The impact of cosmic dust on cosmology with supernovae

Brice Ménard
Canadian Institute for Theoretical Astrophysics

in collaboration with

Martin Kilbinger (IAP, Paris)
Ryan Scranton (UC Davis)
The opacity of the Universe

$$\tau_{obs}(\lambda, z) = \int_0^z \sigma n_0 \bar{\tau} \left(\frac{\lambda}{1 + z} \right) \frac{(1 + z)^2}{H(z)} \, dz$$

Tolman test (More et al. 09)
QSO color scatter (Moorsell & Goobar 05)
SNe Ia + H(z) (Avgoustidis et al. 09)
dust around galaxies (Menard et al. 09)
dust in MgII absorbers (Menard et al. 07)
The opacity of the Universe

\[\tau_{obs}(\lambda, z) = \int_0^z \sigma n_0 \tau \left(\frac{\lambda}{1 + z} \right) \frac{(1 + z)^2}{H(z)} \, dz \]
Extracting cosmological parameters from supernova magnitudes

1: Correct for dust extinction due to our Galaxy

2: The distance modulus is described with an unknown stretch factor and an unknown extinction

\[\mu_i = m_{\text{obs},i} - M + \alpha (s_i - 1) - \beta c_i \]

Assumption: \(\alpha \) and \(\beta \) are redshift independent

3: A chi-square is performed to extract the cosmology and the best stretch and extinction coefficients
Extracting cosmological parameters from supernova magnitudes

\[\mu_i = m_{\text{obs},i} - M + \alpha (s_i - 1) - \beta c_i \]

The observed color excess \(c_i \) has several contributions:

\[c_i = \sum_k c_{i,k} \]

Each of them should be corrected with the appropriate \(\beta \) or \(R_B \):

\[\delta m_i = \sum_k \beta_{i,k} c_{i,k} \]

If not, a bias is introduced in the distance modulus estimate:

\[\delta m_{\text{bias},i} = (\beta_d - \beta_0) c_d(z_i) \]
Effects on cosmological parameters

$$\mu_B = m_B^* - M + \alpha(s - 1) - \beta c$$
Effects on cosmological parameters

$$
\mu_B = m_B^* - M + \alpha(s - 1) - \beta c
$$
<table>
<thead>
<tr>
<th>Parameter</th>
<th>No Correction</th>
<th>High A_B $\beta_d = 4.9$</th>
<th>High A_B $\beta_d = 4.9 \pm 2.6$</th>
<th>Low A_B $\beta_d = 4.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM: Ω_M</td>
<td>0.291$^{+0.032}_{-0.030}$</td>
<td>0.308$^{+0.034}_{-0.031}$ (0.55σ)</td>
<td>0.308$^{+0.039}_{-0.035}$ (0.55σ)</td>
<td>0.304$^{+0.033}_{-0.031}$ (0.42σ)</td>
</tr>
<tr>
<td>wCDM: Ω_b</td>
<td>0.0457$^{+0.002}_{-0.002}$</td>
<td>0.046$^{+0.002}_{-0.002}$ (0.35σ)</td>
<td>0.045$^{+0.003}_{-0.002}$ (0.25σ)</td>
<td>0.045$^{+0.002}_{-0.002}$ (0.25σ)</td>
</tr>
<tr>
<td>h</td>
<td>0.695$^{+0.018}_{-0.017}$</td>
<td>0.687$^{+0.018}_{-0.017}$ (0.45σ)</td>
<td>0.688$^{+0.020}_{-0.019}$ (0.40σ)</td>
<td>0.688$^{+0.018}_{-0.017}$ (0.40σ)</td>
</tr>
<tr>
<td>Ω_M</td>
<td>0.273$^{+0.017}_{-0.016}$</td>
<td>0.279$^{+0.017}_{-0.016}$ (0.36σ)</td>
<td>0.278$^{+0.018}_{-0.017}$ (0.30σ)</td>
<td>0.278$^{+0.017}_{-0.016}$ (0.30σ)</td>
</tr>
<tr>
<td>$-w$</td>
<td>0.968$^{+0.068}_{-0.061}$</td>
<td>0.940$^{+0.067}_{-0.061}$ (0.43σ)</td>
<td>0.944$^{+0.072}_{-0.067}$ (0.37σ)</td>
<td>0.944$^{+0.062}_{-0.066}$ (0.37σ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>all models</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-19.31 ± 0.03</td>
</tr>
<tr>
<td>α</td>
<td>1.37 ± 0.13</td>
</tr>
<tr>
<td>β</td>
<td>2.45 ± 0.12</td>
</tr>
</tbody>
</table>

$\sim 3\%$ (or 0.4σ) offset in w
SUMMARY

The current formalism used to make supernovae standard candles uses a unique β (or R_B) coefficient to convert color change into magnitude change.

Current results indicate $\beta \approx 2$ ($R_V \approx 1$)

The presence of intergalactic breaks the above assumption.

Including its effects into the cosmological analysis changes w by 3% (or 0.4σ of the latest SNLS results).