## Stellar sources of dust at high redshift: SN vs AGB stars

# Rosa Valiante Raffaella Schneider, Simone Bianchi & Anja Andersen

Dipartimento di Astronomia, Università di Firenze
INAF/Osservatorio Astrofisico di Arcetri
Dark Cosmology Center

#### DAVID

#### The Dark Ages Virtual Department http://www.arcetri.astro.it/david



S. Bianchi INAF/Arcetri



B. Ciardi MPA



P. Dayal SISSA



C. Evoli SISSA



A. Ferrara **SNS Pisa** 



S. Gallerani OARoma



F. Iocco IAP



F. Kitaura **SISSA** 



M. Mapelli **ETH** 



A. Maselli **MPA** 



R. Salvaterra



S. Salvadori **SISSA** 



R. Schneider INAF/Arcetri



L. Tornatore **INAF/Trieste** 



M. Valdes **IPMU** 



R. Valiante Univ. Firenze

### Why high redshift dust?

 FIR and sub-mm observations of QSOs and galaxies at z>5-6 suggest huge dust masses (>10<sup>8</sup> M<sub>sun</sub>)

 Dust evolution in high redshift galaxies affects the cosmic IR emission which in turns provides important constraints on the global SFH

## Where is high-z dust produced?

- It is commonly believed that AGB stars cannot be responsible for high-z dust since their lifetimes are longer/comparable to the age of Universe at that redshifts
- Among all stellar dust sources, SN appear to be the only viable sites of grain condensation fast enough to explain these large dust masses
- Many chemical evolution models of high-z objects (e.g. QSOs) do not include dust produced by AGB stars....

#### **Our Aims**

 Investigate whether stellar sources can account for the huge amount of dust inferred from mm/sub-mm observations of high redshift quasars (5<z<6.4) by considering both SN and AGB stars in our model

 Investigate the relative role of AGB stars and SN in producing this dust

#### Dust by AGB stars



AGB stars produce  $10^{-3} - 10^{-2}$  M<sub>sun</sub> of dust mainly carbon dust silicates are only produced by stars with <  $2M_{sun}$  and > 4 M<sub>sun</sub> then  $Z = Z_{sun}$ 

#### Dust by SN



SN produce  $10^{-2} - 10^{-1} M_{sun}$  of dust mainly carbon dust!

# Cosmic Dust yields: SN vs AGB stars

The relative importance of the two dust production channels and the characteristic time-scales at which one dominates over the other depend on the star formation history (SFH) and the stellar initial mass function (IMF)...

$$M_{d}(t) = \int_{0}^{t} dt' \int_{m_{*}(t)}^{100M_{\Theta}} m_{d}(m)\phi(m)SFR(t'-\tau_{m})dm$$

Larson IMF with m<sub>ch</sub>=0.35M<sub>sun</sub>

**Burst/Continuous SF** 

No Istantaneous Recycling Approximation



AGB dominate dust production after 150 - 500 Myr These stellar dust sources must be taken into account even at early cosmic epochs!

### Dependence on the stellar IMF

$$\phi(m) \propto m^{-1-x} \exp(-m_{ch}/m)$$
$$x = 1.35$$

$$m \in [0.1 - 100] M_{sun}$$

For  $m_{ch} = 5 M_{sun}$  AGB dust is comparable to the SN dust after 1Gyr

For m<sub>ch</sub> ≥ 10 M<sub>sun</sub> SN dominate dust evolution



# SN vs AGB dust in the most extreme QSO @ z=6.4 SDSS J1148+5251 (Fan et al. 2003)

- Larson IMF with m<sub>ch</sub>=0.35 M<sub>sun</sub>
- No Instantaneous Recycling Approximation
- Numerically simulated Star Formation History (Li et al. 2007) and/or a continuous SFH constant in time (10<sup>3</sup>M<sub>sun</sub>/yr)
- Dust destruction by interstellar SN shocks
   (e.g. Dwek, Galliano & Jones 2007)

#### Simulated SFH of SDSS J1148+5251



$$M_{halo} = 10^{13} M_{sun}$$
  
SFR (z=6.4) ~ 100 M<sub>sun</sub>/yr  
 $M_{star} \sim 10^{12} M_{sun}$ 



#### **Continuous SFR**



AGB stars give a significant contribution about the 80% of the total dust mass @ z= 6.4

AGB stars produce about the 50% of carbon dust @ z=6.4

### Summary

- AGB stars produce 10<sup>-3</sup> 10<sup>-2</sup> M<sub>sun</sub> of dust (mainly carbon)
- SN produce 10<sup>-2</sup> 10<sup>-1</sup> M<sub>sun</sub> of dust (mainly carbon)
- The dominant dust component is always Carbon dust, silicates are mainly produced by stars with <2  $M_{sun}$  and >4  $M_{sun}$  when  $Z = Z_{sun}$
- For a stellar population forming according to a present-day Larson IMF with m<sub>ch</sub>=0.35M<sub>sun</sub> the characteristic time-scale at which AGB stars dominate dust production ranges between 150 and 500 Myr, depending both on the assumed SFH and initial stellar metallicity.
- AGB stars can significantly contribute to the total dust mass observed at high redshift
- The nature of dust at high-z depends more on the star formation history of the host galaxy rather than on the cosmic time