Protoplanetary disk structure

Phil Armitage Colorado

What can we directly observe? **Motivation** Limited **Dust** 10 12 direct μm-mm 14 FU Ori time 16 10 20 30 40 50 0 dependence Time (Years) Hartmann & Kenyon '96 100 **Evolution** HL Tau, ALMA 80 from Gas – Disk frequency (%) 0 00 population emission & studies kinematics

20

0

emission & kinematics (CO + other molecules, H_2 hard)

Rosenfeld et al. '13

Hernandez et al. '07

Age (Myr)

10

5

What do we aim to learn?

Motivation

- Why and how disk evolve
- Physical conditions for planet formation (density, temperature, level of turbulence...)
- Interaction and growth of solids within the gas
- Origin of structure within disks
- Planet-disk interactions

Disk structure

Basic principles: disks are long-lived and (usually) well approximated by -

- hydrostatic equilibrium
- thermal equilibrium
- local ionization equilibrium

In many cases chemistry is *not* necessarily in equilibrium

Consider a disk:

Disk structure

- heated from star (~vertically isothermal)
- gas pressure dominated dP/dz of low mass compared to star Ζ grav r $\frac{\mathrm{d}P}{\mathrm{d}z} =$ $= -\rho g_z = -\rho \frac{GM_*}{d^2}$ In hydrostatic equilibrium: $\sin \theta$

Write P =
$$\rho c_s^2$$
, for z << r: $\frac{GM_*}{d^2} \sin \theta \simeq \frac{GM_*}{r^3} z = \Omega_K^2 z$

$$c_s^2 \frac{\mathrm{d}\rho}{\mathrm{d}z} = -\Omega_K^2 \rho z \quad \Longrightarrow \quad \rho(z) = \rho_0 \exp[-z^2/2h^2]$$

Define disk scale height $h \equiv \frac{c_s}{\Omega_K}$

Vertical density profile is gaussian

Disk surface density
$$\Sigma = \int \rho dz$$
 $\rho_0 = \frac{1}{\sqrt{2\pi}} \frac{\Sigma}{h}$

Order of magnitude: at 1 AU, $\Sigma \sim 10^3$ g cm⁻², h / r ~ 0.03

What could alter vertical density profile?

• self-gravity, condition is roughly

$$\frac{M_{\rm disk}}{M_*} \gtrsim \frac{1}{2} \left(\frac{h}{r}\right)$$

• magnetic pressure $B^2 / 8\pi$

Hirose & Turner '11 find magnetic support above about z ~ 4h, leading to an exponential atmosphere (1 AU, flux-limited diffusion)

Depends on MHD processes in disk, in some cases **B**(z) may have larger effect

Velocity structure

pressure gradient

For a slowly evolving disk, in axisymmetry:

$$\frac{\partial v}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi$$
$$\frac{v_{\phi}^2}{r} = \frac{GM_*}{r^2} + \frac{1}{\rho} \frac{\mathrm{d}P}{\mathrm{d}r}$$

P = ρc_s^2 , and $c_s \sim h$, so 2^{nd} term O(h/r)²

A specific example: $\Sigma \sim r^{-1}$, $T_c \sim r^{-1/2}$

$$v_{\phi} = v_K \left[1 - \frac{11}{4} \left(\frac{h}{r} \right)^2 \right]^{1/2}$$

At 1 AU, if (h/r) = 0.03:

- gas is sub-Keplerian by ~0.25%
- $|v_{\phi} v_{K}| \approx 70 \text{ ms}^{-1}$

Non-self-gravitating disks can be treated as Keplerian for all practical (**gas** dynamical) purposes

Small deviation has outsized importance for **particle** dynamics!

At same order (h/r)² there is **vertical** shear in the equilibrium velocity field, even if disk is vertically isothermal

- see Takeuchi & Lin '02 for calculation
- Rosenfeld et al. '13 effects at this order are potentially observable in molecular line kinematics

Periods = 0

Kozai-Lidov oscillations in hydrodynamical discs

Martin, Nixon, Armitage, Lubow, Price, Dogan & King (2014)

Disks in or around binaries may be eccentric and / or warped, are there *small* warps or eccentric gas flows in "normal" disks?

Temperature

Stellar irradiation vs heating by accretion

$$L_{\rm irr} = fL_* \qquad L_{\rm acc} = \frac{1}{2} \frac{GM_*\dot{M}}{R_{\rm in}}$$

Globally, accretion dominates if:

$$\dot{M} \gtrsim 2 \times 10^{-7} \left(\frac{L_*/M_*}{L_{\odot}/M_{\odot}}\right) \left(\frac{R_{\rm in}}{10 R_{\odot}}\right) \left(\frac{f}{0.25}\right) M_{\odot} \ {\rm yr}^{-1}$$

Both heating sources can matter – depends on accretion rate, stellar mass, radius...

Simple limit: razor-thin, optically thick disk, intercepts star light and re-emits locally as blackbody emission

 $\begin{array}{ll} \mbox{Asymptotically (r >> R_*)} & T_{\rm disk} \propto r^{-3/4} \\ \\ & \frac{h}{r} \propto \frac{T^{1/2}}{v_K} \propto r^{1/8} & ... \mbox{disks usually flare} \\ & \mbox{to large distances} \end{array}$

Additional physics for **dust** emission

1) Disk flares, intercepts more flux at large r than flat disk (Kenyon & Hartmann 1987)

2) Surface dust radiates inefficiently (size smaller than the wavelength of re-emitted IR radiation)

warm optically thin emission
$$T_{\rm s} = \frac{1}{\epsilon^{1/4}} \left(\frac{R_*}{2r}\right)^{1/2} T_*$$

Approximate analytic models:

$$T_{\rm i} \approx 150 \left(\frac{r}{1 \text{ AU}}\right)^{-3/7} \text{ K}$$

 $T_{\rm s} \approx 550 \left(\frac{r}{1 \text{ AU}}\right)^{-2/5} \text{ K}$

50% of disk L in blackbody interior emission

50% in emission from a warmer surface dust layer

Chiang & Goldreich '97 – Σ = 10³ (r / AU)^{-3/2} g cm⁻², M = 0.5 M_{Sun}, T = 4000 K, R_{*} = 2.5 R_{Sun}

Garaud & Lin '07 for version including accretion heating

Passive disks have T ~ $r^{-0.5}$, flare to large r, any contribution from accretion heating greater at small r

What about the **gas** temperature?

Heating

UV photon,

 $F = 10 \, eV$

- collisions between molecules and dust particles
 efficient equilibration at high density: T_{gas} = T_{dust}
- *photoelectric* heating near surface

90% of time: energy thermalized in grain 10% of time: eject an electron into gas

electron: $E_e = E_{UV} - w \sim 5 \text{ eV}$

~5% of incident UV flux goes into gas heating

Cooling – rotational transitions (e.g. CO), atomic fine structure lines

Henning & Semenov '13, from Akimkin et al. '13

General structure:

- optically thick, vertically isothermal structure near disk mid-plane
- warmer dust at surface
- still warmer molecular layer of gas

Need numerical codes to compute gas + dust models

Ionization fraction $x_e = n_e / n_H$ affects:

- chemistry
- coupling of gas to magnetic fields

Thermal ionization

Gas becomes fully ionized only at T $\sim 10^4$ K

These temperatures attained only in very high accretion rate states

Change in *opacity* when H is ionized is important for episodic accretion models

ionization of hydrogen (opacity from *Semenov et al. '03*)

Ionization

Thermal ionization

Ionization of the alkali metals occurs at $T \sim 10^3 \text{ K}$

Yields an electron fraction $x_e \sim 10^{-12}$

Very low ionization degree, **but** comparable to the ionization needed to couple magnetic fields to gas

Calculation: use Saha equation, answer just $f(T,\rho)$

Non-thermal ionization – this is *much nastier!*

Need to know and balance:

- explicit ionization rates ζ from non-thermal processes
- specific reactions that lead to recombination

e.g. if dominant reaction is recombination with molecular ions ("dissociative recombination"), such as

$$e^{-} + HCO^{+} \longrightarrow H + CO$$
rate equation
$$\frac{dn_{e}}{dt} = \zeta n_{n} - \beta n_{e} n_{HCO^{+}} = 0$$
in ionization equilibrium
neutrals
rate coefficient (function of T)
Solution assuming
overall neutrality
$$x_{e} = \sqrt{\frac{\zeta}{\beta n_{n}}}$$

Non-thermal ionization

far-UV photons, ionize C, S etc to depth of 0.01 to 0.1 g cm⁻² column

stellar X-rays (5 keV), stopping depth 5-10 g cm⁻²

unshielded cosmic rays, stopping depth ~100 g cm⁻²

radioactive decay ²⁶Al normally dominant

Simplified model for ionization rates after Turner & Sano '08

Mid-plane of the inner disk is too cold to be thermally ionized, dense enough to be shielded from external sources of ionizing radiation... very low x_e

Stellar X-ray ionization from *Ercolano & Glassgold '13*

Figure 3. Ionization rates plotted vs. vertical column density for a two-temperature average representation of the COUP X-ray observations (Wolk et al. 2005) of the Orion Nebula Custer at 1 AU, 5 AU and 10 AU for solar abundances (black) and depleted interstellar abundances (red) given in Table 1. The X-ray luminosity is $L_{\rm X} = 2 \times 10^{30} {\rm erg \, s^{-1}}$, and the other spectrum parameters are given in Table 2. For ease of viewing, the 5 AU and 10 AU curves have been shifted down by factors of 10 and 1,000 relative to those for 1 AU.

Fig. 20. This contour plot shows the electron distribution at $t = 10^5$ yrs for our $\alpha = 10^{-2}$, $\dot{M} = 10^{-7} M_{\odot} \text{ yr}^{-1}$ disk model by applying the UMIST model (model3) with $x_{\text{Mg}} = 10^{-12}$. The contour lines refer to values $x[e^{-1}]$ of 10^{-14} , 10^{-13} , 10^{-12} , and 10^{-11} .

Calculation of ionization fraction from *Ilgner* & *Nelson '06*

Metal ions and dust grain reactions are both important factors determining ionization degree

Are cosmic rays shielded from disk? Solar wind modulates local flux of cosmic rays, do T Tauri stellar or disk winds have similar effect? (*Cleeves et al. '13*)

Is the microphysics of ionization balance fully understood? Ionization by electrons accelerated in MHD turbulence, non-linear relation between current and electric field strength... (Inutsuka & Sano '05; McNally et al. '13; Okuzumi & Inutsuka '15)

Protoplanetary disk evolution

The central problem

The gas orbital velocity is accurately Keplerian

$$v_{\phi} = v_K + \mathcal{O}(h/r)^2$$

Specific angular momentum is robustly an increasing function of radius

$$l = \sqrt{GM_*r} \propto r^{1/2}$$

Even though lowest **energy** state favors gas accreting on to the star, **angular momentum** conservation forbids it

The central problem

Hernandez et al. '07

Consistent with long observed disk lifetimes – disks are quasi-equilibrium structures that evolve slowly compared to dynamical time scale

The central problem

Redistribution of angular momentum within disk

"Viscous" disk: angular momentum mixed by internal turbulence

Not mutually exclusive!

$$l_1 = \Omega_1 r_1^2$$

if field line is like a rigid wire

$$l_2 = \Omega_1 r_2^2 \gg \Omega_{K,2} r_2^2$$

Classical disks

Lynden-Bell & Pringle '74; Shakura & Sunyaev '73 theory:

- disk is geometrically thin (h/r << 1), axisymmetric, planar
- angular momentum redistribution is modeled as a Navier-Stokes shear viscosity (kinematic viscosity v)

 $\begin{array}{c} \text{continuity +} \\ \text{angular} \\ \text{momentum} \\ \text{conservation} \end{array} \begin{bmatrix} r \frac{\partial}{\partial t} (r^2 \Omega \Sigma) + \frac{\partial}{\partial r} (r^2 \Omega \cdot r \Sigma v_r) = 0 \\ r \frac{\partial}{\partial t} (r^2 \Omega \Sigma) + \frac{\partial}{\partial r} (r^2 \Omega \cdot r \Sigma v_r) = \frac{1}{2\pi} \frac{\partial G}{\partial r} \end{bmatrix}$

specification of the torque G – local, scales linearly with shear $G = 2\pi r \cdot \nu \Sigma r \frac{d\Omega}{dr} \cdot r$ Keplerian potential specializes to...

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[r^{1/2} \frac{\partial}{\partial r} \left(\nu \Sigma r^{1/2} \right) \right]$$

Diffusive evolution of surface density Σ

Viscous time scale: $t_{\nu} = r^2/\nu$

Green's function solution: mass flows to r = 0, while angular momentum carried by tail of mass to infinity In steady-state, if: $\nu \propto r^{\gamma}$ $\implies \Sigma = \dot{M}/(3\pi\nu) \propto r^{-\gamma}$

Also have explicit self-similar solution:

$$\Sigma(\tilde{r},T) = \frac{C}{3\pi\nu_1\tilde{r}^{\gamma}}T^{-(5/2-\gamma)/(2-\gamma)}\exp\left[-\frac{\tilde{r}^{(2-\gamma)}}{T}\right]$$

How applicable is classical disk theory?

Angular momentum transport is not due to real "viscosity"

$$\nu_m \sim c_s \lambda \sim 10^6 \text{ cm}^2 \text{ s}^{-1} \implies t_{\nu} (5 \text{ AU}) \sim 10^{14} \text{ yr}$$

~km s⁻¹ ~10 cm

However, obtain same one-dimensional evolution equation if transport is due to an average turbulent stress, provided it is locally defined. e.g. for a fluid with magnetic fields,

transport from fluid ("Reynolds") and magnetic ("Maxwell") stress

Balbus & Papaloizou '99

How applicable is classical disk theory?

Things will go wrong if we try to apply the theory when:

- transport mechanism is *non-local* (e.g. self-gravity when M_{disk} is not much smaller than M_{*})
- mass loss (e.g. from photoevaporation) occurs on a time scale < viscous time scale
- 1D situations where Ω far from Keplerian
- time scales shorter than correlation time for turbulence
- any 2D or 3D situation (warps, eccentric disks, meridional circulation)...

$\alpha\text{-model}$ disks

Can make a predictive theory if we can write v as a function of other disk parameters (T, r, ρ , x_e...)

$$\nu = \alpha c_s h$$

Shakura-Sunyaev '73 α -prescription

For α assumed constant, one parameter description of protoplanetary disk evolution

Identify disk lifetime with the viscous time at outer edge

$$t_{\nu} = \left(\frac{h}{r}\right)^{-2} \frac{1}{\alpha \Omega} \qquad t_{\nu} = 1 \text{ Myr at 30 AU, (h / r)} = 0.05$$

If irradiation dominates, with fixed T ~ r ^{-1/2}, then an α -disk is equivalent to $\nu \sim r$ (since $\nu = \alpha c_s^2 / \Omega$)

An α model predicts the time-varying radial (and vertical) structure for any accretion rate

e.g. snow line near 4 AU for this model

Bell et al. '97

$$\nu = \alpha c_s h$$

We can always choose to express the efficiency of angular momentum transport in terms of $\boldsymbol{\alpha}$

 α -disk theory is useful **if** it encodes the "leading order" dependence of the stress on the local disk properties, i.e. so that α is a slowly varying function of Σ , r etc

Various caveats:

- α likely a strong function of T, Σ , *if* transport is due to MHD processes
- vertical structure also depends on how accretion energy is distributed vertically... even more uncertain
- for comparison against observations, reducing a possibly complex function to one number