SOLVABLE MATTER ON 2D CAUSAL DYNAMICAL TRIANGULATION?

John Wheater University of Oxford

Jan Ambjorn, Bergfinnur Durhuus, JW arXiv: hep-th/0509191, math-ph/0607020, 0908.3643

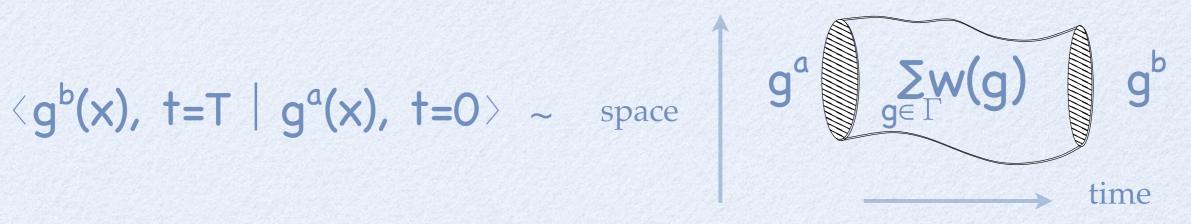
CONTENTS

- 1. Quantum Gravity
- 2. Triangulations & metrics
- 3. Causal triangulations & trees
- 4. Dimers on CTs
- 5. Labelled trees
- 6. Phase Diagram
- 7. Geometry
- 8. Remarks

1. QUANTUM GRAVITY

Gravity's dynamical degree of freedom is the metric g (x,†) Classically $g_{\mu\nu}(x,t)$ obeys Einstein's equations: $g_{\mu\nu}(x,0)$ $g_{\mu\nu}(x,t)$

Quantum mechanics is different:



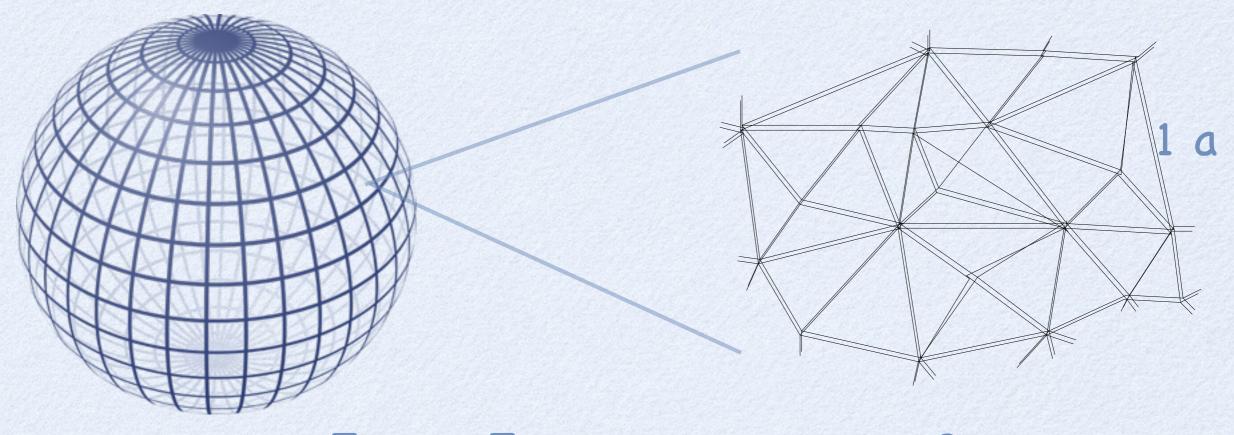
Probability amplitude for evolution from **g**^a to **g**^b

How are Γ and w defined ?
Several approaches; some non-stringy ones
1. Continuum field theoretical -- exact RG looking for non-Gaussian fixed points where QG non-perturbatively renormalizable (asymptotic safety)

2. Discretized -- Causal Dynamical Triangulations Γ is a set of graphs, w(g) defined in terms of graph quantities, we look for a critical point (or line) where a continuum limit can be taken.
Recently much discussed also in context of Horava / Lifshitz gravity

2. TRIANGULATIONS & METRICS

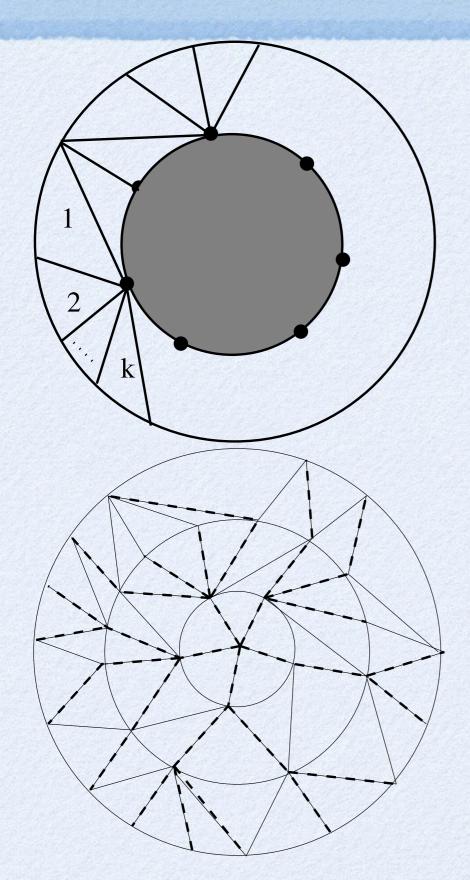
- So how do we do Σ_g ?
- Note g(x,t) +> {geodesic distances} +> {graph distances}
- Think about 2-dim space with spherical topology



 $\Sigma_g \leftrightarrow \Sigma_{\text{triangulations}}, a \rightarrow 0$

3. CAUSAL TRIANGULATION & TREE BIJECTION

arXiv:0908.3643



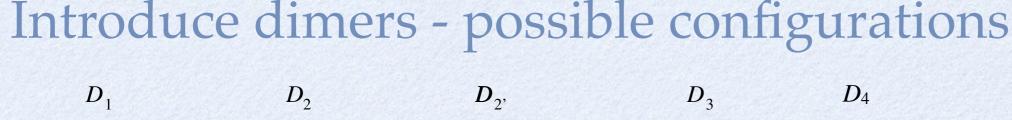
$$w_{G} = \prod_{v \in G} g^{k_{v}+1}$$

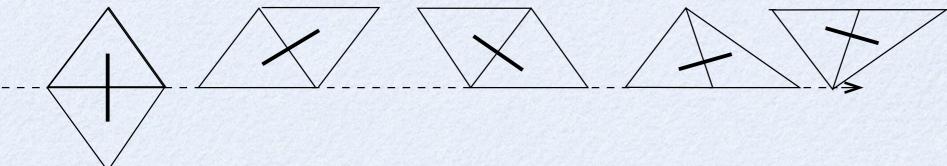
$$Z(g) = \sum_{G} w_{G}$$
Critical at $g = g_{c} = 1/2$
at g_{c} offspring proba

at g_c offspring probability $p_n = (1/2)^{n+1}$ so critical Galton Watson $\langle n \rangle = 1$ $\mu(\infty \ CDT) \Leftrightarrow \mu(URT)$

Uniform RT is a particular GRT

3. DIMERS ON CDT arXiv:1201.4322 Atkin & Zohren



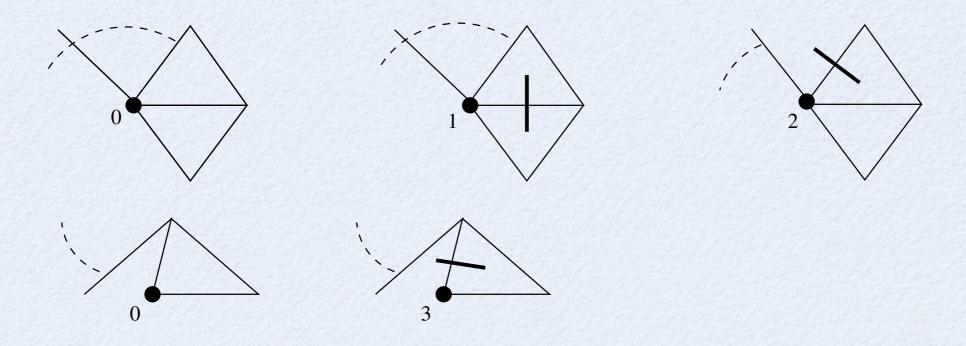


Two dimers may not share a triangle

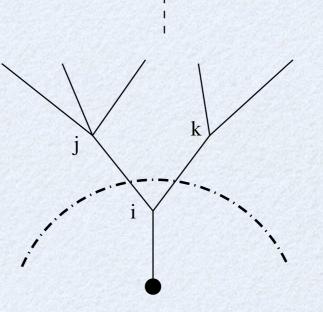
 $w_{G} = \prod_{v \in G} g^{k_{v}+1}$ $Z(\{\xi\};g) = \sum_{G,D} w_{G} \xi_{1}^{D_{1}} \xi_{2}^{D_{2}} \xi_{2'}^{D_{3}} \xi_{4}^{D_{4}}$ $Z \text{ fn of } \xi_{2} + \xi_{2'} \text{ so set } \xi_{2'} = 0$ $A \& Z: \xi_{3} = \xi_{4} = 0 \text{ allows bijection to labelled trees}$

4. LABELLED TREES

A, D & JW: $\xi_4 = 0$ allows bijection to labelled trees



Label allocation L survives bijection trees τ inherit a set of labelling rules from dimer rule τ can be decomposed



$$W_{i}(\{\xi\};g) = \sum_{\tau,L;i} g^{\tau} \xi_{1}^{L_{1}} \xi_{2}^{L_{2}} \xi_{3}^{L_{3}}$$
$$= F_{i}(\{W\};\{\xi\};g)$$

these are geometric series so F are rational fns of W and $Z = g^{-1} W_0 - 1$

and W_o satisfies a cubic — we are in business

5. PHASE DIAGRAM

find $W_0 \sim W_{0c}(\{\xi\}) - A(\{\xi\}) (g_c(\{\xi\}) - g)^{\alpha}$ $g_c(\{\xi\})$ is free energy; set $\xi = \xi_1 = \xi_2$ ξ_3 Dimers sub-critical $\alpha = 1/2$

1/3

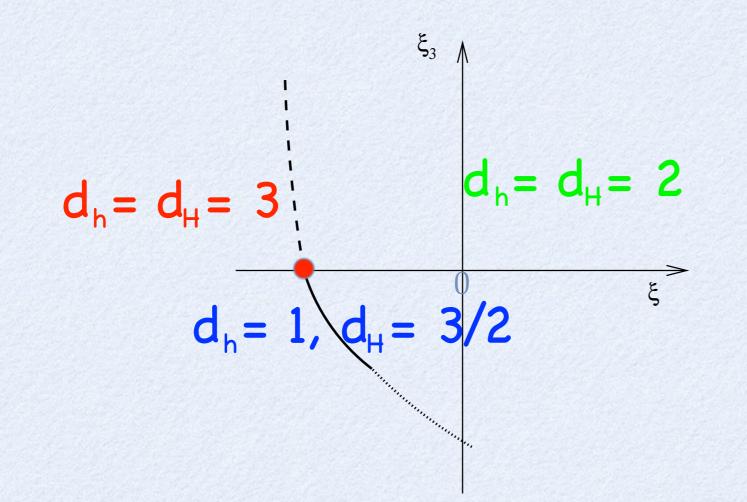
α

ξ

conditional convergence

6.GEOMETRIC CHARACTERIZATION

Hausdorf dimension: finite tree $N \sim R^{d_{H}}$ infinite tree $B_{R} \sim R^{d_{h}}$



1. Away from dimer criticality the continuum theory is just (Horava-Lifshitz) 2d gravity

2. The segment of critical line $d_h = 1$, $d_H = 3/2$ is probably critical dimer CFT (c=-22/5) coupled to H-L 2d gravity

3. The AZ point $d_h = d_H = 3$ is special, but not that special — it is still a one-parameter family. Presumably it describes a CFT coupled to H-L gravity but we do not know which CFT

4. Systems with negative weights are intricate and can easily confound out intuition