Lecture: The Role of Impacts

Summer School 2015

Professor Schlichting (MIT) 7th August 2015

Forming Close-In Planets as Isolation masses

Viscous Stirring

Viscous stirring tends to increase the random kinetic energy all all bodies in the disk

Example: Terrestrial Planets

$$\label{eq:MGI} \mathsf{M}_{\rm GI} \ \simeq \frac{\left[2^{5/2}\pi a^2 \Sigma (\rho/\rho_\odot)^{1/6} (a/R_\odot)^{1/2}\right]^{3/2}}{M_\odot^{1/2}}.$$

4

 \ominus

1.5

2.0

Schlichting 2014

Forming Close-In Planet with Giant Impacts

Minimum Disk Masses Required

MMSN type disks consistent with formation further out and subsequent inward migration and/or radial inward drift of solids and subsequent local assembly.

Giant Impacts

Chambers 2002

Giant Impacts

Planetesimal Impacts

Impacts & Terrestrial Planet's Atmospheres

How Do Planets Acquire Their Atmospheres?

Gas Giants

Super-Earths

Terrestrial

Outgassed: melting of solids releases gas into atmosphere.

Primordial: hydrogenrich gas accreted directly from protoplanetary disk. What happens at intermediate masses?

Depletion of light elements

Knutson et al. 2015

Hote: Planet sizes not to scale. Pressures for terrestrial planets are surface pressures. Mercury's atmosphere is not an atmosphere in the strict sense of the word, being a trillion times thinner than Earth's.

ⓒ COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Atmospheric compositions taken from NASA, http://quest.arc.nasa.gov/projects/astrobiology/astroventure/challenge/Articles/planetatmoscomp.pdf

Exoplanet Atmospheres

For comparison, the Earth's atmosphere contains less than 10^{-6} of its mass and has an atmospheric scale height that is only ~ 0.1% of its radius.

Atmospheric Mass Loss During Planet Formation

1. Giant Impacts

1) The impact launches a strong shock.

2) The shock propagates through the planet causing a global ground motion.

3) This ground motion launches a shock into the atmosphere, which can lead to significant atmospheric loss.

e.g. Genda & Abe 2003, 2005, Schlichting et al. 2015

2. Small Planetesimal Impacts

1) Only eject atmosphere locally, h/2R, – but numerous small impacts

2) Atmosphere is ejected only where its mass per unit solid angle is less than of the ejecta, $m_{imp}/2\pi$.

e.g. Melosh & Vickery 1989, Schlichting et al. 2015

Atmospheric Mass Loss Efficiency for current Earth

Schlichting et al. 2015

Planetesimal impacts likely dominated the atmospheric mass loss over the formation history of the terrestrial planets.

How did the Earth get it's Ocean?

The Kuiper Belt Size Distribution

Circumstellar Debris Disks Hubble Space Telescope • ACS HRC

NASA, ESA, J. Krist (STScl/JPL), D.R. Ardila (JHU), D.A. Golimowski (JHU), M. Clampin (NASA/Goddard), H. Ford (JHU), G. Hartig (STScl), G. Illingworth (UCO-Lick) and the ACS Science Team

STScI-PRC04-33a

Collisional cascades

(2007)

Steady state: --> Mass conservation

