is there any known instability. The apparently analogous cases of pipe
flow and Cartesian shear flows — which are linearly stable but undergo non-linear
transitions to turbulence — are in fact sufficiently different problems as to offer no
guidance [24]. There are analytic and numerical arguments against the existence
of non-linear instabilities [25], which although not decisive [187] essentially rule
out the hypothesis that a non-linear instability could result in astrophysically in-
teresting levels of turbulence [124]. The same conclusion follows from laboratory
experiments that have studied the stability of quasi-Keplerian rotation profiles in
Taylor-Couette experiments [63].

Laboratory experiments, and most theoretical work, consider the stability of
unstratified cylindrical shear flows. It has been suggested that new instabili-
ties (of a distinct character, related to the existence of locations in the flow
known as critical layers, for a review see [147]) arise when the vertical strati-
fication present in disks is included [141]. Study of this possibility remains in
its infancy.

3.1.2 Entropy-driven instabilities

A separate class of purely hydrodynamic instabilities (no self-gravity, no mag-
netic fields) are what might loosely be called “entropy-driven” instabilities, in that
they rely on the existence of a non-trivial temperature structure. The prototypical
entropy-driven instability is of course convection, which could occur in the vertical
direction if dissipation (associated with the physical process behind angular mo-
mentum transport) sets up an unstable entropy profile. This is evidently only con-
ceivable in the region where viscous dissipation dominates, as irradiation prefers
a nearly isothermal vertical structure. Even there, convective turbulence in disks is
less efficient at transporting angular momentum than it is in transporting heat [125],
and this disparity creates a formidable barrier to creating consistent models in which
convection is the primary source of disk turbulence. Convection may still be present
in some regions of disks, perhaps especially at high accretion rates, but as a byprod-
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uct of independent angular momentum transport processes (for an example in dwarf
novae, see [94]).

A disk that has a radial temperature gradient necessarily has vertical shear (equa-
tion 17). The free energy associated with the vertical shear can be accessed via
the vertical shear instability (VSI) analyzed by Nelson, Gressel & Umurhan (2013)
[155]. The VSI is a disk application of the Goldreich-Schubert-Fricke instability
[80, 71] of rotating stars, and was proposed as a source of protoplanetary disk trans-
port by Urpin & Brandenburg [221]4. The VSI is a linear instability with a maximum
growth rate that is of the order of hΩK [129], but which is strongly dependent on the
radiative properties of the disk. The reason is that to access the free energy in the
vertical shear requires vertical fluid displacements, which are easy in the limit that
the disk is strictly vertically isothermal but strongly suppressed if it is stably strati-
fied. The local cooling time of the fluid is thus a critical parameter, and the VSI will
only operate in regions of the disk where radiative cooling and heating processes re-
sult in a cooling time that is the same or shorter than the dynamical time Ω

−1
K . This,

in practice, restricts the application of the VSI to intermediate radii (Lin & Youdin
suggest 5-50 AU [129]), and limits its effectiveness if the dust opacity is reduced
(due to coagulation into large particles). Under the right conditions, however, nu-
merical simulations suggest that the VSI can generate relatively small but possibly
significant levels of transport, with both Nelson et al. [155] and Stoll & Kley [209]
finding α of a few ×10−4.

The radial entropy gradient may itself be unstable. The simplest instability would
be radial convection (a linear instability). For a disk with pressure profile P(r), den-
sity profile ρ(r), and adiabatic index γ , we define the Brunt-Väisälä frequency,

N2
r =− 1

γρ

dP
dr

d
dr

ln
(

P
ργ

)
. (111)

The Solberg-Hoı̈land criterion indicates that a Keplerian disk is convectively unsta-
ble if,

N2
r +Ω

2
K < 0. (112)

Protoplanetary disks never (or at least almost never) have a steep enough profile of
entropy to meet this condition, so radial convection will not set in. A different insta-
bility (the subcritical baroclinic instability, SBI) is possible, however, if the weaker
condition N2

r < 0 (which is just the Schwarzschild condition for non-rotating con-
vection) is satisfied [174, 175, 126]. The SBI, which is likely related to observations
of vortex formation in earlier numerical simulations [107], is a non-linear instability
that can be excited by finite amplitude perturbations. (Confusingly, it is unrelated to
the linear “baroclinic instability” studied in planetary atmospheres.) The SBI relies
on radial buoyancy forces to sustain vortical motion via baroclinic driving. This type
of effect is possible in disks in which surfaces of constant density are not parallel to
surface of constant pressure. Mathematically, for a fluid with vorticity ω = ∇× v,
we can take the curl of the momentum equation to get an equation for the vortensity

4 As we shall see, a general rule is that all disk instabilities have long histories and pre-histories.
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ω/ρ ,
D
Dt

(
ω

ρ

)
=

(
ω

ρ

)
·∇v− 1

ρ
∇

(
1
ρ

)
×∇P. (113)

The baroclinic term, which for the SBI is responsible for generating and maintain-
ing vorticity in the presence of dissipation, is the second term on the right hand side.
The SBI, as with the VSI, is sensitive to the cooling time [126, 184], in this case
because the baroclinic driving depends on the disk neither cooling too fast (which
would eliminate the buoyancy effect) nor too slow (which would lead to constant
temperature around the vortex). In compressible simulations, Lesur & Papaloizou
(2010) [126] found that under favorable disk conditions the SBI could lead to out-
ward transport of angular momentum with α ∼ 10−3.

3.2 Self-gravity

A disk is described as self-gravitating if it is unstable to the growth of surface den-
sity perturbations when the gravitational force between different fluid elements in
the disk is included along with the force from the central star. For a disk with sound
speed cs, surface density Σ and angular velocity Ω (assumed to be close to Keple-
rian) a linear analysis (for textbook treatments, see e.g. [7, 183]) shows that a disk
becomes self-gravitating when the Toomre Q [214],

Q≡ csΩ

πGΣ
< Qcrit, (114)

where Qcrit ∼ 1. We can deduce this result informally using an extension of the time
scale argument that gives the thermal Jeans mass. We first note that pressure will pre-
vent the gravitational collapse of a clump of gas, on scale ∆r, if the sound-crossing
time ∆r/cs is shorter than the free-fall time

√
∆r3/G∆r2Σ . (We’re ignoring factors

of 2, π and so on.) Equating these time scales gives the minimum scale that might
be vulnerable to collapse as ∆r ∼ c2

s/GΣ . On larger scales, collapse can be averted
if the free-fall time is longer than the time scale on which radial shear will separate
initially neighboring fluid elements. For a Keplerian disk, this time scale is ∼Ω−1.
If the disk is just on the edge of instability, the minimum collapse scale set by pres-
sure support must equal the maximum collapse scale set by shear. Imposing this
condition for marginal stability we obtain csΩ/GΣ ∼ 1, in accord with the formal
result quoted above.

To glean some qualitative insight into where a disk might be self-gravitating,
consider a steady-state disk that is described by an α model in which the transport
arises from some process other than self-gravity. Collecting some previous results,
the steady-state condition implies νΣ = Ṁ/3π , the α prescription is ν = αcsh, and
hydrostatic equilibrium gives h = cs/Ω . Substituting into equation (114) we find,

Q =
3αc3

s

GṀ
. (115)
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Protoplanetary disks generically get colder (and hence have lower cs) at larger dis-
tances from the star, and this is where self-gravity is most likely to be important.

The disk mass required for self-gravity to become important can be estimated.
Ignoring radial gradients of all quantities, we write the disk mass Mdisk ∼ πr2Σ , and
again use the hydrostatic equilibrium result h = cs/Ω . Equation (114) then gives,

Mdisk

M∗
>

(
h
r

)
, (116)

as the condition for instability. This manipulation of a local stability criterion into
some sort of global condition is ugly, and begs the question of where in the disk
Mdisk and h/r should be evaluated. We can safely conclude, nonetheless, that for a
typical protoplanetary disk with (h/r) ' 0.05 a disk mass of 10−2 M∗ will not be
self-gravitating, whereas one with 0.1 M∗ may well be.

There are two possibles outcomes of self-gravity in a disk,

• The disk may establish a (quasi) stable state, characterized globally by trailing
spiral overdensities. Gravitational torques between different annuli in the disk
transport angular momentum outward, leading to accretion.

• The pressure and tidal forces, which by definition are unable to prevent the onset
of gravitational collapse, may never be able to stop it once it starts. In this case
the disk fragments into bound objects, which interact with (and possibly accrete)
the remaining gas.

Both possibilities are of interest. Angular momentum transport due to self-gravity
may be dominant, at least on large scales, at early times while the disk is still mas-
sive. Fragmentation, which was once considered a plausible mechanism for form-
ing the Solar System’s giant planets [115], remains of interest as a way to form
sub-stellar objects and (perhaps) very massive planets. We will look at both in turn.

Gravity is a long-range force, and it is not at all obvious that we can deploy the
machinery developed for viscous disks to study angular momentum transport in a
self-gravitating disk. The transport could be largely non-local, driven for example
by large-scale structures in the density field (such as bars) or by waves that transport
energy and angular momentum a significant distance before dissipating [26]. There
is no precise criterion for when self-gravitating transport can be described using a
local theory, but numerical simulations indicate that this is a reasonable approxima-
tion for low-mass disks with Mdisk/M∗ ≈ 0.1 [132, 53, 69, 206]. Transport in more
massive disks, such as might be present during the Class 0 and Class I phases of star
formation, cannot be described locally (for multiple reasons, e.g. [133, 217]).

Assuming that a local description of the transport is valid, we can use a ther-
mal balance argument to relate the efficiency of angular momentum transport to the
cooling time. Adopting a one-zone model for the vertical structure, we define the
thermal energy of the disk, per unit surface area, as,

U =
c2

s Σ

γ(γ−1)
, (117)
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where cs is the mid-plane sound speed and γ is the adiabatic index. The cooling time
(analogous to the Kelvin-Helmholtz time for a star) is then,

tcool =
U

2σT 4
disk

, (118)

where Tdisk is the effective temperature. Equating the cooling rate, Q− = 2σT 4
disk, to

the local viscous heating rate, Q+ = (9/4)νΣΩ 2 (equation 80), and adopting the
α-prescription (equation 65), we find,

α =
4

9γ(γ−1)
1

Ω tcool
. (119)

This relation, which is a general property of α disks quite independent of self-
gravity, just says that a rapidly cooling disk needs efficient angular momentum
transport if it to generate heat fast enough to remain in thermal equilibrium.

For most sources of angular momentum transport we are no more able to de-
termine tcool from first principles than we are α , so the above relation does not
move us forward. Self-gravitating disks, however, have the unusual property that
their Toomre Q, measured in the saturated (non-linear) state, is roughly constant
and similar to the critical value Qcrit determined from linear theory. This property
arises, roughly speaking, because the direct dependence of the linear stability crite-
rion on temperature (via cs) invites a stabilizing feedback loop — a disk that cools
so that Q < Qcrit is more strongly self-gravitating, and produces more heating, while
one that heats so that Q > Qcrit shuts off the instability. It is therefore reasonable to
assume that a self-gravitating disk that does not fragment maintains itself close to
marginal stability, as conjectured by Paczynski (1978) [168].

If we assume that Q = Q0 exactly (where Q0 is some constant presumably close
to Qcrit) then we have enough constraints to explicitly determine the functional form
of α for a self-gravitating disk. Since Q depends on the mid-plane sound speed,
cs =

√
kBTc/µmH , the condition of marginal stability directly gives us Tc(Σ ,Ω),

Tc = π
2Q2

0G2
(

µmH

kB

)
Σ 2

Ω 2 . (120)

We can use this to determine tcool, and from that α , with the aid of the vertical
structure relations developed in §2.3. To keep things simple, we adopt an opacity,

κR = κ0T 2
c (121)

that is appropriate for ice grains, and assume the disk is optically thick. The opacity
law, together with the relations for the optical depth, τ = (1/2)ΣκR, and the mid-
plane temperature, T 4

c /T 4
disk ' (3/4)τ , then leads to,

α =
64π2Q2

0G2σ

27κ0

(
µmH

kB

)2

Ω
−3, (122)
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which coincidentally (for this opacity law) is only a function of Ω . It may look
cumbersome — and the numerical factors are certainly not to be trusted — but what
we have shown is that for a locally self-gravitating disk α is simply a constant times
a determined function of Σ and Ω . This result allows for the evolution of low-mass
self-gravitating disks to be modeled as a pseudo-viscous process [127, 47, 185].

Self-gravity is typically important in protoplanetary disks at large radii, where ir-
radiation is usually the dominant factor determining the disk’s thermal state (except
at high accretion rates). The generalization of the self-regulation argument given
above is obvious; if irradiation is not so strong as to stabilize the disk on its own
then viscous heating from the self-gravitating “turbulence” has to make up the dif-
ference. The partially irradiated regime of self-gravitating disks has been studied
using local numerical simulations [189], and the analytic generalization for the ef-
fective α that results can be found in Rafikov (2015) [186].

Ignoring irradiation again (and trusting the numerical factors that we just said
were not to be trusted) we can examine the implications of equation (122) for pro-
toplanetary disks. Taking Q0 = 1.5 and κ0 = 2× 10−4 cm2 g−1 K−2 [31] we find,
across the region of the disk where ice grains would be the dominant opacity source,
that,

α ∼ 0.3
( r

50 AU

)9/2
. (123)

The steep radial dependence of the estimated self-gravitating α means that, unless
all other sources of transport are extremely small, it will play no role in the in-
ner disk. In the outer disk, on the other hand, we predict vigorous transport. The
physical origin of the transport is density inhomogeneities that are caused by self-
gravity, which become increasing large as α grows (explicitly, it is found [53] that
the average fractional surface density perturbation δΣ/Σ ∝ α1/2). Since even the
linear threshold for gravitational instability implies that pressure forces can barely
resist collapse, we expect that beyond some critical strength of turbulence a self-
gravitating disk will be unable to maintain a steady-state. Rather, it will fragment
into bound objects that are not (at least not immediately) subsequently sheared out
or otherwise disrupted.

Our discussion up to this point might lead one to conjecture that the threshold for
fragmentation could be written in terms of a critical dimensionless cooling time,

βcrit ≡Ω tcool,crit, (124)

or via a maximum αcrit that a self-gravitating disk can sustain without fragmenting
(these are almost equivalent, but defining the threshold in terms of α incorporates
the varying compressibility as expressed through γ). Gammie (2001) [78], using lo-
cal two dimensional numerical simulations, obtained βcrit ' 3 for a two-dimensional
adiabatic index γ = 2. Early global simulations [188], which were broadly con-
sistent with Gammie’s estimate, implied a maximum effective transport efficiency
αcrit ' 0.1 [190].

The idea that the fragmentation threshold is uniquely determined by a single
number is too simplistic. Several additional physical effects matter. First, fragmenta-
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tion requires that collapsing clumps can radiate the heat generated by adiabatic com-
pression. There is therefore a dependence not just on the magnitude of the opacity,
but also on how it scales with density and temperature [101, 52]. Second, if we view
fragmentation as requiring a critical over-density in a random turbulent field there
should be a time scale dependence, with statistically rarer fluctuations that lead to
collapse becoming probable the longer we wait [166]. (This introduces an additional
implicit dependence on γ , because the statistics of turbulent density fields depend
upon how compressible the gas is [66].) Finally, disks can be prompted to fragment
not only if they cool too quickly, but also if they accrete mass faster than self-gravity
can transport it away. Accretion-induced fragmentation appears inevitable for very
massive disks, where it would lead to binary formation [113].

In addition to these physical complexities, there has been debate regarding the
resolution needed for numerical convergence of simulations of fragmentation [148],
and whether the simplest numerical experiments (which forgo radiation transport
in lieu of local cooling prescriptions) are even well-posed problems. The numerical
issues overlap, in part, with the possibility of stochastic fragmentation, and are not
fully resolved. Disks may fragment for (at least) modestly longer cooling times than
previously thought, though the high resolution radiation hydrodynamics simulations
that might definitively resolve the physical questions have yet to be completed.

Fortunately, if our main interest is in estimating where isolated protoplanetary
disks ought to fragment, the steep scaling of α(r) (equation 123) means that we
can tolerate considerable uncertainty in αcrit. For a Solar mass star, fragmentation
is expected beyond r ∼ 102 AU [47, 185], with an uncertainty in that estimate of
perhaps a factor of two. In most (but perhaps not all) cases, it is expected that the
disk conditions that allow fragmentation would lead to objects with masses in the
brown dwarf regime, or above [114].

3.3 Magnetohydrodynamic turbulence and transport

The Rayleigh stability criterion (equation 110) applies to a fluid disk. It does not
apply to a disk containing even an arbitrarily weak magnetic field, if that field is
perfectly coupled to the gas (the regime of ideal MHD). In ideal MHD, indeed, a
weakly magnetized disk has entirely different stability properties from an unmag-
netized one, and is unstable provided only that the angular velocity decreases out-
ward. This is the magnetorotational instability (MRI) [23, 24], which is accepted as
the dominant source of turbulence in well-ionized accretion disks (winds could still
contribute to or dominate angular momentum loss). In protoplanetary disks the ideal
MHD version of the MRI applies only in the thermally ionized region close to the
star; across most of the disk we also need to consider both the dissipative (Ohmic
diffusion, ambipolar diffusion) and the non-dissipative (the Hall effect) effects of
non-ideal MHD. The Ohmic and ambipolar terms can be considered as modifying
— albeit very dramatically — the ideal MHD MRI, while the Hall term introduces
new effects (in part) via the Hall shear instability [116], which is a different beast
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Fig. 17 Illustration showing why a weak vertical magnetic field destabilizes a Keplerian disk (the
magnetorotational instability [24]). An initially uniform vertical field (weak enough that magnetic
tension is not dominant) is perturbed radially. Due to the shear in the disk, an inner fluid element
coupled to the field advances azimuthally faster than an outer one. Magnetic tension along the field
line then acts to remove angular momentum from the inner element, and add angular momentum
to the outer one. This causes further radial displacement, leading to an instability.

unrelated to the ideal MHD MRI. The phenomenology of disk instabilities in non-
ideal MHD is rich, and appears to give rise to both turbulent and laminar angular
momentum transport as well as phenomena, such as MHD disk winds, that may be
observable.

3.4 The magnetorotational instability

The MRI [23] is an instability of cylindrical shear flows that contain a weak
(roughly, if the field is vertical, sub-thermal) magnetic field5. In ideal MHD the
condition for instability is simply that,

dΩ 2

dr
< 0. (125)

The fact that this condition is always satisfied in disks (though not in star-disk
boundary layers) accounts for the MRI’s central role in modern accretion theory.

5 The mathematics of the MRI was worked out by Velikhov [222] and Chandrasekhar [45] around
1960. Thirty years passed before Balbus & Hawley [23] recognized the importance of the instabil-
ity for accretion flows.
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Figure 17 illustrates what is going on to destabilize a disk that contains a mag-
netic field. A basically vertical field is slightly perturbed radially, so that it links
fluid elements in the disk at different radii. Because of the shear in the disk, the
fluid closer to the star orbits faster than the fluid further out, creating a toroidal field
component out of what was initially just vertical and radial field. The tension in the
magnetic field linking the two elements (which can be thought of, even mathemati-
cally, as being analogous to a stretched spring) imparts azimuthal forces to both the
inner fluid (in the direction opposite to its orbital motion) and the outer fluid (along
its orbital motion). The tension force thus reduces the angular momentum of the in-
ner fluid element, and increases that of the outer element. The inner fluid then moves
further inward (and the outer fluid further outward) and we have an instability.

We can derive the MRI instability condition in a very similar setup as Figure 17.
Consider a disk with a power-law angular velocity profile, Ω ∝ r−q, that is threaded
by a uniform vertical magnetic field B0. We ignore any radial or vertical variation
in density (and consistent with that, ignore the vertical component of gravity) and
adopt an isothermal equation of state, P = ρc2

s , with cs a constant. Our task is to
determine whether infinitesimal perturbations to this equilibrium state are stable, or
whether instead they grow exponentially with time, signalling a linear instability.

To proceed (largely following [72]) we define a locally Cartesian patch of disk
that corotates at radius r0, where the angular frequency is Ω0. The Cartesian co-
ordinates (x,y,z) are related to cylindrical co-ordinates (r,φ ,z′) via,

x = r− r0,

y = r0φ ,

z = z′. (126)

The local “shearing-sheet” (or in three dimensions, “shearing box”) model is useful
for both analytic stability studies, and for numerical simulations. In this co-rotating
frame, the equations of ideal MHD pick up terms representing the fictitious Coriolis
and centrifugal forces,

∂ρ

∂ t
+∇ · (ρv) = 0,

∂v
∂ t

+(v ·∇)v = − 1
ρ

∇P+
1

4πρ
(∇×B)×B−2Ω0×v+2qΩ

2
0 xx̂,

∂B
∂ t

= ∇× (v×B). (127)

Here x̂ is a unit vector in the x-direction. As noted above, the initial equilibrium has
uniform density, ρ = ρ0, and a magnetic field B = (0,0,B0). There are no pressure
or magnetic forces, so the velocity field is determined by a balance between the
Coriolis and centrifugal terms,

2Ω0×v = 2qΩ
2
0 xx̂. (128)
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The equilibrium velocity field that completes the definition of the initial state is,

v = (0,−qΩ0x,0) , (129)

which has a linear shear (with q = 3/2 for a Keplerian disk) around the reference
radius r0.

To assess the stability of the equilibrium, we write the density, velocity and mag-
netic field as the sum of their equilibrium values plus a perturbation. We can recover
the MRI with a particularly simple perturbation which depends on z and t only6. For
the velocity components, for example, we write,

vx = v′x(z, t),

vy = −qΩ0x+ v′y(z, t),

vz = v′z(z, t), (130)

and do likewise for the density and magnetic field. We substitute these expressions
into the continuity, momentum and induction equations, and discard any terms that
are quadratic in the primed variables, assuming them to be small perturbations. This
would give us seven equations in total (one from the continuity equation, and three
each from the other equations), but the x and y components of the momentum and
induction equations are all we need to derive the MRI. The relevant linearized equa-
tions are,

∂v′x
∂ t

=
B0

4πρ0

∂B′x
∂ z

+2Ω0v′y,

∂v′y
∂ t
−qΩ0v′x =

B0

4πρ0

∂B′y
∂ z
−2Ω0v′y,

∂B′x
∂ t

= B0
∂v′x
∂ z

,

∂B′y
∂ t

= B0
∂v′y
∂ z
−qΩ0B′x. (131)

We convert these linearized differential equations into algebraic equations by taking
the perturbations to have the form, e.g.,

B′x = B̄′xei(ωt−kz), (132)

where ω is the frequency of a perturbation with vertical wave-number k. The time
derivatives then pull down a factor of iω , while the spatial derivatives become ik.
Our four equations simplify to,

6 An analysis that retains the x-dependence can be found in the original Balbus & Hawley
(1991) paper [23], and follows an essentially identical approach. Studying the stability of non-
axisymmetric perturbations (in y), however, requires a different and more involved analysis[54,
162, 213, 173].
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iωv′x = −ik
B0B′x
4πρ0

+2Ω0v′y,

iωv′y = −ik
B0B′y
4πρ0

+(q−2)Ω0v′x,

iωB′x = −ikB0v′x,

iωB′y = −ikB0v′y−qΩ0B′x. (133)

(We’ve dropped the bars on the variables for clarity.) Eliminating the perturbation
variables from these equations, we finally obtain the MRI dispersion relation,

ω
4−ω

2 [2k2v2
A +2(2−q)Ω 2

0
]
+ k2v2

A
[
k2v2

A−2qΩ
2
0
]
= 0, (134)

where v2
A = B2

0/(4πρ0) is the Alfvén speed associated with the net field.
If ω2 > 0 then ω itself will be real and the perturbation eiωt will oscillate in

time. Instability requires ω2 < 0, since in this case ω is imaginary and the perturba-
tion will grow exponentially. Solving the dispersion relation we find the instability
criterion is,

(kvA)
2−2qΩ

2
0 < 0. (135)

Letting the field strength go to zero (Bz→ 0, vA→ 0) we find that the condition for
instability is simply that q > 0, i.e. that the angular velocity decrease outward. Even
for an arbitrarily weak field, the result is completely different from Rayleigh’s for a
strictly hydrodynamic disk.

The growth rate of the instability and what it means for the magnetic field to
be “weak” can also be derived from equation (134). Specializing to a Keplerian
rotation law with q = 3/2 the dispersion relation takes the form shown in Figure 18.
For a fixed magnetic field strength (and hence a fixed Alfvén speed vA) the flow is
unstable for wavenumbers k < kcrit (i.e. on large enough spatial scales), where,

kcritvA =
√

3Ω0. (136)

As the magnetic field becomes stronger, the smallest scale λ = 2π/kcrit which is un-
stable grows, until eventually it exceeds the disk’s vertical extent≈ 2h. For stronger
vertical fields no unstable MRI modes fit within the disk, and the instability is sup-
pressed. Using h = cs/Ω , the condition that the vertical magnetic field is weak
enough to admit the MRI (i.e. that λ < 2h) becomes

B2
0 <

12
π

ρc2
s (137)

If we define the plasma β parameter as the ratio of gas to magnetic pressure,

β ≡ 8πP
B2

0
(138)

this condition can be expressed alternatively as,
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Fig. 18 The unstable branch of the MRI dispersion relation is plotted for a Keplerian rotation law.
The flow is unstable (ω2 < 0) for all spatial scales smaller than kvA <

√
3Ω (rightmost dashed

vertical line). The most unstable scale (shown as the dashed vertical line at the center of the plot)
is close to kvA 'Ω .

β >
2π2

3
. (139)

A magnetic field whose vertical component approaches equipartition with the ther-
mal pressure (β ∼ 1) will be too strong to admit the existence of linear MRI modes,
but a wide range of weaker fields are acceptable.

The maximum growth rate is determined by setting dω2/d(kvA) = 0 for the un-
stable branch of the dispersion relation plotted in figure 18. The most unstable scale
for a Keplerian disk is,

(kvA)max =

√
15
4

Ω0, (140)

where the growth rate is,

|ωmax|=
3
4

Ω0. (141)

This result implies an extremely vigorous growth of the instability, with an exponen-
tial growth time scale that is a fraction of an orbital period. This means that if a disk
is unstable to the MRI it will invariably dominate the evolution.
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3.4.1 Non-ideal MHD

The MRI in its ideal MHD guise is relevant to protoplanetary disks only in the ther-
mally ionized region close to the star (§1.3.1), where T > 103 K. The very weakly
ionized gas further out is imperfectly coupled to the magnetic field, and this both
modifies the properties of the MRI and leads to new MHD instabilities. We will
begin by sketching the derivation of the non-ideal MHD equations (following Bal-
bus [22], who justifies several of the approximations that we will make), and then
estimate the magnitude of the extra terms that arise in protoplanetary disks.

The physics of how magnetic fields affect weakly-ionized fluids is easy to visu-
alize. We consider a gas that is almost entirely neutral, with only a small admixture
of ions and electrons (analogous considerations apply if the charge carriers are dust
particles, but we will not go there). Magnetic fields exert Lorentz forces on the
charged species, but not on the neutrals. Collisions between the neutrals and either
the ions or the electrons lead to momentum exchange whenever the neutral fluid has
a velocity differential with respect to the charged fluids.

We begin by considering the momentum equation. For the neutrals we have,

ρ
∂v
∂ t

+ρ(v ·∇)v =−∇P−ρ∇Φ− pnI− pne. (142)

Here ρ , v and P (without subscripts) refer to the neutral fluid, and pnI and pne are
the rate of momentum exchange due to collisions between the neutrals and the ions
/ electrons respectively. Identical equations apply to the charged species, but for the
addition of Lorentz forces,

ρe
∂ve

∂ t
+ρe(ve ·∇)ve = −∇Pe−ρe∇Φ− ene

(
E+

ve×B
c

)
− pen,

ρI
∂vI

∂ t
+ρI(vI ·∇)vI = −∇PI−ρI∇Φ +ZenI

(
E+

vI×B
c

)
− pIn. (143)

In these equations E and B are the electric and magnetic fields, the ions have charge
Ze, where−e is the charge on an electron, and of course pne =−pen and pnI =−pIn.
Having three momentum equations looks complicated, but we can make a large
simplification to the system by noting that the time scale for macroscopic evolution
of the fluid is generally much longer than the time scale for collisional or magnetic
forces to alter a charged particle’s momentum. We can then ignore everything in the
charged species’ momentum equations, except for the Lorentz and collisional terms.
For the ions we have,

ZenI

(
E+

vI×B
c

)
− pIn = 0, (144)

with a similar equation for the electrons. Imposing charge neutrality, ne = ZnI , we
eliminate the electric field between the ion and electron equations to find an expres-
sion for the sum of the momentum transfer terms,
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pIn + pen =
ene

c
(vI−ve)×B. (145)

The current density J = ene(vI−ve), so we can write this as,

pIn + pen =
J×B

c
. (146)

Finally, we go to Maxwell’s equations, and note that the current can be written as,

4π

c
J = ∇×B+

1
c

∂E
∂ t

. (147)

The second term in Maxwell’s equation is the displacement current, which is
O(v2/c2) and consistently ignorable in non-relativistic MHD. Doing so, we sub-
stitute equation (146) in the neutral equation of motion to obtain,

ρ
∂v
∂ t

+ρ(v ·∇)v =−∇P−ρ∇Φ +
1

4π
(∇×B)×B. (148)

This is identical to the ideal MHD momentum equation (stated without derivation as
equation 127) and pleasingly simple; we have reduced the three momentum equa-
tions to an equation for a single (neutral) fluid with a magnetic force term whose
dependence on B is independent of the make-up of the gas. All of the complexities
enter only via the induction equation.

The consistent simplification of non-ideal MHD to a momentum equation for
a single fluid is not always possible. Roughly speaking it works provided that
the plasma’s inertia is negligible compared to that of the neutral fluid, the
coupling between charged and neutral species is strong, and the recombina-
tion time is short. Zweibel [230] gives an accessible account of the conditions
necessary for a valid single-fluid description. Although some of the early an-
alytic and numerical work on the MRI in weakly-ionized disks utilized a two-
fluid approach [35, 88], in many protoplanetary disk situations a single fluid
model is both justified [14] and substantially simpler.

Deducing the non-ideal induction equation requires us to specify the form of the
momentum coupling terms. Writing these in standard notation (which is different
for the two terms, somewhat obscuring the symmetry),

pne = neνneme(v−ve),

pnI = ρρIγ(v−vI), (149)

where νne is the collision frequency of an electron with the neutrals, and γ is called
the drag-coefficient. The ion-neutral coupling involves longer-range interactions
than the electron-neutral coupling, and is accordingly stronger [22].
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We now go back to the force balance deduced from the electron momentum equa-
tion,

−ene

(
E+

ve×B
c

)
− pen = 0, (150)

and attempt to write the terms involving ve and pen entirely in terms of the current.
We start with the exactly equivalent expression,

E+
1
c
[v+(ve−vI)+(vI−v)]×B+

νneme

e
[(ve−vI)+(vI−v)] = 0, (151)

and deal with the terms in turn. We have two terms that involve (ve−vI), which can
be replaced immediately with the current,

(ve−vI) =−
J

ene
. (152)

The first term with (vI−v) is exactly equal to pIn/(ρρIγ). If, however, |pIn|� |pen|,
then equation (146) implies that, approximately,

(vI−v)' J×B
cρρIγ

. (153)

Finally it can be shown (see Balbus [22] for details) that the final term with (vI−v)
can be consistently dropped. The version of Ohm’s Law that we end up with is,

E+
v×B

c
− J×B

enec
+

(J×B)×B
c2ρρIγ

− νneme

e2ne
J = 0. (154)

The non-ideal induction equation is then obtained by applying Faraday’s law,

∇×E =−1
c

∂B
∂ t

, (155)

to eliminate any explicit reference to the electric field. In its usual form,

∂B
∂ t

= ∇×
[

v×B−η∇×B− J×B
ene

+
(J×B)×B

cγρρI

]
. (156)

We have defined the magnetic resistivity,

η =
c2

4πσ
(157)

where σ is (here) the electrical conductivity,

σ =
e2ne

meνen
. (158)

As before we can replace the current with the magnetic field via,
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J =
c

4π
∇×B, (159)

so that the induction equation is solely a function of B. The terms on the right-hand-
side are referred to as the inductive, Ohmic, Hall and ambipolar terms respectively.

The non-ideal terms in the induction equation depend upon the ionization state
of the gas (through ne and ρI) and upon the collision rates between the neutral and
charged species (via η and γ). Standard values for these quantities are [35, 60],

η = 234
(

n
ne

)
T 1/2 cm2 s−1,

γ = 3×1013 cm3 s−1 g−1. (160)

We are now ready to estimate the importance of the non-ideal terms in the environ-
ment of protoplanetary disks, and to ask what effect they have both on the MRI, and
on the more general question of whether there is MHD turbulence or transport in
disks.

3.4.2 Ohmic, ambipolar and Hall physics in protoplanetary disks

The non-ideal terms in equation (156) all depend inversely on the electron or ion
density, so the strength of all non-ideal MHD effects relative to the inductive term
increases with smaller ionization fraction. The three terms also have different depen-
dencies on density, magnetic field strength and temperature, so the relative ordering
of the non-ideal MHD effects varies with these parameters.

The Ohmic, Hall and ambipolar terms have different dependencies on the mag-
netic field geometry, and in a disk setting they influence the MRI in distinct ways
(most importantly, the Hall effect differs from the others in being non-dissipative).
There is therefore no model-independent way to precisely demarcate when each
term will affect disk evolution. As a first guess, however, we can treat the magnetic
field as a scalar and simply take the ratio of the Hall to the Ohmic term and the
ambipolar to the Hall term,

H
O

=
cB

4πeηne
,

A
H

=
eneB

cγρρI
. (161)

Since η ∝ (n/ne) and ne ∝ ρI both of these ratios depend on (B/n). Substituting for
η and γ , and taking the ion mass that enters into the ambipolar term as 30mH , we
can estimate the magnetic field strength for which the Ohmic and Hall terms have
equal magnitude, and similarly for the Hall and ambipolar terms,

BO=H ≈ 0.5
( n

1015 cm−3

)( T
100 K

)1/2

G,
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0.1 AU
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10 AU

100 AU

OhmicHall

Ambipolar

Fig. 19 Regions of the (n,B) parameter space in which different non-ideal terms are dominant.
The boundary between the Ohmic and Hall regimes is plotted for T = 100 K (solid line) and also
for temperatures of 103 K (upper dashed line) and 10 K (lower dashed line). The red line shows
a very rough estimate of how the magnetic field in the disk might vary with density between the
inner disk at 0.1 AU and the outer disk at 100 AU.

BH=A ≈ 4×10−3
( n

1010 cm−3

)
G. (162)

Figure 19 shows these dividing lines in the (n,B) plane. Ohmic diffusion is dominant
at high densities / low magnetic field strengths. Ambipolar diffusion dominates for
low densities / high field strengths. The Hall effect is strongest for a fairly broad
range of intermediate densities.

Estimating where protoplanetary disks fall in the (n,B) plane can be done in var-
ious ways. For a Solar System-motivated estimate we can start with the disk field
inferred from laboratory measurements of chondrules in the Semarkona meteorite
[74], which suggest that near the snow line (r' 3 AU) the disk field was B' 0.5 G.
(There are caveats and a large systematic uncertainty associated with this measure-
ment, all of which we ignore for now.) Let us assume that the surface density and
temperature profiles are Σ ∝ r−3/2 and T ∝ r−1/2 respectively, and that the magnetic
field pressure is the same fraction of the thermal pressure at all radii in the disk.
Taking Σ ' 300 g cm−2 and T = 150 K at 3 AU, the inferred scalings of mid-plane
density and magnetic field strength are then,

n ≈ 2×1013
( r

3 AU

)−11/4
cm−3,

B ≈ 0.5
( r

3 AU

)−13/8
G. (163)
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The track defined by these relations is plotted in Figure 19 for radii between 0.1 AU
and 100 AU.

As we have emphasized, neither our approach to ranking the strength of the non-
ideal terms, nor our estimate of the radial scaling of disk conditions, are anything
more than crude guesses. Other approximations are equally valid (for example, one
can order the terms in the (n,T ) plane instead [27, 117, 8]). Nevertheless, because n
and B vary by so many orders of magnitude across Figure 19 the critical inferences
we can draw are quite robust. We predict that the Hall effect is the dominant non-
ideal MHD process at the disk mid-plane between (conservatively) 1 AU and 10 AU.
Ohmic diffusion can become important as we approach the thermally ionized region
interior to 1 AU. Ambipolar diffusion dominates at sufficiently large radii, of the
order of 100 AU, and in the lower density gas away from the mid-plane.

3.4.3 The dead zone

The linear stability of Keplerian disk flow in non-ideal MHD has been extensively
investigated (see, e.g. [35, 99, 224, 27, 117, 57]), and the reader interested in the
non-ideal analogs to the MRI dispersion relation derived as equation (134) should
start there. Proceeding less formally, we follow Gammie (1996) [76] to estimate the
conditions under which Ohmic dissipation (ignoring for now the Hall term) would
damp the MRI. The basic idea is to compare the time scale on which the ideal MRI
would generate tangled magnetic fields to that on which Ohmic diffusion would
smooth them out. We first note that diffusion erases small-scale structure in the
field more efficiently than large scale features, so that the appropriate comparison
is between growth and damping of the largest scale MRI models. Starting from the
MRI dispersion relation (equation 134), for a Keplerian disk we consider the weak-
field / long wavelength limit (kvA/Ω � 1). The growth rate of the MRI is,

|ω| '
√

3kvA. (164)

Writing this as a function of the spatial scale λ = 2π/k, we have,

|ω| ' 2π
√

3
vA

λ
. (165)

Up to numerical factors the MRI on a given scale then grows on the Alfvén crossing
time. Equating this growth rate to the Ohmic damping rate,

|ωη | ∼
η

λ 2 (166)

we conclude that Ohmic dissipation will suppress the MRI on the largest available
scale λ ≈ h provided that,

η > 2π
√

3vAh. (167)
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We can express this result in a different form. Analogous to the fluid Reynolds
number (equation 108) the magnetic Reynolds number ReM is defined as,

ReM ≡
UL
η

(168)

where U is a characteristic velocity and L a characteristic scale. Taking U = vA and
L = h for a disk, the condition for Ohmic dissipation to suppress the MRI becomes

ReM < 1 (169)

where order unity numerical factors have been omitted.
We now convert the condition for the suppression of the MRI into a limit on the

ionization fraction x≡ ne/n. We make use of the formula for the magnetic resistiv-
ity (equation 160) and assume that Maxwell stresses transport angular momentum,
so that α ∼ v2

A/c2
s (this follows approximately from equation 109). The magnetic

Reynolds number can then be estimated to be,

ReM =
vAh
η

=
α1/2c2

s

ηΩ
. (170)

Substituting for η and c2
s , the magnetic Reynolds number in a protoplanetary disk

scales as,

ReM ≈ 1.4×1012x
(

α

10−2

)1/2( r
1 AU

)3/2
(

T
300 K

)1/2(M∗
M�

)−1/2

. (171)

For the given parameters, the critical ionization fraction below which Ohmic diffu-
sion will quench the MRI is

xcrit ∼ 10−12. (172)

Clearly a very small ionization fraction suffices to couple the magnetic field to the
gas and allows the MRI to operate, but there are large regions of the disk where even
these ionization levels are not obtained and non-ideal effects are important.

Based on this analysis Gammie [76] noted, first, that the criterion for the MRI
to operate under near-ideal MHD conditions in the inner disk coincides with the re-
quirement that the alkali metals are thermally ionized (Figure 6). The development
of magnetized turbulence in the disk at radii where T > 103 K can therefore be mod-
eled in ideal MHD. Second, he proposed that Ohmic diffusion would damp MHD
turbulence in the low ionization environment near the disk mid-plane on scales of
the order of 1 AU, creating a dead zone of sharply reduced turbulence and transport.
Gammie’s original model is incomplete, as it did not include either ambipolar dif-
fusion or the Hall effect, but the basic idea motivates much of the current work on
MHD instabilities in disks.
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3.4.4 Turbulence and transport in non-ideal MHD

Once we consider the full set on non-ideal terms, the first question is to assess the
level of turbulence and transport that is expected as a function of their strengths.
This is a well-defined but already difficult theoretical question, given that interesting
values of the Ohmic, ambipolar and Hall terms span a broad range (depending phys-
ically on the temperature, density, ionization fraction and magnetic field strength).
To define the problem in its most idealized form, we rewrite the non-ideal induction
equation (156) as,

∂B
∂ t

= ∇×
[

v×B−ηO∇×B−ηH
J×B

B
−ηA

(J×B)×B
B2

]
, (173)

where dimensionally ηO, ηH and ηA are all diffusivities. There are different ways to
construct dimensionless numbers from the diffusivities, but one useful set is,

ΛO ≡
v2

A
ΩηO

(Ohmic Elsasser number),

Ha ≡
v2

A
ΩηH

(Hall Elsasser number),

Am ≡
v2

A
ΩηA

(ambipolar Elsasser number). (174)

(Note that the ambipolar Elsasser number can also be written as Am ≡ γρI/Ω ,
which is the number of ion-neutral collisions per dynamical time Ω−1.) We further
specify the net vertical magnetic field (if any) via the ratio of the mid-plane gas and
magnetic field pressures (equation 138),

βz =
8πP
B2

z
. (175)

Our question can then be rephrased; what is the level of angular momentum trans-
port and turbulence in an MHD disk at radii where the non-ideal terms are charac-
terized by the dimensionless parameters (ΛO, Ha, Am, βz).

Ohmic diffusion acts as a strictly dissipative process that stabilizes disks to mag-
netic field instabilities on scales below some critical value. Ambipolar diffusion is
in principle more complex, because it does not dissipate currents that are paral-
lel to the magnetic field. This distinction substantially impacts the linear stability
of ambipolar-dominated disks [117], but appears to matter less for the non-linear
evolution, whose properties are analogous to Ohmic diffusion. For both dissipative
processes, simulations show that MRI-driven turbulence is strongly damped when
the relevant dimensionless parameter (either Λ0 or Am) drops below a critical value
that depends upon the initial field geometry but is∼ 1−102 [195, 220, 203, 19, 201].
Consistent with the dead zone idea [76], we therefore expect substantial modifica-
tion of the properties of MHD turbulence both in the mid-plane around 1 AU (where
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Fig. 20 An illustration (adapted from Lesur, unpublished) of the Hall shear instability [116]. In the
presence of a vertical field threading the disk, the Hall effect acts to rotate an initially toroidal field
component either clockwise or anti-clockwise, depending upon the sign of the vertical field. The
rotated field vector is then either amplified or damped by the shear. This instability differs from
the MRI both technically (in that there is no reference to orbital motion, any shear flow suffices)
and physically (via the dependence on the direction of the vertical magnetic field as well as its
strength).

Ohmic diffusion is the dominant dissipative process) and in the disk atmosphere and
at large radii ∼ 102 AU (where ambipolar diffusion dominates).

The MRI dispersion relation is also modified by the Hall effect [224, 27], which
differs from the other non-ideal terms in that it modifies the field structure without
any attendant dissipation. In this respect the Hall term most closely resembles the
inductive term ∇× (v×B), and its strength can usefully be characterized by the
ratio of the Hall to the inductive term. Non-linear simulations of the Hall effect in
disks, which were pioneered by Sano & Stone [196, 197], have only recently been
able to access the strongly Hall-dominated regime relevant to protoplanetary disks
[118, 123, 16, 17]. In vertically stratified disks with a net vertical field, Lesur et al.
(2014) [123] find that the Hall effect has a controlling influence on disk dynamics
on scales between 1 AU and 10 AU. For βz = 105 a strong but laminar Maxwell
stress (i.e. one dominated by large-scale radial and toroidal fields in equation 109)
results when the net field is aligned with the rotation axis of the disk, whereas anti-
alignment leads to extremely weak turbulence and transport.

The results from Hall-MHD simulations of protoplanetary disks are best inter-
preted not as a modification of the MRI, but rather as the signature of a distinct
Hall shear instability [116]. In the presence of a net vertical magnetic field the Hall
effect acts to rotate magnetic field vectors lying in the orbital plane (Figure 20),
with the sense of the rotation determined by whether the new field is aligned or
anti-aligned to the rotation axis. In the aligned field case, the Hall-induced rotation
allows the magnetic field to be amplified by the shear, while damping occurs in the
anti-aligned limit. Unlike the MRI, the Hall shear instability does not depend on
the Coriolis force, and is indifferent to the sign of the angular velocity gradient.
By generating a radial field directly from an azimuthal one, the Hall effect (given a
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net field) supports a mean-field disk dynamo cycle [215, 123] that is qualitatively
different from anything that is possible in ideal MHD.

Elementary arguments show that the Hall effect is important across a range of
radii in protoplanetary disks (Figure 19). Whether existing simulations cap-
ture the full extent of non-ideal MHD behavior in disks is, however, open to
question. The numerical implementation of the Hall effect in simulation codes
poses significant challenges, and the presence of large-scale fields in the satu-
rated state suggests that local simulations may not be adequate to describe the
outcome. The level of turbulence that accompanies the predominantly large-
scale transport by Maxwell stresses appears particularly uncertain.

Going beyond the idealized question of the effect of the non-ideal terms on tur-
bulence and transport, our goal is to use the results described above to predict the
structure and evolution of protoplanetary disks. This introduces new layers of un-
certainty. To predict disk properties from first principles, we need at a minimum
to know the strength of the different sources of ionization (§1.3.2), the rates of gas-
phase and dust-induced recombination, and the global evolution of any net magnetic
field (§2.5.1). We also need to model (or have good reasons to ignore) various non-
MHD effects, including the hydrodynamic angular momentum transport processes
already discussed and mass loss by photoevaporation [2] (§??). Given these uncer-
tainties, the best that we can currently do is to highlight a number of qualitative
predictions that receive support from numerical simulations:

• Net vertical magnetic fields are important for disk evolution. A vertical mag-
netic field enhances angular momentum transport by the MRI even in ideal MHD
(roughly as α ∝ β

−1/2
z [87]). In non-ideal MHD, local simulations by Simon et

al. [201, 200] suggest that ambipolar damping of the MRI in the outer disk pre-
vents resupply of the inner disk with gas unless a net field is present7. A net field
with βz ' 104−105 suffices, comparable to the fields expected in global models
of flux evolution [83] but much weaker than the likely initial field left over from
star formation. Accretion on scales of 30-100 AU occurs predominantly through
a thin surface layer that is ionized by FUV photons [172, 201, 200], and is largely
independent of the Hall effect [17].

• MHD winds and viscous transport can co-exist in disks. Local numerical simu-
lations in ideal MHD by Suzuki & Inutsuka [210] showed that in the presence of
net vertical field, the MRI was accompanied by mass and angular momentum loss
in a disk wind. Winds are likewise seen in net field protoplanetary disk simula-
tions at 1 AU that include Ohmic and ambipolar diffusion [20], in simulations at

7 It is not obvious that the inner disk is resupplied by gas, or, to put it more formally, that the disk
attains a steady-state. Out to ∼ 10 AU the viscous time scale is short enough that the disk will
plausibly adjust to a steady state (provided only that a steady state is possible, see §4), but no such
argument works out to 100 AU. Ultimately the question of whether gas at 100 AU ever reaches the
star will need to be settled by observations as well as by theory.
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30-100 AU where ambipolar diffusion dominates [200], and in simulations that
include all non-ideal terms [123]. Caution is required before interpreting these
local simulation results as quantitative predictions, because although the effec-
tive potential for wind launching is correctly represented (equation 97) there is
a known and unphysical dependence of the mass loss rate on the vertical size of
the simulation domain [73]. Outflows are also seen in the (few) existing global
net field simulations [81], however, supporting the view that weak field MHD
outflows could be a generic feature of protoplanetary disk accretion. Drawing on
these results, Bai [15] has proposed that MHD winds may dominate disk evolu-
tion on AU-scales, and co-exist with a mixture of viscous transport and wind loss
on larger scales in the ambipolar dominated regime [200].

• Turbulence and angular momentum transport are not synonymous. In classical
disk theory, the value of α determines not only the rate at which the disk evolve,
but also the strength of turbulence and its effect on small solid particles. This
link is doubly broken in more complete disk models. First, as already noted, an-
gular momentum loss via winds (which need not be accompanied by turbulence)
may be stronger than viscous transport at some radii. Second, even the internal
component of transport may be primarily a large-scale “laminar” Maxwell stress,
rather than small-scale turbulence [200, 123].

• The sign of the net field could lead to bimodality in disk properties. The Hall
effect is the strongest non-ideal term interior to about 10 AU, and simulations
[123, 16, 17] confirm the expectation from linear theory [224, 27, 116] that a
disk with a weak field that is aligned to the rotation axis behaves quite differently
from one with an anti-aligned field. Although there are possible confounding
factors — for example the long-term evolution of the net field may itself differ
with the sign of the field — it appears likely that the striking asymmetry seen in
simulations introduces some observable bimodality in disk structure.

Figure 21 illustrates a possible disk structure implied by the above results. The
figure should be regarded as a work in progress; there is plenty of work remain-
ing before we fully understand either the physics of potential angular momentum
transport and loss processes, or how to tie that knowledge together into a consistent
scenario for disk structure and evolution.

Hall MHD can also affect the collapse of molecular clouds and the formation
of protostellar disks [112, 216], influencing for example their initial sizes.
The Hall current, along with the other non-ideal terms, can also modify the
accretion properties of circumplanetary disks [104]
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Fig. 21 A suggested structure for protoplanetary disks if MHD processes dominate over other
sources of transport. The different regions are defined by the strength of non-ideal MHD terms
(Ohmic diffusion, ambipolar diffusion and the Hall effect), and by mass and angular momentum
loss in MHD disk winds. The Hall effect is predicted to behave differently if the net field threading
the disk is anti-aligned to the rotation axis (here, alignment is assumed). Ionization by stellar X-
rays and by FUV photons couples the stellar properties to those of the disk.

3.5 Transport in the boundary layer

The nature of transport in the boundary layer deserves a brief discussion. As dis-
cussed in §2.2.1 boundary layers are expected when the accretion rate is high enough
to overwhelm the disruptive influence of the stellar magnetosphere (see equation 75
for a semi-quantitative statement of this condition). For most stars this requires high
accretion rates, so the boundary layer and adjacent disk are hot enough to put us
into the regime of thermal ionization and ideal MHD. In the disk, we then expect
angular momentum transport via the MRI. In the boundary layer, however, we face
a problem. By definition, dΩ/dr > 0 in the boundary layer (see Figure 9), and this
angular velocity profile is stable against the MRI (equation 125). Something else
much be responsible for transport in this region.

The angular velocity profile in the boundary layer is stable against the genera-
tion of turbulence by either the Rayleigh criterion or the MRI. It turns out to be
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unstable, however, to the generation of waves via a mechanism analogous to the
hydrodynamic Papaloizou-Pringle instability of narrow tori [171]. Belyaev et al.
[32, 33], using both analytic and numerical arguments, have shown that waves gen-
erated from the supersonic shear provide non-local transport of angular momentum
(and energy) across the boundary layer. Magnetic fields are amplified by the shear
[6] but do not play an essential role in boundary layer transport [33]. In protostellar
systems boundary layers are present during eruptive accretion phases (see §4) when
strong radiation fields are present [108]. Future work will need to combine the recent
appreciation of the importance of wave angular momentum transport with radiation
hydrodynamics for a full description of the boundary layer.

4 Episodic accretion

Young stellar objects (YSOs) are observed to be variable. The short time scale (last-
ing hours to weeks) component of that variability is complex [51], but can probably
be attributed to a combination of turbulent inhomogeneities in the inner disk, stellar
rotation [39], and the complex dynamics of magnetospheric accretion [1]. There is
also longer time scale variability — lasting from years to (at least) many decades,
that in some cases takes the form of well-defined outbursts in which the YSO bright-
ens dramatically. The traditional classification of outbursting sources divides them
into FU Orionis events [90, 86], characterized by a brightening of typically 5 mag-
nitudes followed by a decay over decades, and EXors [91], which display repeated
brightenings of several magnitudes over shorter time scales. The statistics on these
uncommon long-duration outbursts (especially FU Orionis events [93]) are lim-
ited, and it is not even clear — either observationally or theoretically — whether
FUOrs and EXors are variations on a theme or genuinely different phenomena [11].
Nonetheless, it is established that episodic accretion is common enough to matter
for both stellar accretion and for planet formation processes occurring in the inner
disk [11]. Our focus here is on the origin of these accretion outbursts.

Observations show that FU Orionis outbursts involve a large increase in the mass
accretion rate through the inner disk on to the star [86]. During the outburst the inner
disk will be relatively thick (h/r≈ 0.1), and hot enough to be thermally ionized. We
therefore expect efficient angular momentum transport from the MRI, with α ≈
0.02. Writing the viscous time scale (equation 58) in terms of these parameters,

tν =
1

αΩ

(
h
r

)−2

, (176)

we can estimate the disk radius associated with a (viscously driven) outburst of
duration tburst,

r ' (GM∗)
1/3

α
2/3
(

h
r

)4/3

t2/3
burst. (177)

For a Solar mass star we find,
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Fig. 22 An illustration of some of the processes suggested as the origin of episodic YSO accretion.
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Disk-driven outbursts of broadly the right duration are thus likely to involve events
on sub-AU scales, and could be associated physically with the magnetosphere, with
the thermally ionized inner disk, or with the inner edge of the dead zone.

The physical origin of episodic accretion in YSOs has not been securely identi-
fied. Mooted ideas, illustrated in Figure 22, fall into two categories. The first cate-
gory invokes secular instabilities of protoplanetary disk structure that may occur on
AU and sub-AU scales. The idea is that the inner disk may be intrinsically unable
to accrete at a steady rate, and instead alternates between periods of high accretion
rate when gas is draining on to the star and periods of low accretion rate when gas
is accumulating in the inner disk. The instability could be a classical thermal insta-
bility [31], of the type accepted as causing dwarf nova outbursts [122], or a related
instability of dead zone structure [77, 9]. The second category appeal to triggers
independent of the inner disk to initiate the outburst. Ideas in this class are various
and include perturbations from binary companions [37], the tidal disruption of ra-
dially migrating gas clumps / giant planets [223, 154], and disk variability linked
to a stellar magnetic cycle [4]. Neither category of ideas is fully compelling (in the
sense of being both fully worked out and consistent with currently accepted disk
physics), so our discussion here will focus on a few key concepts that are useful for
understanding current and future models of episodic accretion.

4.1 Secular disk instabilities

The classical instabilities that may afflict thin accretion disks are the thermal and
viscous instabilities [180]. These are quite distinct from the basic fluid dynamical
instabilities (the MRI, the VSI etc) that we discussed in §3, in that they address
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the stability of derived disk models rather than the fluid per se. Thus the thermal
instability is an instability of the equilibrium vertical structure of the disk, while
viscous instability in an instability of an (assumed) smooth radial structure under
viscous evolution.

Before discussing how thermal or viscous instability might arise, we first define
what these terms mean. Consider an annulus of the disk that is initially in hydrostatic
and thermal equilibrium, such that the heating rate Q+ matches the cooling rate Q−.
The heating rate per unit area depends upon the central temperature (equation 80),
and can be written assuming the α-prescription as,

Q+ =
9
4

νΣΩ
2 =

9
4

α
kBTc

µmH
ΣΩ . (179)

The cooling rate directly depends upon the effective temperature, Tdisk, but this can
always be rewritten in terms of Tc using a calculation of the vertical thermal structure
(§2.3). In the simple case when the disk is optically thick, for example, we have from
equation (87) that T 4

c /T 4
disk ' (3τ/4), and hence,

Q− =
8σ

3τ
T 4

c . (180)

Both α and τ may be functions of Tc. Now consider perturbing the central tem-
perature on a time scale that is long compared to the dynamical time scale (so that
hydrostatic equilibrium holds) but short compared to the viscous time scale (so that
Σ remains fixed)8. The disk will be unstable to runaway heating if an upward per-
turbation to the temperature increases the heating rate more than it increases the
cooling rate, i.e. if,

d logQ+

dlogTc
>

dlogQ−
dlogTc

. (181)

The same criterion predicts runaway cooling in the event of a downward perturba-
tion. A disk that is unstable in this sense is described as thermally unstable. It would
heat up (or cool down) until it finds a new structure in which heating and cooling
again balance.

To determine the condition for viscous stability, we start by considering a steady-
state solution Σ(r) to the diffusive disk evolution equation (52). Following Pringle
[180] we write µ ≡ νΣ and consider perturbations µ → µ + δ µ on a time scale
long enough that both hydrostatic and thermal equilibrium hold (in this limit Tc is
uniquely determined and ν = ν(Σ)). Substituting in equation (52) the perturbation
δ µ obeys,

∂

∂ t
(δ µ) =

∂ µ

∂Σ

3
r

∂

∂ r

[
r1/2 ∂

∂ r

(
r1/2

δ µ

)]
. (182)

The perturbation δ µ will grow if the diffusion coefficient, which is proportional to
∂ µ/∂Σ , is negative. This is viscous instability, and it occurs if,

8 This may seem to require fine tuning, but in fact the ordering of time scales in a geometrically
thin disk always allows for such a choice [180].
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∂

∂Σ
(νΣ)< 0. (183)

A disk that is viscously unstable would tend to break up into rings, whose amplitude
would presumably be limited by the onset of fluid instabilities that could be thought
of as modifying the ν(Σ) relation.

4.1.1 The S-curve: a toy model

The instabilities of interest for YSO episodic accretion can broadly be considered to
be thermal-type instabilities. Noting that Q+ ∝ αTc, and Q− ∝ T 4

c /τ ∝ T 4
c /κ (where

κ is the opacity at temperature Tc), we see that instability may occur according to
equation (181) if,

• dlogQ+/dlogTc is large, i.e. if α is strongly increasing with temperature.
• dlogQ−/dlogTc is small, i.e. if κ is strongly increasing with temperature.

We expect α to increase rapidly with Tc at temperatures around 103 K, as we transi-
tion between damped non-ideal MHD turbulence at low temperature and the more
vigorous ideal MHD MRI at higher temperature. We expect κ to increase most
strongly at temperatures around 104 K, as hydrogen is becoming ionized and there
is a strong contribution to the opacity from H− scattering (in this regime κ can vary
as something like T 10 [31]). Either of these changes can result in instability.

Before detailing the specifics of possible thermal and dead zone instabilities in
protoplanetary disks, it is useful to analyze a toy model that displays their essential
features. We consider an optically thick disk, described by the usual classical equa-
tions [70], whose angular momentum transport efficiency α and opacity κ are both
piece-wise constant functions of central temperature Tc. Specifically,

Tc < Tcrit : α = αlow,κ = κlow,

Tc > Tcrit : α = αhigh,κ = κhigh, (184)

with αlow ≤ αhigh and κlow ≤ κhigh. Our goal is to calculate the explicit form of the
Ṁ(Σ) relation in the “low” and “high” states below and above the critical tempera-
ture Tcrit. For a steady-state disk, at r� R∗, heated entirely by viscous dissipation,
the equations we need (mostly from §2) read,

T 4
disk =

3Ω 2

8πσ
Ṁ,

T 4
c

T 4
disk

=
3
4

τ,

τ =
1
2

κΣ ,

νΣ =
Ṁ
3π

,
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ν = α
c2

s

Ω
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α

Ω

kBTc

µmH
. (185)

Note that the stellar mass M∗ and radius in the disk r enter these formulae only via
their combination in the Keplerian angular velocity Ω . Eliminating Tc, Tdisk, τ and
ν between these equations, we obtain a solution for Ṁ(Σ),

Ṁ =
9π

4

(
k4

B

µ4m4
Hσ

)1/3

κ
1/3

α
4/3

Ω
−2/3

Σ
5/3, (186)

valid on either the low or the high branch when the appropriate values for α and κ

are inserted. A solution on the low branch is possible provided that Σ ≤ Σmax, where
Σmax is defined by the condition that Tc = Tcrit. Similarly, a high branch solution
requires Σ ≥ Σmin with Tc = Tcrit at Σmin. The limiting surface densities are given
by,

Σmax =
8

33/2
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)1/2

Ω
−1/2T 3/2

crit κ
−1/2
low α

−1/2
low ,
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33/2
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kB
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Ω
−1/2T 3/2

crit κ
−1/2
high α

−1/2
high . (187)

If κhigh > κlow and / or αhigh > αlow, then Σmax > Σmin and there will be a range of
surface densities where accretion rates corresponding to either the low or the high
branch are possible.

Figure 23 shows, for a fairly arbitrary choice of the model parameters, the ther-
mal equilibrium solutions that correspond to the low and high states of the disk
annulus. One should not take the results of such a toy model very seriously, but it
captures several features of more realistic models,

• The solution has stable thermal equilibrium solutions on two branches, a low
state branch where Ṁ for a given surface density is small, and a high state branch
where it is substantially larger. In the toy model these branches are entirely sepa-
rate, but in more complete models they are linked by an unstable middle branch
(giving the plot the appearance of an “S”-curve).

• There is a range of surface densities for which either solution is possible.
• There is a band of accretion rates for which no stable equilibrium solutions exist.
• The position of the S-curve in the Σ − Ṁ plane is a function of radius, with the

band of forbidden accretion rates moving to higher Ṁ further from the star.

The S-curve is derived from a local analysis, and the existence of annuli whose
thermal equilibrium solutions have this morphology is a necessary but not sufficient
condition for a global disk outburst. That time dependent behavior of some sort is
inevitable can be seen by supposing that the annulus at 0.25 AU in Figure 23 is fed
with gas from outside at a rate that falls into the forbidden band. No stable thermal
equilibrium solution with this accretion rate is possible. If the disk is initially on the
lower branch, the rate of gas supply exceeds the transport rate through the annulus,
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Fig. 23 Example S-curves in the accretion rate–surface density plane from the toy model described
in the text. For these curves we take κlow = κhigh = 1 cm2 g−1, αlow = 10−4, αhigh = 10−2, and
Tcrit = 103 K. The lower of the two curves is for Ω = 1.6× 10−6 s−1 (0.25 AU for a Solar-mass
star), the upper for Ω = 5.6×10−7 s−1 (0.5 AU).

and the surface density increases. This continues until Σ reaches and exceeds Σmax,
at which point the only available solution lies on the high branch at much higher
accretion rate. The annulus transitions to the high branch, where the transport rate
is now larger than the supply rate, and the surface density starts to drop. The cycle
is completed when Σ falls below Σmin, triggering a transition back to the low state.

The evolution of a disk that is potentially unstable (i.e. one that has some annuli
with S-curve thermal equilibria) is critically dependent upon the radial flow of mass
and heat, which are the key extra ingredients needed if an unstable disk is to “or-
ganize” itself and produce a long-lived outburst. To see this, imagine a disk where
annuli outside r f are already on the high branch of the S-curve, while those inside
remain on the low branch. The strong radial gradient of Tc implies a similarly rapid
change in ν , which leads to a large mass flux from the annuli that are already in
outburst toward those that remain quiescent (equation 53). The resulting increase
in surface density, along with the heat that goes with it, can push the neighboring
annulus on to the high branch, initiating a propagating “thermal front” that triggers
a large scale transition of the disk into an outburst state.

The quantitative modeling of global disk evolution including these thermal pro-
cesses is well-developed within the classical α disk formalism [122]. For a minimal
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model, all that is needed is to supplement the disk evolution equation (52) with a
model for the vertical structure (conceptually as described for the toy model above)
and an equation for the evolution of the central temperature. This takes the form
[42, 122],

∂Tc

∂ t
=

Q+−Q−
cpΣ

− RTc

µcp

1
r

∂

∂ r
(rvr)− vr

∂Tc

∂ r
+ ... (188)

Here cp is the specific heat capacity at constant pressure, and R is the gas constant.
The first term on the right hand side describes the direct heating and cooling due to
viscosity and radiative losses, while the second and third terms describe PdV work
and the advective transport of heat associated with radial mass flows. In general
there should be additional terms to represent the radial flow of heat due to radiative
and / or turbulent diffusion (these effects are small in most thin disk situations, but
become large when there is an abrupt change in Tc at a thermal front). The treatment
of these additional terms is somewhat inconsistent in published models, though they
can significantly impact the character of derived disk outbursts [165].

4.1.2 Classical thermal instability

In physical rather than toy models for episodic accretion α and κ are smooth rather
than discontinuous functions of the temperature. A local instability, with a resulting
S-curve, occurs if one or both of these functions changes sufficiently rapidly with
Tc (so that equation 181 is satisfied). No simple condition specifies when a disk that
has some locally unstable annuli will generate well-defined global outbursts, but
loosely speaking outbursts occur provided that the branches of the S-curve (and the
values of Σmax and Σmin) are well separated.

The classical cause of disk thermal instability is the rapid increase in opacity
associated with the ionization of hydrogen, at T ' 104 K. Around this temperature
κ can rise as steeply as T 10, and the disk will invariably satisfy at least the condition
for local thermal instability. The evolution of disks subject to a hydrogen ionization
thermal instability was first investigated as a model for dwarf novae (eruptive disk
systems in which a white dwarf accretes from a low-mass companion star) [84, 149],
and subsequently applied to low-mass X-ray binaries. Thermal instability models
provide a generally good match to observations of outbursts in these systems (which
are of shorter duration that YSO outbursts, and correspondingly better characterized
empirically), and are accepted as the probable physical cause. Good fits to data
require models to include not only the large change in κ that is the cause of classical
thermal instability, but also changes in α between the low and high branches of
the S-curve. Typically αlow ≤ 10−2, whereas αhigh ∼ 0.1 [106]. MHD simulations
that include radiation transport have shown that the S-curve derived from α disk
models can be approximately recovered as a consequence of the MRI, and that the
difference in stress between the quiescent and outburst states may be attributable to
the development of vertical convection within the hot disk [94].

By eye, the light curves of FU Orionis events look quite similar to scaled versions
of dwarf novae outbursts, so the success of thermal instability models in the latter
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sphere makes them a strong candidate for YSO accretion outbursts. The central tem-
perature of some outbursting FUOr disks, moreover, almost certainly does exceed
the 104 K needed to ionize hydrogen, making it inevitable that thermal instability
physics will play some role in the phenomenon. Detailed thermal instability models
of FU Orionis events were constructed by Bell & Lin [31], who combined a one-
dimensional (in r) treatment of the global evolution with detailed α model vertical
structure calculations. They were able to find periodic solutions that describe “self-
regulated” disk outbursts (i.e., requiring no external perturbation or trigger), with
the disk alternating between quiescent periods (with Ṁ = 10−8− 10−7 M� yr−1)
and outburst states (with Ṁ ≥ 10−5 M� yr−1). These properties, and the inferred
outburst duration of ∼ 102 yr, are in as good an agreement with observations as
could reasonably be expected given the simplicity of the model.

The weakness of classical thermal instability models as an explanation for YSO
accretion outbursts is that they require unnatural choices of the viscosity parame-
ter α [5]. Thermal instability is indisputably tied to the hydrogen ionization tem-
perature, which exceeds even the mid-plane temperatures customarily attained in
protoplanetary disks. The required temperatures can be reached (if at all) only ex-
tremely close to the star, and the radial region affected by instability extends to no
more than 0.1-0.2 AU. The viscous time scale on these scales is short, so matching
the century-long outbursts seen in FUOrs requires a very weak viscosity — Bell &
Lin [31] adopt αhigh = 10−3. This is at least an order of magnitude lower than the
expected efficiency of MRI transport under ideal MHD conditions [56, 202]. More-
over, in the specific case of FU Orionis itself, radiative transfer models suggest that
the region of high accretion rate during the outburst extends out to 0.5-1 AU [226],
substantially larger than would be expected in the thermal instability scenario.

4.1.3 Instabilities of dead zones

A dead zone in which the MRI is suppressed by Ohmic resistivity (§3.4.3) supports
a related type of instability whose high and low states are distinguished primarily
by different values of α , rather than by the thermal instability’s different values of
κ . The origin of instability is clear within Gammie’s original conception [76] of the
dead zone, which has a simple two-layer structure. The surface of the disk, ionized
by X-rays9, is MRI-active and supports accretion with a local α ∼ 10−2. Below
a critical column density Ohmic resistivity completely damps MRI-induced turbu-
lence (according to equation 170), and the disk is dead with α = 0. This structure
can be bistable if the surface density exceeds that of the ionized surface layer. The
low accretion rate state corresponds to a cool, externally heated disk with a dead
zone; the high accretion rate state to a hot thermally ionized disk at the same Σ .

Martin & Lubow [144, 146] have shown that the local physics of Ohmic dead
zone instability can be analyzed in an manner closely analogous to thermal instabil-
ity. The sole difference lies in the reason why the lower state ceases to exist above a

9 Cosmic rays in the original model, though this is an unimportant distinction.
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critical surface density (Σmax in Figure 23). For thermal instability Σmax is set by the
onset of ionization at the disk mid-plane, and the attendant rise in opacity. A sim-
ple dead zone, however, does not get hotter with increasing Σ , because the heating
(either from irradiation, or viscous dissipation in the ionized surface layer) occurs
at low optical depth at a rate that is independent of the surface density. It is then not
obvious how even a very thick dead zone can be heated above 103 K, “ignited”, and
induced to transition to the high state of the S-curve.

One way to trigger a jump to the high state is to postulate that some source of
turbulence other than the MRI is present to heat the disk. Gammie [77] suggested
that inefficient transport through the ionized surface layer would lead to the build
of mass in the dead zone [76] until Q ≈ 1 and self-gravity sets in (see §3.2). We
can readily estimate the properties we might expect for an instability triggered in
this manner by the onset of self-gravity at small radii. Suppose that at 1 AU the
temperature in the quiescent (externally irradiated) disk state is 150 K. Then to
reach Q = 1 requires gas to build up until Σ ' 7× 104 g cm−2, at which point the
mass interior is M ∼ πr2Σ ∼ 0.025 M�. This is comparable to the amount of mass
accreted per major FU Orionis-like outburst. In the outburst state the disk will be
moderately thick (say h/r = 0.3 [30]), and the viscous time scale (1/αΩ)(h/r)−2

works out to be about 200 yr for α = 0.01, again similar to inferred FUOr time
scales. At this crude level of estimate, it therefore seems possible that a self-gravity
triggered dead zone instability could be consistent both with the inferred size of
the outbursting region [226] and with theoretical best guesses as to the strength of
angular momentum transport in ideal MHD conditions.

Time-dependent models for outbursts arising from a dead zone instability were
computed by Armitage et al. [9], and subsequently by several groups in both one-
dimensional [229, 227, 144, 165] and two-dimensional models [228, 13]. The more
recent studies show that a self-gravity triggered instability of an Ohmic dead zone
can give rise to outbursts whose properties are broadly consistent with those of
observed FUOrs. Instability persists even if there is a small residual viscosity within
the dead zone [12, 146], which could arise hydrodynamically in response to the
“stirring” from the overlying turbulent surface layer [67].

It is established that Gammie’s dead-zone structure, as originally postulated
[76], can be unstable to the development of a limit cycle in which outbursts
and quiescent intervals alternate. It is much less clear whether a more realistic
(we think) inner disk structure, affected by all three non-ideal terms (§3.4.4),
evolves in a similar way. Ambipolar diffusion can damp turbulence in the low
density surface layer, while the Hall effect (and winds) can lead to significant
laminar stresses. It remains to be shown that our best theoretical models for
disks on AU scales are locally unstable in the same way as a simple Ohmic
dead zone, and to investigate the type of global outbursts that any instabilities
might yield. The Hall effect and / or winds could in principle also lead to
entirely different types of eruptive behavior.
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4.2 Triggered accretion outbursts

Accretion variability, including (perhaps) the large scale outbursts of FUOrs, can
also be triggered by processes largely independent of the inner disk itself. Stel-
lar activity cycles, binaries with small periastron distances, and tidal disruption of
gaseous clumps or planets may all contribute.

4.2.1 Stellar activity cycles

As discussed in §2.2.2 the inner disk is expected [110] and observed [38] to be
disrupted by the stellar magnetosphere. The complex dynamics of the interaction
between the field — which may be misaligned to the stellar spin axis and have
non-dipolar components — and the disk [119] is likely the dominant cause of T
Tauri variability on time scales comparable to the stellar rotation period (i.e. days
to weeks). If the strength of the field also varies systematically due to the presence
of activity cycles analogous to the Solar cycle, these could trigger longer time scale
(years to decades) accretion variability. The simplest mechanism is modulation of
the magnetospheric radius across corotation [48]. When the field is strong and rm >
rco the linkage between the stellar field lines and the disks adds angular momentum
to the disk, impeding accretion in the same way as gravitational torques from a
binary (§2.2.3)10. Gas then accumulates just outside the magnetospheric radius, and
can subsequently be accreted in a burst when the field weakens.

The viability of such magnetically “gated” accretion as an origin for large scale
variability is limited by the short viscous time scale of the disk at r ≈ rm, which
makes it hard to accumulate large masses of gas if the stellar fields are, as expected,
of no more than kG strength. Models [4] suggest that significant decade-long vari-
ability could be associated with protostellar activity cycles, but there is no clear
path to generating FU Orionis outbursts. Activity cycles are more promising as an
explanation for lower amplitude, periodic EXor outbursts [55]. We note that there
has been little if any work on the possible interactions between time-variable stellar
magnetic fields and an inner disk that has its own net field.

4.2.2 Binaries

An eccentric binary with an AU-scale periastron distance could funnel gas into the
inner disk, increasing the accretion rate and leading to an outburst if the increased
surface density is high enough to trigger thermal or dead zone instability. This mech-
anism was proposed by Bonnell & Bastien [37], and has subsequently been studied
with higher resolution simulations [176, 68]. Although there are some differences
between the predicted outbursts and those observed (this is almost inevitable, as the
limited sample of FUOrs is already quite diverse), it is clear that close encounters

10 In compact object accretion, this is described as the “propellor” regime of accretion [97].
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from binary or cluster companions induce episodes of substantially enhanced accre-
tion. The obvious prediction — that FUOrs ought to be found with observable binary
companions or preferentially associated with higher-density star forming regions —
is neither confirmed nor ruled out given the small sample of known objects.

4.2.3 Clump tidal disruption

A final possibility is that accretion outbursts could be triggered by the tidal disrup-
tion of a bound object (a planet or gas cloud) that migrates too close to the star. The
necessary condition for this to occur is given by the usual argument for the Roche
limit. If we consider a planet with radius Rp and mass Mp, orbiting a star of mass
M∗ at radius r, the differential (tidal) gravitational force between the center of the
planet and its surface is,

Ftidal =
GM∗

r2 −
GM∗

(r+Rp)2 '
2GM∗

r3 Rp. (189)

Equating the tidal force to the planet’s own self-gravity, Fself = GMp/R2
p, we find

that tidal forces will disrupt the planet at a radius rtidal given approximately by,

rtidal =

(
M∗
Mp

)1/3

Rp. (190)

An equivalent condition is that tidal disruption occurs when the mean density of the
planet ρ̄ < M∗/r3.

It is difficult to tidally disrupt a mature giant planet. A Jupiter mass planet has a
radius of Rp ' 1.5 RJ at an age of 1 Myr [142], and will not be disrupted outside
the photospheric radius of a typical young star. (Though such planets, if present in
the inner disk, could alter the course of thermal or dead zone instability [49, 130].)
If tidal disruption is to be relevant to episodic accretion we require, first, that the
outer disk is commonly gravitationally unstable to fragmentation, and, second, that
the clumps that form migrate rapidly inward (in the Type 1 regime discussed by
Kley in this volume) without contracting too rapidly. Numerical evidence supports
the idea that clump migration can be rapid [223, 29, 44, 150], though it is at best
unclear whether contraction can be deferred sufficiently to deliver clumps that would
be tidally disrupted on sub-AU scales [75]. Assuming that these pre-conditions are
satisfied, however, Nayakshin & Lodato [154] studied the tidal mass loss from the
close-in planets and its impact on the disk. They found that the tidal disruption of
∼ 20 RJ clumps, interior to 0.1 AU, led to accretion outbursts consistent with the
basic properties of FUOrs.

The primary theoretical doubts about tidal disruption as a source of outbursts
concern the relative rates of inward migration and clump contraction, which are
both hard to calculate at substantially better than order of magnitude level. Observa-
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tionally, this process would produce outbursts in systems whose disks were young,
massive, and probably still being fed by envelope infall.

Predicting the evolution of the inner disk on year-to-century time scales from
first principles is extremely hard, and none of the mechanisms for episodic
accretion discussed in this section has been subject to strict enough scrutiny to
merit dogmatic conclusions. Each comes with its own theoretical caveats, and
no single mechanism seems well-suited to explain the entire range of outburst
behavior seen in YSOs [11]. Episodic accretion may be caused by a significant
modification of a known process, a combination of known processes, or a
process yet to be identified.
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187. Rebusco, P., Umurhan, O.M., Kluźniak, W., Regev, O.: Global transient dynamics of three-

dimensional hydrodynamical disturbances in a thin viscous accretion disk. Physics of Fluids
21(7), 076,601 (2009). DOI 10.1063/1.3167411

188. Rice, W.K.M., Armitage, P.J., Bate, M.R., Bonnell, I.A.: The effect of cooling on the global
stability of self-gravitating protoplanetary discs. MNRAS, 339, 1025–1030 (2003). DOI
10.1046/j.1365-8711.2003.06253.x

189. Rice, W.K.M., Armitage, P.J., Mamatsashvili, G.R., Lodato, G., Clarke, C.J.: Stability of self-
gravitating discs under irradiation. MNRAS, 418, 1356–1362 (2011). DOI 10.1111/j.1365-
2966.2011.19586.x

190. Rice, W.K.M., Lodato, G., Armitage, P.J.: Investigating fragmentation conditions in self-
gravitating accretion discs. MNRAS, 364, L56–L60 (2005). DOI 10.1111/j.1745-
3933.2005.00105.x

191. Robitaille, T.P.: HYPERION: an open-source parallelized three-dimensional dust continuum
radiative transfer code. A&A, 536, A79 (2011). DOI 10.1051/0004-6361/201117150

192. Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E.: MRI-driven accretion
on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer
regimes. MNRAS, 421, 63–77 (2012). DOI 10.1111/j.1365-2966.2011.20055.x

193. Rosenfeld, K.A., Andrews, S.M., Hughes, A.M., Wilner, D.J., Qi, C.: A Spatially Re-
solved Vertical Temperature Gradient in the HD 163296 Disk. ApJ, 774, 16 (2013). DOI
10.1088/0004-637X/774/1/16

194. Rybicki, G.B., Lightman, A.P.: Radiative processes in astrophysics (1979)
195. Sano, T., Inutsuka, S.i.: Saturation and Thermalization of the Magnetorotational Instabil-

ity: Recurrent Channel Flows and Reconnections. ApJL, 561, L179–L182 (2001). DOI
10.1086/324763

196. Sano, T., Stone, J.M.: The Effect of the Hall Term on the Nonlinear Evolution of the Mag-
netorotational Instability. I. Local Axisymmetric Simulations. ApJ, 570, 314–328 (2002).
DOI 10.1086/339504

197. Sano, T., Stone, J.M.: The Effect of the Hall Term on the Nonlinear Evolution of the
Magnetorotational Instability. II. Saturation Level and Critical Magnetic Reynolds Number.
ApJ, 577, 534–553 (2002). DOI 10.1086/342172

198. Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance.
A&A, 24, 337–355 (1973)

199. Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S.: Magnetocentrifugally driven
flows from young stars and disks. 1: A generalized model. ApJ, 429, 781–796 (1994). DOI
10.1086/174363

200. Simon, J.B., Bai, X.N., Armitage, P.J., Stone, J.M., Beckwith, K.: Turbulence in the Outer
Regions of Protoplanetary Disks. II. Strong Accretion Driven by a Vertical Magnetic Field.
ApJ, 775, 73 (2013). DOI 10.1088/0004-637X/775/1/73

201. Simon, J.B., Bai, X.N., Stone, J.M., Armitage, P.J., Beckwith, K.: Turbulence in the Outer
Regions of Protoplanetary Disks. I. Weak Accretion with No Vertical Magnetic Flux.
ApJ, 764, 66 (2013). DOI 10.1088/0004-637X/764/1/66

202. Simon, J.B., Beckwith, K., Armitage, P.J.: Emergent mesoscale phenomena in magne-
tized accretion disc turbulence. MNRAS, 422, 2685–2700 (2012). DOI 10.1111/j.1365-
2966.2012.20835.x

203. Simon, J.B., Hawley, J.F.: Viscous and Resistive Effects on the Magnetorotational Instability
with a Net Toroidal Field. ApJ, 707, 833–843 (2009). DOI 10.1088/0004-637X/707/1/833

204. Smak, J.: Eruptive binaries. XI - Disk-radius variations in U GEM. Acta Astronomica, 34,
93–96 (1984)



88 Philip J. Armitage

205. Spruit, H.C.: Magnetohydrodynamic jets and winds from accretion disks. In: R.A.M.J. Wi-
jers, M.B. Davies, C.A. Tout (eds.) NATO Advanced Science Institutes (ASI) Series C, NATO
Advanced Science Institutes (ASI) Series C, vol. 477, pp. 249–286 (1996)

206. Steiman-Cameron, T.Y., Durisen, R.H., Boley, A.C., Michael, S., McConnell, C.R.: Conver-
gence Studies of Mass Transport in Disks with Gravitational Instabilities. II. The Radiative
Cooling Case. ApJ, 768, 192 (2013). DOI 10.1088/0004-637X/768/2/192

207. Steinacker, J., Baes, M., Gordon, K.D.: Three-Dimensional Dust Radiative Transfer*.
ARA&A, 51, 63–104 (2013). DOI 10.1146/annurev-astro-082812-141042

208. Stepinski, T.F.: Generation of dynamo magnetic fields in the primordial solar nebula. Icarus,
97, 130–141 (1992). DOI 10.1016/0019-1035(92)90062-C

209. Stoll, M.H.R., Kley, W.: Vertical shear instability in accretion disc models with radiation
transport. A&A, 572, A77 (2014). DOI 10.1051/0004-6361/201424114

210. Suzuki, T.K., Inutsuka, S.i.: Disk Winds Driven by Magnetorotational Instability and
Dispersal of Protoplanetary Disks. ApJL, 691, L49–L54 (2009). DOI 10.1088/0004-
637X/691/1/L49

211. Takeuchi, T., Lin, D.N.C.: Radial Flow of Dust Particles in Accretion Disks. ApJ, 581, 1344–
1355 (2002). DOI 10.1086/344437

212. Takeuchi, T., Okuzumi, S.: Radial Transport of Large-scale Magnetic Fields in Accre-
tion Disks. II. Relaxation to Steady States. ApJ, 797, 132 (2014). DOI 10.1088/0004-
637X/797/2/132

213. Terquem, C., Papaloizou, J.C.B.: On the stability of an accretion disc containing a toroidal
magnetic field. MNRAS, 279, 767–784 (1996)

214. Toomre, A.: On the gravitational stability of a disk of stars. ApJ, 139, 1217–1238 (1964).
DOI 10.1086/147861

215. Tout, C.A., Pringle, J.E.: Accretion disc viscosity - A simple model for a magnetic dynamo.
MNRAS, 259, 604–612 (1992)

216. Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M.N., Inutsuka, S.: Bimodality of cir-
cumstellar disk evolution induced by Hall current. ArXiv e-prints (2015)

217. Tsukamoto, Y., Takahashi, S.Z., Machida, M.N., Inutsuka, S.: Effects of radiative transfer on
the structure of self-gravitating discs, their fragmentation and the evolution of the fragments.
MNRAS, 446, 1175–1190 (2015). DOI 10.1093/mnras/stu2160

218. Turner, N.J., Drake, J.F.: Energetic Protons, Radionuclides, and Magnetic Activity in Proto-
stellar Disks. ApJ, 703, 2152–2159 (2009). DOI 10.1088/0004-637X/703/2/2152

219. Turner, N.J., Sano, T.: Dead Zone Accretion Flows in Protostellar Disks. ApJL, 679, L131–
L134 (2008). DOI 10.1086/589540

220. Turner, N.J., Sano, T., Dziourkevitch, N.: Turbulent Mixing and the Dead Zone in Protostellar
Disks. ApJ, 659, 729–737 (2007). DOI 10.1086/512007

221. Urpin, V., Brandenburg, A.: Magnetic and vertical shear instabilities in accretion discs. MN-
RAS, 294, 399 (1998). DOI 10.1046/j.1365-8711.1998.01118.x

222. Velikhov, E.: Stability of an ideally conducting liquid flowing between rotating cylinders in
a magnetic field. Zhur. Eksptl?. i Teoret. Fiz. Vol: 36 (1959)

223. Vorobyov, E.I., Basu, S.: The Origin of Episodic Accretion Bursts in the Early Stages of Star
Formation. ApJL, 633, L137–L140 (2005). DOI 10.1086/498303

224. Wardle, M.: The Balbus-Hawley instability in weakly ionized discs. MNRAS, 307, 849–856
(1999). DOI 10.1046/j.1365-8711.1999.02670.x

225. Weingartner, J.C., Draine, B.T.: Photoelectric Emission from Interstellar Dust: Grain Charg-
ing and Gas Heating. ApJS, 134, 263–281 (2001). DOI 10.1086/320852

226. Zhu, Z., Hartmann, L., Calvet, N., Hernandez, J., Muzerolle, J., Tannirkulam, A.K.: The Hot
Inner Disk of FU Orionis. ApJ, 669, 483–492 (2007). DOI 10.1086/521345

227. Zhu, Z., Hartmann, L., Gammie, C.: Long-term Evolution of Protostellar and Protoplanetary
Disks. II. Layered Accretion with Infall. ApJ, 713, 1143–1158 (2010). DOI 10.1088/0004-
637X/713/2/1143

228. Zhu, Z., Hartmann, L., Gammie, C., McKinney, J.C.: Two-dimensional Simulations of FU
Orionis Disk Outbursts. ApJ, 701, 620–634 (2009). DOI 10.1088/0004-637X/701/1/620



Physical Processes in Protoplanetary Disks 89

229. Zhu, Z., Hartmann, L., Gammie, C.F., Book, L.G., Simon, J.B., Engelhard, E.: Long-term
Evolution of Protostellar and Protoplanetary Disks. I. Outbursts. ApJ, 713, 1134–1142
(2010). DOI 10.1088/0004-637X/713/2/1134

230. Zweibel, E.G.: Ambipolar Diffusion, Astrophysics and Space Science Library, vol. 407, p.
285 (2015)


