PART OF THE SCIENCE TEAM AND A FEW OF THE MANY WHO HAVE MADE KEPLER POSSIBLE William Borucki¹, David Koch¹, Gibor Basri², Natalie Batalha³, Timothy Brown⁴, Derek Buzasi²³, Douglas Caldwell⁵, John Caldwell¹⁷, Jørgen Christensen-Dalsgaard⁶, William D. Cochran⁷, Edna DeVore⁵, Laurance Doyle⁵, Edward W. Dunham⁸, Andrea K. Dupree¹⁰, Eric B. Ford¹³, Jonathan Fortney²⁵, Thomas N. Gautier III⁹, John C. Geary¹⁰, Ronald Gilliland¹¹, Alan Gould¹⁸, Matthew J. Holman¹⁰, Steve B. Howell¹⁵, Jon M. Jenkins⁵, Hans Kjeldsen⁶, Yoji Kondo³⁰, Jack J. Lissauer¹, David W. Latham¹⁰, Geoffrey W. Marcy², Søren Meibom¹⁰, David G. Monet¹², David Morrison¹, Dimitar Sasselov¹⁰, Sara Seager²⁶, Jason H. Steffen²⁷, Jill Tarter⁵, William F. Welsh²⁸, Christopher Allen³², Howard Anderson², Jason Barnes³⁴, Alan Boss¹⁹, Don Brownlee²², Frederick Bruhweiler³³, Stephen T. Bryson¹, Lars Buchhave¹⁰, Hema Chandrasekaran⁵, David Charbonneau¹⁰, David Ciardi²⁹, Bruce D. Clarke⁵, Jessie Dotson¹, Debra Fischer¹⁶, Michael Haas¹, Elliott Horch²⁴, Howard Isaacson², John Asher Johnson²⁹, Jie Li⁵, Toby Owen²¹, Andrei Prsa³⁵, Elisa V. Quintana⁵, Jason Rowe¹, Phillip MacQueen⁷, William Sherry¹⁵, Peter Tenenbaum⁵, Guillermo Torres¹⁰, Joseph D. Twicken⁵, Jeffrey Van Cleve⁵, Ekaterina Verner³³, Lucianne Walkowicz², Haley Wu⁵, Jeffrey Kolodziejczak³¹, ²⁵Univ. of Calif., Santa Cruz, CA Cambridge, MA, **Affiliations** ¹NASA Ames Research Center, Moffett Field, CA ²University of California, Berkeley, CA ³San Jose State University, San Jose, CA, ⁴Las Cumbres Observatory Global Telescope, Goleta, CA ⁵SETI Institute, Mountain View, CA, ⁶Aarhus University, Aarhus, Denmark ⁷McDonald Observatory, University of Texas at Austin, Austin, TX, ⁸Lowell Observatory, Flagstaff, AZ, ⁹Jet Propulsion Laboratory, Calif. Institute of Technology, Pasadena, CA, ¹⁰Harvard-Smithsonian Center for Astrophysics, ¹¹Space Telescope Science Institute, Baltimore, MD, ²⁶MIT, Cambridge, MA ¹²United States Naval Observatory, Flagstaff, AZ, ²⁷Fermilab, Batavia, IL ¹³Univ. of Florida, Gainesville, FL ²⁸San Diego State Univ., San Diego, CA ¹⁴Planetary Science Institute, Tucson, AZ ²⁹Exoplanet Science Institute/Caltech, Pasadena, CA ¹⁵NOAO, Tucson, AZ ³⁰GSFC, Greenbelt, MD ¹⁶Yale University, New Haven, CT ³¹MSFC, Huntsville, AL ¹⁷York University, North York, ON, Canada ³²Orbital Sciences Corp., Mountain View, CA ¹⁸ Lawrence Hall of Science, Berkeley, CA ³³Catholic University of America, Washington, DC ¹⁹Carnegie Institute of Washington, Washington, DC ³⁴Univ. Idaho, Moscow, ID ²¹Univ. of Hawaii, Hilo, HI ³⁵Villanova University, Villanova, PA ²²Univ.of Washington, Seattle, WA Michael Endl⁷, Mark E. Everett¹⁴, ²³Eureka Scientific, Inc., Oakland, CA ²⁴Southern Connecticut State University, New Haven, CT ### NASA's Kepler Mission - Determine the frequency of Earth-size and larger planets in the habitable zone of sun-like stars - Determine the size and orbital period distributions of planets ### Transits Can Reveal Earth-size Planets #### From **TRANSIT DATA** obtain: Duration, depth, orbital period and inclination. Derive planet sizes and orbital radii (when combined with stellar information) #### From ENSEMBLE of PLANETARY SYSTEMS obtain: Estimates frequency of planet formation for inner planets. Requires thousands of stars because most orbits won't be aligned properly ### **Transit Lightcurve** # Kepler: Mission: - NASA, photometry of > 150,000 stars - Looking for Earth-like planets in transit - < 40 ppm in 6 hours; 30 minute cadence ### **Kepler Mission Goals** #### **Explore the structure and diversity of extrasolar planetary systems** - 1. Determine the <u>frequency of terrestrial planets in or near the</u> <u>habitable zone</u> of a wide variety of spectral types of stars; - 2. Determine the distributions of **size** and **semi-major axis** of these planets; - 3. Estimate the frequency and orbital distribution of planets in **multiple-star systems**; - 4. Determine the distributions of semi-major axis, albedo, size, mass and density of short-period **giant planets**; - 5. **Identify additional members** of each photometrically-discovered planetary system using complementary techniques; - 6. Determine the **properties of those stars** that harbor planetary systems. ### SPACECRAFT & INSTRUMENT Largest focal plane for a NASA flight mission: 94.6 million science pixels 42 science CCDs, 2 channels each 4 fine guidance sensor (FGS) CCDs CCDs controlled at -85C, Readout electronics at room temperature #### The Photometer The overall height with the spacecraft and sunshade is 4.3 m. #### Kepler CCDs Views of a prototype module composed of two CCDs mounted to a common carrier Each CCD is 2200 columns by 1024 rows, thinned, back-illuminated, anti-reflection coated, 4-phase devices manufactured by **e2v**. Each CCD has two outputs with the serial channel on the long edge. The pixels are 27 µm square, corresponding to 3.98 arcsec on the sky. ### The Focal Plane ### Star Field: Cygnus-Lyra #### FIELD OF VIEW IN CYGNUS A region of the extended solar neighborhood in the Cygnus-Lyra regions along the Orion arm of our galaxy has been chosen. In March of 2009 Kepler rose Seeking shadows of planets ... Are any like Earth? #### Launch of Kepler March 6, 2009, Cape Canaveral Air Force Station, FL ### Earth-trailing heliocentric orbit ### Kepler Full Frame Image #### **Pixel Level Data From Kepler** #### Module 17 Output 2 1.13 (h) x1.22 (w) degrees # Transit Light Curves ### Kepler Planet Candidates & Their Stars (Jason Rowe, 2015) #### **Kepler Planet Candidates** As of July 23, 2015 ### Locations of Kepler Planet Candidates As of January 7, 2013 ### Kepler Planets As of February 27, 2012 ### The Smallest Known Planet ### **Eclipsing Binary Stars** ### Kepler-16 Light Curve - Planet transits Star A - Planet transits Star B # Kepler-16 System ## Kepler-16 from above # Kepler-35(AB)b ### Distributions vs. Galactic Latitude Planet candidates, including multis, track targets, not BGEB FPs Few planet candidates are BGEB FPs! #### Most Multi-planet Candidates are Planets - 140,000 high-quality *Kepler* targets - 1723 targets with very good KOIs as of 2013 (1.23% of the targets) - 172 false positives (assume 10% are FPs) - EBs are distributed randomly among targets - Fraction of targets near EB = 172/140000 = 0.123% - Number of very good KOIs (planet or EB) accompanied by EB = 1723 x 0.123% = 3 Then we expect only 1.23% x 172= 2 multis with a FP But we observe 410 multis (with 1054 planet candidates)! #### Period ratios and stability #### "False Multi" Scenarios - One of the transit signals is from a background binary star or background star with planets, blended. - The transits are from planets around different, physically-bound, stars. - If all pairs were "false multis", ~ 56 would seem unstable. - 2 pairs seem unstable => ~ 3 4% are "false multis" - ~ 96% are real => high fidelity for statistical investigations. # Double Planets: Orbiting 1 or 2 stars? #### Double Transit signal could be due to: Two Planet System 2 Stars with 1 Planet each #### KOI-284, The 1st Unstable Multi 3 candidates Periods: 6.18, 6.42, 18.0 days The one multi (of the group of 170 studied) that is clearly unstable Most likely answer: one star has 2 planets, the other has 1 #### Kepler-9 b,c,d #### Transit timing - Planet perturbations - Models without interactions give poor fits - Models with planets affecting each other give good fits - TTVs can be used to confirm planets & measure masses ## Kepler-10 10b: $R = 1.4 R_{Earth}$, $M = 4.6 M_{Earth}$, P = 0.8 days 10c: $R = 2.2 R_{Earth}$, $M < 20 M_{Earth}$, P = 45 days #### Kepler's First Rocky Planet: Kepler-10b Kepler is giving us new knowledge about the frequency of near Earth-size planets. #### **Kepler-62 System** ## Kepler-11 A really cool system with 6 transiting planets # Kepler-11 Planets Correct sizes relative to star (Dan Fabrycky) ## Kepler-11: Six Planets ## Lightcurve Q1-Q6 Colored dots represent transits of six planets #### Kepler-11: Six Transiting Planets THE INTERNATIONAL WEIVEY JOURNAL OF SCIEN Kepler telescope's edge-on view of compact planetary system around Sun-like star PAGE 53 #### POLICY DEEP-SEA MINING Regulaten rw to protect hydrethermals ent species PAGE 31 #### DEUB DIS CO /ERY TAKING THE LEAD Debatus; have toke op the pipelines flowing PME4 #### ADAPTIVE IVMUNITY **FARLY ORIGIN** I'ORA' IHYMUS' Coll. based imm nd. 1 nm. 1 in living position preparation of the property t ◆ NATURE COM/NATURE 0 February 2011 Image: NASA/Pyle ## Kepler-11 Planets | Planet | Mass (M_{\oplus}) | Radius (R_{\oplus}) | Density (g cm ⁻³) | a (AU) | e | Flux $(F_{\odot,1AU})$ | |--------|--|---|---|--|--|------------------------| | b | 1.9 ^{+1.4} _{-1.0} | 1.80 ^{+0.03} _{-0.05} | 1.72 ^{+1.25} _{-0.91} | 0.091 ^{+0.001} _{-0.001} | 0.045 ^{+0.068} _{-0.042} | 125.1 | | c | 2.9 ^{+2.9} _{-1.6} | 2.87 ^{+0.05} _{-0.06} | 0.66 ^{+0.66} _{-0.35} | $0.107^{+0.001}_{-0.001}$ | 0.026 ^{+0.063} _{-0.013} | 91.6 | | d | 7.3 ^{+0.8} _{-1.5} | 3.12 ^{+0.06} _{-0.07} | 1.28 ^{+0.14} _{-0.27} | $0.155^{+0.001}_{-0.001}$ | $0.004^{+0.007}_{-0.002}$ | 43.7 | | e | 8.0 ^{+1.5} _{-2.1} | 4.19 ^{+0.07} _{-0.09} | 0.58 ^{+0.11} _{-0.16} | 0.195 ^{+0.002} _{-0.002} | 0.012 ^{+0.006} _{-0.006} | 27.6 | | f | $2.0_{-0.9}^{+0.8}$ | 2.49 ^{+0.04} _{-0.07} | 0.69 ^{+0.29} _{-0.32} | $0.250^{+0.002}_{-0.002}$ | 0.013 ^{+0.011} _{-0.009} | 16.7 | | g | < 25 | 3.33 ^{+0.06} _{-0.08} | <4 | 0.466 ^{+0.004} _{-0.004} | < 0.15 | 4.8 | #### Mass vs. Radius for sub-Neptune Exoplanets #### Composition of Kepler-11 Planets #### Summary - Kepler-11 is a surprisingly flat system of six planets. - The five inner planets comprise the most closely-spaced planetary system known. - The planets are mid-sized: 2-5 times as large as Earth. - Most have low densities, implying mixtures of solids and light gases. Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities (Carter et al. 2012) ## Orbits Are Extremely Close Kepler-36 A $M_{\star} = 1.071 \pm 0.043 M_{\odot}$ $R_{\star} = 1.626 \pm 0.019 R_{\odot}$ $T_{eff*} = 5911 \pm 66 K$ Kepler-36 b $M_p = 4.32 \pm 0.20 M_{\oplus}$ $R_p = 1.486 \pm 0.035 R_{\oplus}$ P= 13.83989 d Kepler-36 c $M_p = 7.84 \pm 0.35 M_{\oplus}$ $R_p = 3.679 \pm 0.054 R_{\oplus}$ P = 16.23855 d $a_b = 0.1153 \pm 0.0015 AU$ $a_c = 0.1283 \pm 0.0016 AU$ Parameters from: Carter et al. (2012) Deck et al. (2012) # Kepler-36 b Mass Measured within 4.2%, Radius Measured within 1.8% #### Kepler-36 b is Consistent with an Earth-like Composition - Kepler-36 b is the rocky exoplanet with best constrained mass, density, and composition: mass known within 4.2%, radius to 1.8%, density to 4.6%. - Kepler-36 b's mass and radius are consistent with an Earth-like composition. An iron-enhanced Mercury-like composition is ruled out. - In contrast, Kepler-36 c requires several percent of its mass in a hydrogen-rich envelope. (L. A. Rogers et al. in prep) ### Mass vs. Radius for sub-Neptune Exoplanets #### ORBITS OF KNOWN PLANETS IN THE KEPLER-138 SYSTEM The inner planet, b, has a density about the same as the rocky planet Mars. Planet c has a density about the same as Earth, and the outermost planet is less than half as dense, indicating a large proportion of light materials such as water and hydrogen. d RBIT OF MERCE Kepler-138 Karl Tate Space.com ### Mass and Radius of Kepler-138 Planets # Kepler-138 'b' is Mars-size 'c' and 'd' have $R_p = 1.2 R_{Earth}$ 'c' is rocky 'd' is less dense than rock (1/3 as massive as 'c') Jontof-Hutter et al. 2015 # Kepter Q1-Q12 Planet Candidates - 3538 planet candidates - Multi-planet systems: - 2 planets: 464 - 3 planets: 149 - 4 planets: 50 - 5 planets: 20 - 6 planets: 4 - 7 planets: 1 (KOI-351) # The Kepler Orrery II t[BJD] = 2454965 D. Fabrycky 2012 ### Kepler Planets in Multis: Period Ratios - Broad distribution most pairs are non-resonant - Factor-of-2 enhancements near 2:1 and 3:2 resonance - Enhancement is on the wide side of the resonance ``` Mp(Mearth) planet P (days) 1.5 500.05 0.9867790 Kepler-80 = 2.2 500.03 3.0721660 4.6453530 4.4 500.04 KOI-500 500.01 7.0534780 8.0 500.02 9.5216960 8.5 ``` # Sizes of Planet Candidates As of February 27, 2012 ### Sizes of Planet Candidates Totals as of November, 2013 ### Sizes of Kepler Planet Candidates Totals as of January 6, 2015 M Dwarfs Have Many Planets (Dressing & Charbonneau 2015) Planet Occurrence (%) #### **DETECTING EARTH-SIZE PLANETS** • The relative change in brightness (ΔL / L) is equal to the relative areas (A_{planet}/A_{star}) Jupiter: 1% area of the Sun (1/100) Earth or Venus 0.01% area of the Sun (1/10,000) - To measure 0.01% must get above the Earth's atmosphere - Method is robust but you must be patient: Require at least 3 transits preferably 4 with same brightness change, duration (how long the star is dimmer) and period (time between dimmings) #### **SIMULATION OF FOUR EARTH-SIZED TRANSITS** # Kepler's Key Findings Planets, especially "small" ones, are common Planetary systems are flat, like the Solar System Planets & planetary systems are extremely diverse #### **Transiting Exoplanet Survey Satellite (TESS)** #### **NASA's Next Exoplanet Mission** - George Ricker, MIT, Principal Investigator - Launch on Falcon-9 scheduled for 2017 ### Conclusions 688 Kepler target stars have 2 or more planet candidates (1706 candidates) Multi-planet systems tell us a great deal about the architecture of planetary systems Kepler-11 is supercalifragilisticexpialidocious #### Movies available at: http://kepler.nasa.gov/multimedia/animations/