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Topics
© Wide-orbit exoplanets
@ Pebble accretion
@ Size distribution of asteroids
© Nice model
© Grand Tack model
© Population synthesis with pebbles
@ Chondrule accretion
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Classical core accretion scenario

@ Dust grains and ice particles collide to form km-scale planetesimals
@ Large protoplanet grows by run-away accretion of planetesimals

© Protoplanet attracts hydrostatic gas envelope

© Run-away gas accretion as Moy, & Meore
© Form gas giant with Mcore = 10Mg and Matm ~ Myyp
(Safronov, 1969; Mizuno, 1980; Pollack et al., 1996)

All steps must happen within 1-3 Myr while there is gas orbiting the star
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Life-times of protoplanetary discs

@ Stars in a star-forming region are pretty much the same age

o Compare disc fraction between regions of different age
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(Haisch et al., 2001)

= Protoplanetary discs live for 1-3 Myr
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Core formation time-scales

@ The size of the protoplanet relative to the Hill
sphere:

% = o ~ 0.001 (ﬁ)f1

@ Maximal growth rate by gravitational focussing

M = aRAFu

= Only 0.1% (0.01%) of planetesimals entering
the Hill sphere are accreted at 5 AU (50 AU)

= Time to grow to 10 Mg is
~10 Myrat5 AU
~50  Myr at 10 AU
~5,000 Myr at 50 AU
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Directly imaged exoplanets

]

November 1, 2009 L'~band

(Marois et al., 2008; 2010) (Kalas et al., 2008)

e HR 8799 (4 planets at 14.5, 24, 38, 68 AU)
e Fomalhaut (1 controversial planet at 113 AU)

= No way to form the cores of these planets within the life-time of the
protoplanetary gas disc by standard core accretion
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Pebble accretion

I ]
@ Most planetesimals are simply
scattered by the protoplanet
ey *etered @ Pebbles spiral in towards the
protoplanet due to gas
friction
= Pebbles are accreted from the
entire Hill sphere
Pebble spirals towards .
protopanetdus t g icton @ Growth rate by planetesimal
accretion is
y 2

@ Growth rate by pebble
accretion is

M = RAFu
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Relevant parameters for pebble accretion

o Hill radius Ry = [GM/(352%)]*/3
Distance over which the gravity of the protoplanet dominates over the
the tidal force of the central star

e Bondi radius Rg = GM/(Av)?
Distance over which a particle with approach speed Av is significantly
deflected by the protoplanet (in absence of drag)

@ Sub-Keplerian speed Av
Orbital speed of gas and pebbles relative to Keplerian speed

o Hill speed vy = 2Ry
Approach speed of gas and pebbles at the edge of the Hill sphere
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Pebble accretion regimes
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Two main pebble accretion regimes: (tambrechts & Johansen, 2012)

@ Bondi regime (when Av > vy) _
Particles pass the core with speed Av, giving M < R3 o M?

@ Hill regime (when Av < vy)
Particles enter Hill sphere with speed viy ~ 2Ry, giving M < M?/3
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Time- scaIe of pebble accretion
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= Pebble accretion speeds up core formation by a factor 1,000 at 5 AU and a
factor 10,000 at 50 AU

(Ormel & Klahr, 2010; Lambrechts & Johansen, 2012; Nesvorny & Morbidelli, 2012)

=- Cores form well within the life-time of the protoplanetary gas disc, even at
large orbital distances

@ Requires large planetesimal seeds to accrete in Hill regime, consistent with
planetesimal formation by gravitational collapse
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The asteroid belt

@ 1-2 million asteroids
larger than 1 km in main
belt between Mars and
Jupiter

@ Total mass is only
0.0005 Mg

@ Interpolation between
terrestrial planets and
giant planets gives 2.5
Mg in the primordial
asteroid belt between 2
and 3 AU

Proper Inclination i, (degrees)

@ Asteroid belt depleted by
resonances with Jupiter

2.5 3
Proper Semimajor Axis a, (AU)
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Growth of asteroids by pebble accretion

Put large (500 km) planetesimal in an ocean of pebbles:

yH

~0.0; i 3
-0.02 -0.01 0.00 0.01 0.02 -0.01  0.00 0.01 0.02
XH XH

= Prograde accretion disc forms around the protoplanet
(Johansen & Lacerda, 2010)
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Asteroid rotation

@ The majority of large asteroids have axial tilt

a < 90°

o Called “direct” or “prograde” rotation
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Ceres 20

2 Pallas 60°
3 Juno 50°
4 Vesta 29°
5 Astraea 33°
6 Hebe 42°
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Asteroid poles

[1km < r < 150km -

150km < r @

Rotations per Day

Copenhagen 2015 (Lecture 3)

Plot of asteroid pole axes
(from Johansen & Lacerda, 2010)

Largest asteroids have a tendency
to rotate prograde (1-2 o)

... but there is a very large scatter

The two large retrograde asteroids,
2 Pallas and 10 Hygiea, are actually
spinning on the side

Planetesimal accretion yields slow,
retrograde rotation (Lissaver & Kary, 1991)

Prograde spin can also arise from
random effect of large impacts (Dones
& Tremaine, 1993) Of due to collisions
between planetesimals within the
Hill sphere (schiichting & Sari, 2007)
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Primordial spin of planetesimals

Q1201
£=10.0

Q1701

Q= o
£=0.1 :
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[end lexd

@ Prograde rotation with P =~ (5...10) h induced for particles between centimeters
and a few meters

@ Spin can be randomised later in giant impacts

= Predict that pristine Kuiper belt objects formed by gravitational collapse should

have prograde spin
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Orbits of Kuiper belt objects
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@ Kuiper belt objects reside beyond the orbit of Neptune

@ Pluto trapped in 3:2 resonance with Neptune — result of outwards migration of
Neptune

@ Scattered disc objects have high e and perihelion between 33 and 40 AU

@ Centaurs have perihelion within 30 AU — source of Jupiter family comets

@ Classical KBOs have low e and semimajor axes between 37 and 48 AU — future
target of New Horizons
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Nice model

Cumulative lunar impact mass (g)
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@ Pluto’s resonant orbit with Neptune is explained by trapping during the migration
of Neptune through a primordial, massive Kuiper belt (Mahotra, 1993, 1995)

@ Planetesimals scattered inwards by N, U and S are ejected from the Solar System
by J, leading to a net outwards migration of the three outer giants

@ As Jupiter and Saturn cross their 2:1 mean motion resonance, the orbits of Uranus
and Neptune are excited and the primordial Kuiper belt is depleted (Tsiganis et al., 2005)

@ Explains modern architecture of the Kuiper belt and Late Heavy Bombardment of

the terrestrial planets and the Moon (Gomes et al., 2005)
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Kuiper belt binaries
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@ At least 30% of 100-km classical KBOs are binaries (Nol et al., 2008)

@ Nesvorny et al. (2010) modelled gravitational collapse of particle clumps to explain
why binary KBO can have similar colors

@ Found good statistical agreement in orbital parameters between simulations and
observed KBO binary systems

@ Almost no binaries in scattered disc — ionised by close encounters?
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Cloud collapse to pebble piles

Fraction of total mass in pebbles as a function of solid radius of the planetesimal.
For simulations with, intially, cm-sized pebbles.

1000 rep. part. ——
200 rep. part.

@ Simulate cloud collapse in 0-D collision code
(Wabhlberg Jansson & Johansen, 2014)

Pebble mass fraction

@ High collision rates = Rapid energy dissipation =
Contraction to solid density |(Wahiberg Jansson & Johansen, 2014)

o1 1 10 100 1000
Solid radius, R, ., (km)

= High pebble fraction after collapse

= Predict that comets like 67P/
Churyumov-Gerasimenko are pebble piles

@ Charon

@saacs

@ Large Kuiper belt objects likely lost their porosity N i
by gravitational compression Em S

cameter km) (Brown, 2013)
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Goosebumps on 67P

(Sierks et al., 2015) (Mottola et al., 2015)

The Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko in 2014
Orbiter will follow 67P beyond perihelion

Structures in deep pits resemble goosebumps (Sierks et al., 2015)

Could be the primordial pebbles from the solar protoplanetary disc

But meter-sized pebbles hard to explain in light of radial drift

Philae’s first landing site shows characteristic particle scale of cm in smooth
terrains (Mottola et al., 2015)
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Pebbles in the medial

News  Sport  Weather ~ Shop  Earth Tra

Home Video = World UK Business Tech Science Magazine = Entertainment & A

Science & Environment

Rosetta: '‘Goosebumps' on 'space duck’
hint at comet formation

By Jonathan Amos
Science correspondent, BBC News

@ 22 January 2015 | Science & Environment

(GRS oy GG T
A fascinating texture: Gomet 67P's *goosebumps” have a preferred soale of about 3m

Copenhagen 2

"We could be looking at the fundamental building blocks of our Solar System” - Colin Snodgrass, the

Open University
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Missing intermediate-size planetesimals

e Sheppard & Trujillo (2010) 107 e -
£ = .
searched for Neptune F 3 - Kuiper Belt
Trojans 10%¢ o ]
% [ m/, Asteroids
.. . L 10%k ’ y
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larger than 16 km c 10 L i
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E .
Z sl
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Asteroid size distribution

@ Differential size distribution of
asteroids shows several bumps

@ Can be used to infer the degree of
depletion and collisional grinding 10°

in the asteroid belt 8 F
g 10°F 3
=1 F 3
@ Divide the history of the asteroid % o
belt into an early accretion phase & 10°F 3
followed by an extended depletion & F
h 5 102F 3
phase g ; 3
@ Bottke et al. (2005a,b) evolved 10'¢ 3

the asteroid belt over billions of
years, starting from a size
distribution which matches the
current one for bodies larger than
120 km in diameter

100 [ : s d
1 10 100 1000
Diameter (km)
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Evolution of asteroid size distribution

@ Depletion factor of 100—200 gives good fit to

. A . . (Bottke et al., 2005)
observed size distribution after 4600 Myr of
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Accretion phase of asteroids
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@ Size distribution of asteroids shows distinct bumps at D = 120 km
and at D = 350 km

@ The first bump must be primordial (sottke et at, 2005)
@ Starting accretion phase with km-sized planetesimals produces way

too many asteroids with D < 100 km' (Morbideli et at., 2009)
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Starting from planetesimals with D = 100 km
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= 100 km produces very few

@ But the resulting size distribution is too steep for D > 100 km

(Morbidelli et al., 2009; Weidenschilling, 2011)
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Asteroids are born big

10'° T T T T

final SFD 4

o initial population

N (>D)
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@ The best results are obtained by setting the birth size distribution of
asteroids equal to the current observed size distribution of large
asteroids

@ Asteroids are born BIG (Morbideti et at., 2009)
@ Can we connect birth sizes to planetesimal formation models?
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Birth sizes of planetesimals

R [km
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@ Streaming instability leads to concentration of pebbles and to planetesimal

formation
@ Higher resolution yields smaller and smaller planetesimals
@ Powerlaw in dN/dM oc M™% with g = 1.6 (Johansen et al., 2015)
@ Most of the planetesimals are small but most mass is in the largest bodies

@ Birth sizes of planetesimals show no sign of a bump at 50 km radii
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Chondrules

@ Primitive meteorite parent bodies contain a large fraction of
0.1-1-mm-sized chondrules (formed over the first 3 million years)

@ Ordinary chondrites contain up to 80% of their mass in chondrules

@ What role did chondrules play in asteroid formation and growth?
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M = 7Tf]§ R]% pCAV 0.8 R6 (Ormel & Klahr, 2010; Lambrechts & Johansen, 2012)
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Asteroid sizes after chondrule accretion
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@ Chondrule accretion reproduces both the bump at R = 120 km and the
distribution up to R = 200 km (Johansen et al., 2015)
@ Embryos with sizes between the Moon and Mars are also formed by rapid
chondrule accretion
@ Direct planetesimal accretion contributes only a minor amount of mass to the
embryos and the largest asteroids

steep size
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Embryos in the asteroid belt

(Bottke et al., 2005)
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The Grand Tack scenario
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(Walsh et al., 2011)
@ The small mass of Mars (11% of Earth’s) is hard to explain in terrestrial planet
formation models

@ Jupiter could have migrated sufficiently far in to perturb the embryos in the
terrestrial planet formation region

@ As Jupiter and Saturn come to share a gap, they migrate outwards together (the
Grand Tack scenario of Walsh et al., 2011)

@ Best alternative to embedded embryos model for asteroid stirring, particularly if
one is concerned about Mars' small size
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Terrestrial planet formation with chondrules
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(Johansen et al., 2015)

@ Chondrule accretion leads to rapid formation of Mars-sized embryos in the
terrestrial planet formation region

@ Planetesimal accretion nevertheless more important than in the asteroid belt

@ Larger chondrules are accreted more efficiently
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From planetesimals to planets
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@ The largest planetesimals accrete the remaining

pebbles and grow to planets in the next 1-5

Myr

@ Growth depends strongly on the amount of
heavy elements in the protoplanetary disc

(Z = 0.01 in the Sun’s photosphere)
(Lambrechts & Johansen, 2014)

@ Gas-giant planets like Jupiter form if Z is high,
in agreement with exoplanet surveys
Copenhagen 2015 (Lecture 3)
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Radius of planet (R.)

(Buchhave, Latham, Johansen, et al., 2012)
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The critical core mass
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(lkoma et al., 2000) (Lambrechts, Johansen, & Morbidelli, 2014)

@ The critical core mass for envelope collapse increases when the accretion rate
increases

@ Planetesimal accretion rates at 5-10 AU yield core masses of 10-20 Earth masses —
but the growth rate is too low to compete with gas dissipation

@ Pebble accretion rates yield very high critical core masses of 100-200 Earth masses
— in disagreement with measured core masses
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Halting pebble accretion
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@ Pebble accretion is stopped when the protoplanet grows massive enough to carve a
gap in the pebble distribution

@ Gap formation known for Jupiter-mass planets (Paardekooper & Mellema, 2006)

@ Lambrechts et al. (2014) demonstrate that pebble accretion is stopped already at
20 Mg at 5 AU, with isolation mass scaling as

=20 (c5) " b
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The critical core mass revisited

pebble isolation mass 5AU
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(Lambrechts et al., 2014)

@ Protoplanets grow at the pebble accretion rate until pebble accretion is halted
abruptly

The envelope is then supercritical and collapses onto the core

Gives an excellent fit to Jupiter's and Saturn’s heavy elements (Lambrechts et al., 2014)
Gas giants in wide orbits must have large cores masses (50-100 Mg)

Explains dichotomy between ice giants and gas giants
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Including planetary migration
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Pebble accretion combined with protoplanetary disc evolution and planetary
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migration (Bitsch, Lambrechts, & Johansen, 2015)
@ Jupiter analogue forms late (after 2 Myr) and far out (beyond 15 AU)
@ Migrates into 3 AU orbit while growing to 300 Mg
@ Growth tracks can be bundled into a growth map
@ Early formed planets migrate to become hot and warm Jupiters
o
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Growth map with planetesimal accretion
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@ Accretion of planetesimals can not form cores within 5 Myr, even if
planetesimal surface density enhanced by factor 8 (sitsch et ar, 2015)

@ Hard to form Jupiter at 5 AU due to the slow accretion rate and the
high migration rate
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Emergence regions of planetary classes
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Reaching the initial conditions for the Nice model
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@ In the Nice model the giant planets orbit initially in a compact configuration

@ Natural consequence of planetary migration combined with rapid pebble accretion

@ Orbital architecture of the Nice model can be explained if the planetary embryos

emerge after 1.5-2 Myr in initial orbits between 20 and 25 AU
@ What happened to the embryos that formed closer to the Sun?
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Summary

@ Models and experiments of dust coagulation / fragmentation /
bouncing are very advanced now

@ Ice condensation may be another necessary ingredient for efficient
formation of pebbles

@ Particle clumping by streaming instabilities / pressure bumps /
vortices is by now a robust phenomenon studied by several groups
with independent codes

@ Pebble accretion is very efficient at growth from planetesimals to
planets — the full importance of this new growth mechanism is still
being explored

@ Asteroid belt and Kuiper belt may be sculpted by gravitational
collapse, pebble accretion and planetesimal collisions
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