### Investigating dust extinction using background quasars

In collaboration with Ariel Goobar and Edvard Mörtsell (Stockholm University)

Linda Östman (Stockholm University)

### Some important parameters

- Extinction in the V-band  $A_V$
- Colour excess  $E(B-V) = (B-V)_{obs} - (B-V)_{intr}$
- Total-to-selective extinction ratio

$$R_{V} \equiv \frac{A_{V}}{E(B-V)}$$

### Idea

- Dust extinction affects the colour differently depending on R<sub>v</sub> and E(B-V)
- Knowing the intrinsic colour, we can constrain the dust extinction
- Quasars have fairly
  homogeneous colours



# Method

- Identify quasars with the line-of-sight passing through the dust content of a galaxy
- To a quasar spectral template, we add dust extinction [with different R<sub>v</sub> and E(B-V)] at the galaxy redshift and compute the resulting colours
- By comparing these simulated colours with the observed colours we learn about the properties of the dust extinction.
- Requirements: z (galaxy, quasar), photometry of the quasar

# **Finding pairs**



- Coordinate matching
- Lensing
- Spectral identification



# Choice of colours to compare

- 1) No redundant comparisons
- 2) Maximise the probability to detect dust extinction
- 3) Minimise the use of the photometry with large uncertainties

Maximising 
$$Q = \sum \frac{[E(i-j)]^2}{\sigma_{ij}^2}$$

e.g. i,j = u,g,r,i,z

### **Error estimates**

- Uncertainty in the observed magnitudes of the quasar
- Uncertainty in the template colours
  - From colours of SDSS quasars with  $z \pm 0.05$
  - Include intrinsic colour variations



# Dust extinction outside the petrosian radius of a galaxy

- Coordinate matching of SDSS Quasar catalogue DR 3 with NYU-VAGC
- (1)  $\chi^2$  for no dust worse than 90% random quasars without foreground galaxies
- (2)  $\chi^2$  for dust better than 90% random quasars with mock galaxy.
- 90% random



 $\rightarrow$  2 quasars-galaxy pairs

| Fitzpatrick            | Separation | Petrosian radius |
|------------------------|------------|------------------|
| $R_V = 3.4(2.4 - 4.7)$ | 15 kpc     | 10 kpc           |
| $R_V = 2.2(1.5 - 2.9)$ | 19 kpc     | 16 kpc           |

Östman, Goobar & Mörtsell 2006 A&A 450, 971

### Added probability distribution for R<sub>v</sub>



# MG0414+0534 – a system with 4 images

- Quasar z = 2.64, galaxy z = 0.96
- Early type galaxy





# Limiting the effects from intergalactic dust using quasars

- Using SNOC (Goobar et al. 2002 A&A 392, 757), the mean colours for redshift bins of size 0.05 are simulated
- Vary  $R_v$  and the interaction length  $D_{ov}$
- Two different models for the evolution of the dust density

A:  $\rho = \rho^0 (1+z)^3$ B:  $\rho = \rho^0 (1+z)^{\alpha}$   $\alpha = 3 \text{ for } z < 0.5$  $\alpha = 0 \text{ for } z > 0.5$ 



For Milky Way like dust  $(R_v < 4)$ 

#### Dimming < 0.03 mag in the B-band for a SN Ia at z=1

Yellow to red: 68%, 90%, 95%, 99% confidence level from  $\chi^2$  analysis Black lines: B band attenuation in magnitudes for a SN Ia at z = 1



Yellow to red: 68%, 90%, 95%, 99% confidence level Black lines: B band attenuation in magnitudes for a SN Ia at z = 1

Allowing for grey dust ( $R_v > 4$ ) Dimming < 0.2 mag in the B-band for a SN la at z=1

### In progress...

